Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T20:17:47.261Z Has data issue: false hasContentIssue false

3 - Linear feedback shift registers and linear recurrences

from PART I - ALGEBRAICALLY DEFINED SEQUENCES

Published online by Cambridge University Press:  05 February 2012

Mark Goresky
Affiliation:
Institute for Advanced Study, Princeton, New Jersey
Andrew Klapper
Affiliation:
University of Kentucky
Get access

Summary

Besides being interesting fundamental mathematical objects in their own right, linearly recurrent sequences have proved to be useful in many applications, including pseudo-random number generation, error correcting codes, private key cryptosystems, radar ranging, code division multiple access communications, and many other areas. They provide a fast and simple method of generating statistically random sequences. Moreover, many of their properties can be analyzed using various algebraic structures. The primary algebraic tools used to analyze linearly recurrent sequences are polynomials, power series, and trace functions on finite fields. The results in this section are all classical, many of them having been known for over 100 years. However we have organized this section in a slightly unusual way (from the modern perspective) in order to better illustrate how they are parallel to the FCSR and AFSR theory which will be described in later chapters.

There are many ways to describe the output sequence of an LFSR, each of which has its merits. In this chapter we discuss the matrix presentation (Section 3.2), the generating function presentation (Theorem 3.5.1), the algebraic presentation (Proposition 3.7.1), the trace representation (Theorem 3.7.4), and the sums of powers representation (Theorem 3.7.8).

Definitions

In this section we give the definitions and describe the basic properties of linear feedback shift registers and linearly recurrent sequences. Throughout this chapter we assume that R is a commutative ring (with identity denoted by 1).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×