Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-24T15:32:13.006Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2014

Vitaly I. Khvorostyanov
Affiliation:
Central Aerological Observatory, Russia
Judith A. Curry
Affiliation:
Georgia Institute of Technology
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbatt, J. P. D., Benz, S., Cziczo, D. J., Kanji, Z., Lohmann, U., and Möhler, O. (2006). Solid ammonium sulfate aerosols as ice nuclei: A pathway for cirrus cloud formation. Science, 313, 1770–1773.CrossRefGoogle ScholarPubMed
Abdul-Razzak, H., and Ghan, S. J. (2000). A parameterization of aerosol activation: 2. Multiple aerosol types. J. Geophys. Res., 105, 6837–6844.CrossRefGoogle Scholar
Abdul-Razzak, H., and Ghan, S. J. (2004). Parameterization of the influence of organic surfactants on aerosol activation. J. Geophys. Res., 109, D03205, .CrossRefGoogle Scholar
Abdul-Razzak, H., Ghan, S. J., and Rivera-Carpio, C. (1998). A parameterization of aerosol activation: 1. Single aerosol type. J. Geophys. Res., 103, 6123–6131.CrossRefGoogle Scholar
Abraham, F. (1970). Functional dependence of drag coefficient of a sphere on Reynolds number. Phys. Fluids, 13, 2194–2195.CrossRefGoogle Scholar
Ackerman, S., and Stephens, G. L. (1987). The absorption of solar radiation by cloud droplets: An application of anomalous diffraction theory. J. Atmos. Sci., 44, 1574–1588.2.0.CO;2>CrossRefGoogle Scholar
Agee, E. M. (1985). Extratropical cloud-topped boundary layers over the oceans. Rep. JSC/CAS Workshop on Modeling of CTBL, Fort Collins, CO, USA, WMO/TD No 75, 67 pp.Google Scholar
Agee, E. M. (1987). Mesoscale cellular convection over the oceans. Dyn. Atmos. Oceans, 10, 317–341.CrossRefGoogle Scholar
Albrecht, B. (1989). Aerosols, cloud microphysics and fractional cloudiness. Science, 245, 1227–1230.CrossRefGoogle ScholarPubMed
Aleksandrov, E. L., and Yudin, K. B. (1979). On the vertical profile of the cloud microstructure in stratiform clouds. Sov. Meteorol. Hydrol., 12, 47–61.Google Scholar
Ally, M. R., Clegg, S. I., Braunstein, J., and Simonson, J. M. (2001). Activities and osmotic coefficients of tropospheric aerosols: (NH4)2SO4 (aq) and NaCl (aq). J. Chem. Themodynamics, 33, 905–915.CrossRefGoogle Scholar
Al-Naimi, R., and Saunders, C. P. R. (1985). Measurements of natural deposition and condensation-freezing ice nuclei with a continuous flow chamber. Atmos., Environ., 19, 1871–1882.CrossRefGoogle Scholar
Angell, C. A. (1982). In: Water: A comprehensive treatise, vol. 7. Ed.: Franks, F., Plenum, New York, 1–81.Google Scholar
Ångström, A. (1929). On the atmospheric transmission of sun radiation and on dust in the air. Geogr. Ann., 11, 156–166.Google Scholar
Ångström, A. (1964). The parameters of atmospheric turbidity. Tellus, 16, 64–75.CrossRefGoogle Scholar
Archuleta, C. M., DeMott, P. J., and Kreidenweis, S. M. (2005). Ice nucleation by surrogates for atmospheric mineral dust and mineral dust/sulfate particles at cirrus temperatures. Atmos. Chem. Phys., 5, 2617–2634.CrossRefGoogle Scholar
Atkins, P. W. (1982). Physical chemistry, 2nd ed., Oxford Univ. Press., 1095 pp.Google Scholar
Auer, A. H.., and Veal, D. L. (1970). The dimensions of ice crystals in natural clouds. J. Atmos. Sci., 27, 919–926.2.0.CO;2>CrossRefGoogle Scholar
Austin, P. H., Baker, M. B., Blyth, A. M., and Jensen, J. B. (1985). Small-scale variability in warm continental cumulus clouds. J. Atmos. Sci., 42, 1123–1138.2.0.CO;2>CrossRefGoogle Scholar
Bakan, S. (1984). Note on cellular convection with nonisotropic eddies. Tellus, 36A, 87–89.CrossRefGoogle Scholar
Baker, M. B. (1993). Variability in concentrations of CCN in the marine cloud-top boundary layer. Tellus, Ser. B, 45, 458–472.CrossRefGoogle Scholar
Baker, M. B., and Baker, M. (2004). A new look at homogeneous freezing of water. Geophys. Res. Lett., 31, L19102, .CrossRefGoogle Scholar
Baker, M. B., and Latham, J. (1979). The evolution of the droplet spectra and the rate of production of embryonic raindrops in small cumulus clouds. J. Atmos. Sci., 36, 1612–1615.2.0.CO;2>CrossRefGoogle Scholar
Baker, M. B., Corbin, R. G., and Latham, J. (1980). The influence of entrainment on the evolution cloud droplet spectra: I. A model of inhomogeneous mixing. Q. J. Roy. Meteor. Soc., 106, 581–598.CrossRefGoogle Scholar
Baker, M. B., Briedenthal, R. E., Choularton, T. W., and Latham, J. (1984). The effects of turbulent mixing in clouds. J. Atmos. Sci., 41, 299–304.2.0.CO;2>CrossRefGoogle Scholar
Bakhanov, V. P., and Buikov, M. V. (1985). Modeling artificial crystallization, precipitation formation and dispersal of supercooled stratiform clouds. Review. Proc. Sov. Inst. Sci. Inf., ser. Meteorology, No. 6, 50 pp., Obninsk, Moscow Region (in Russian).Google Scholar
Barahona, D., and Nenes, A. (2008). Parameterization of cirrus formation in large scale models: Homogenous nucleation. J. Geophys. Res., 113, .CrossRefGoogle Scholar
Barahona, D., and Nenes, A. (2009). Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation monodisperse ice nuclei. Atmos. Chem. Phys., 9, 369–381.CrossRefGoogle Scholar
Bartlett, J. T., and Jonas, P. R. (1972). On the dispersions of the sizes of droplets growing by condensation in turbulent clouds. Quart. J. Roy. Meteor. Soc., 98, 150–164.CrossRefGoogle Scholar
Barton, E. F., and Oliver, W. F. (1936). The crystal structure of ice at low temperatures. Proc. Roy. Soc. Lond., A 153, 166–172.CrossRefGoogle Scholar
Bashkirova, T. A., and Pershina, T. A. (1964). On the mass of snow crystals and their fall velocity. Proc. Main Geophys. Observ., 165, 83–100.Google Scholar
Bauer, S. E. and Koch, D. (2005), Impact of heterogeneous sulfate formation at mineral dust surfaces on aerosol loads and radiative forcing in the Goddard Institute for Space Studies general circulation model. J. Geophys. Res., 110, .CrossRefGoogle Scholar
Beard, K. V. (1976). Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33, 851–864.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V. (1980). The effect of altitude and electrical force on the terminal velocity of hydrometeors. J. Atmos. Sci., 37, 1363–1374.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., and Chuang, C. (1987). A new model for the equilibrium shape of raindrops. J. Atmos. Sci., 44, 1509–1524.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., and Ochs, H. T. (1993). Warm-rain initiation: an overview of microphysical mechanisms. J. Appl. Meteorol., 32, 608–625.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., and Pruppacher, H. R. (1971). A wind tunnel investigation of the rate of evaporation of small water drops at terminal velocity in air. J. Atmos. Sci., 28, 1455–1464.2.0.CO;2>CrossRefGoogle Scholar
Becker, R., and Döring, W. (1935). Kinetische Behandlung der Keimbildung in übersättigten Dämpfen. Ann. Physik, 24, 719–752.CrossRefGoogle Scholar
Belyaev, V. I. (1961). Size distribution of drops in a cloud during its condensation stage of development. Izv. Acad. Sci. USSR, Geophys. Ser., 8, 1209–1213.Google Scholar
Belyaev, V. I. (1964). The method of Lagrange in the kinetics of cloud processes. Leningrad, Hydrometeoizdat, 119 pp. (in Russian).Google Scholar
Berezinsky, N. A., and Stepanov, G. V. (1986). Dependence of natural ice-forming nuclei concentration of different size on the temperature and supersaturation. Izv. Acad Sci. USSR, Atmos. Oceanic Phys., 22, 722–727.Google Scholar
Bergeron, T. (1935). On the physics of clouds and precipitation. Proc. Vth Assembly General of the International Union of Geodesy and Geophysics, Lisbon, Portugal, International Union of Geodesy and Geophysics, 156–180.
Berjulev, G. P., Chernikov, A. A., Danelyan, B. G., Khvorostyanov, V. I., Seregin, Y. A., Toroyan, G. R., and Vlasyuk, M. V. (1989). Field study and numerical simulation of an orographic cloud system: Natural evolution and seeding. Proc. IVth International Conf. on Weather Modification, Beijing, China, 128–132.Google Scholar
Berlyand, T. G., and Strokina, L. A. (1980). Global distribution of total cloud amount. Hydrometeoizdat, Leningrad, 71 pp. (in Russian) (English translation by S. Warren).Google Scholar
Berry, E. X. (1967). Cloud drop growth by coalescence. J. Atmos. Sci., 24, 688–701.2.0.CO;2>CrossRefGoogle Scholar
Berry, E. X., and Reinhardt, R. L. (1974a). An analysis of cloud drop growth by collection: Part I. Double distributions. J. Atmos. Sci., 31, 1814–1824.2.0.CO;2>CrossRefGoogle Scholar
Berry, E. X., and Reinhardt, R. L. (1974b). An analysis of cloud drop growth by collection: Part II. Single initial distributions. J. Atmos. Sci., 31, 1825–1831.2.0.CO;2>CrossRefGoogle Scholar
Bertram, A. K., Patterson, D. D., and Sloan, J. J. (1996). Mechanisms and temperatures for the freezing of sulfuric acid aerosols measured by FTIR spectroscopy. J. Phys. Chem., 100, 2376–2383.CrossRefGoogle Scholar
Bertram, A. K., Koop, T., Molina, L. T., and Molina, M. J. (2000). Ice formation in (NH4)2SO4-H2O particles. J. Phys. Chem. A, 104, 584–588.CrossRefGoogle Scholar
Bigg, E. K. (1953). The supercooling of water. Proc. Phys. Soc., B 66, 688–703.CrossRefGoogle Scholar
Bigg, E. K., and Leck, C. (2001a). Cloud-active particles over the central Arctic Ocean. J. Geophys. Res., 106 (D23), 32,155–32,166.CrossRefGoogle Scholar
Bigg, E. K., and Leck, C. (2001b). Properties of the aerosol over the central Arctic Ocean. J. Geophys. Res., 106 (D23), 32,101–32,109.CrossRefGoogle Scholar
Bigg, E. K., Brownscombe, J. L., and Thompson, W. (1969). Fog modification with long-chain alcohols. J. Appl. Met., 8, 75–82.2.0.CO;2>CrossRefGoogle Scholar
Biskos, G., Malinowski, A., Russell, L. M., Buseck, P. R., and Martin, S. T. (2006a). Nanosize effect on the deliquescence and the efflorescence of sodium chloride particles. Aeros. Sci. Technol., 40, 97–106.CrossRefGoogle Scholar
Biskos, G., Russell, L. M., Buseck, P. R., and Martin, S. T. (2006b). Nanosize effect on the hygroscopic growth factor of aerosol particles. Geophys. Res. Lett., 33, (1–4), L07, 801.CrossRefGoogle Scholar
Bleck, R. (1970). A fast, approximative method for integrating the stochastic coalescence equation. J. Geophys. Res., 75, 5165–5171.CrossRefGoogle Scholar
Blüthgen, J. (1966). Allgemeine klimageographie, Walter de Gruyter, Berlin, v. 2, 710 pp.Google Scholar
Bogdan, A., and Molina, M. J. (2009). Why does large relative humidity with respect to ice persist in cirrus ice clouds? J. Phys. Chem. A, 113, 14,123–14,130.CrossRefGoogle ScholarPubMed
Bogdan, A., Molina, M. J., Kulmala, M., Tenhu, H., and Loerting, T. (2013). Solution coating around ice particles of incipient cirrus clouds. Proc. Natl. Acad. Sci., .CrossRefGoogle ScholarPubMed
Blyth, A. (1993). Entrainment in cumulus clouds. J. Appl. Meteorol. 32, 626–641.2.0.CO;2>CrossRefGoogle Scholar
Böhm, J. P. (1989). A general equation for the terminal fall speed of solid hydrometeors. J. Atmos. Sci., 46, 2419–2427.2.0.CO;2>CrossRefGoogle Scholar
Böhm, J. P. (1992). A general hydrodynamic theory for mixed-phase microphysics. Part I: Drag and fall speeds of hydrometeors. Atmos. Res., 27, 253–274.CrossRefGoogle Scholar
Borick, S. S., Debenedetti, P. G., and Sastry, S. (1995). A lattice model of network-forming fluids with orientation-dependent bonding: Equilibrium, stability, and implications for the phase behavior of supercooled water. J. Phys. Chem., 99, 3781–3792.CrossRefGoogle Scholar
Born, M. (1963). Atomic physics, Blackie and Son, Ltd., London-Glasgow, 493 pp.Google Scholar
Borovikov, A. M., Mazin, I. P., and Nevzorov, A. N. (1965). Some features of distribution of the large particles in clouds of various forms. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 1 (3), 357–369.Google Scholar
Borovikov, A. M., Gaivoronsky, I. I., Zak, E. G., Kostarev, V. V., Mazin, I. P., Minervin, V. E., Khrgian, A. Kh., and Shmeter, S. M. (1963). The physics of clouds. Leningrad, Hydrometeoizdat, 1961, Transl. by Israel Program Scientif. Translation, U.S. Dept. Commerce, Washington, DC, 459 pp., 1963.Google Scholar
Bott, A. (1998). A flux method for the numerical solution of the stochastic collection equation. J. Atmos. Sci., 55, 2284–2293.2.0.CO;2>CrossRefGoogle Scholar
Bott, A. (2000). A flux method for the numerical solution of the stochastic collection equation: Extension to two-dimensional particle distributions. J. Atmos. Sci., 57, 284–294.2.0.CO;2>CrossRefGoogle Scholar
Bott, A. (2001). A new method for the solution of the stochastic collection equation in cloud models with spectral aerosol and cloud drop microphysics. Atmos. Res., 59–60, 361–372.Google Scholar
Boville, B. A., Rasch, P. J., Hack, J. J., and McCaa, J. R. (2006). Representation of clouds and precipitation processes in the Community Atmosphere Model version 3 (CAM3). J. Climate, 19, 2184–2198.CrossRefGoogle Scholar
Braham, R. R. (1976). CCN spectra in c-k space. J. Atmos. Sci., 33, 343–346.2.0.CO;2>CrossRefGoogle Scholar
Brandes, E. A., Zhang, G., and Vivekanandan, J. (2003). An evaluation of a drop distribution-based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652–660.2.0.CO;2>CrossRefGoogle Scholar
Brechtel, F. J., and Kreidenweis, S. M. (2000a). Predicting particle critical supersaturation from hygroscopic growth measurements in the humidified TDMA. Part I: Theory and sensitivity studies. J. Atmos. Sci., 57, 1854–1871.2.0.CO;2>CrossRefGoogle Scholar
Brechtel, F. J., and Kreidenweis, S. M. (2000b). Predicting particle critical supersaturation from hygroscopic growth measurements in the humidified TDMA. Part II: Laboratory and ambient studies. J. Atmos. Sci., 57, 1872–1887.2.0.CO;2>CrossRefGoogle Scholar
Brenguier, J.-L., and Chaumat, L. (2001). Droplet spectra broadening in cumulus clouds. Part I: broadening in adiabatic cores. J. Atmos. Sci., 58, 628–641.2.0.CO;2>CrossRefGoogle Scholar
Bretherton, C. S., MacVean, M. K., Bechtold, P., Chlond, A., Cotton, W. R., et al. (1999a). An intercomparison of radiatively-driven entrainment and turbulence in a smoke cloud, as simulated by different numerical models. Quart. J. Roy. Meteor. Soc., 125, 391–423.CrossRefGoogle Scholar
Bretherton, C. S., Krueger, S. K., Bechtold, P., van Meijgaard, E., Stevens, B., and Teixeira, J. (1999b). A GCSS boundary layer model intercomparison study of the first ASTEX Lagrangian experiment. Bound.-Layer Meteor., 93, 341–380.CrossRefGoogle Scholar
Bridgman, P. W. (1912). Water, in the liquid and five solid forms, under pressure. Proc. Amer. Acad. Arts Sci., 47, 441–558.CrossRefGoogle Scholar
Broadwell, J. E., and Briedenthal, R. E. (1982). A simple model of mixing and chemical reaction in a turbulent shear layer. J. Fluid. Mech., 125, 397–410.CrossRefGoogle Scholar
Brock, J. R. (1962). On the theory of thermal forces acting on aerosol particles. J. Colloid Sci., 17, 768–780.CrossRefGoogle Scholar
Brown, A. J., and Whalley, E. (1966). Preliminary investigation of the phase boundaries between ice VI and VII and ice VI and VIII. J. Chem. Phys., 45, 4360–4361.CrossRefGoogle Scholar
Brown, P. S. (1991). Parameterization of the evolving drop-size distribution based on analytic solution of the linearized coalescence breakup equation. J. Atmos. Sci., 48, 200–210.2.0.CO;2>CrossRefGoogle Scholar
Brown, P. S. (1997). Mass conservation considerations in analytic representation of rain drop fragment distribution. J. Atmos. Sci., 54, 1675–1687.2.0.CO;2>CrossRefGoogle Scholar
Brown, R. A. (1974). Analytical methods in planetary boundary layer modeling. Adam Higler, London, 150 pp.Google Scholar
Brown, S. R. (1970). Terminal velocities of ice crystals. M. S. Thesis, Dept. of Atmospheric Sciences, Fort Collins, Colorado, 52 pp.Google Scholar
Brüggeller, P., and Mayer, E. (1980). Complete vitrification in pure water and dilute aqueous solutions. Nature, 288, 569–571.CrossRefGoogle Scholar
Brümmer, B. (1985). Structure, dynamics and energetics of boundary layer rolls from KonTur aircraft observations. Contr.Atm.Phys., 58, 237–254.Google Scholar
Brümmer, B., Rump, B., and Kruspe, G. (1992). A cold air outbreak near Spitsbergen in springtime: Boundary-layer modification and cloud development. Boundary Layer Meteorol., 61, 13–46.CrossRefGoogle Scholar
Bryant, F. D., and Latimer, P. (1969). Optical efficiencies of large particles of arbitrary shape and orientation. J. Colloid Interface Sci., 30, 291–304.CrossRefGoogle Scholar
Buikov, M. V. (1961). Kinetics of distillation in a polydisperse fog. Izvestia Acad. Sci. USSR, Ser. Geophys., 7, 1058–1065.Google Scholar
Buikov, M. V. (1963). A method of the kinetic equations in the theory of clouds. Proc. All-Union Meteorol. Conf., Leningrad, 5, 122–128.Google Scholar
Buikov, M. V. (1966a). Kinetics of heterogeneous condensation at adiabatic cooling. Part 1: Diffusion regime of droplet growth. Colloid J., 28 (5), 628–634.Google Scholar
Buikov, M. V. (1966b). Kinetics of heterogeneous condensation at adiabatic cooling. Part 2: Kinetic regime of droplet growth. Colloid J., 28 (5), 635–639.Google Scholar
Buikov, M. V., and Khvorostyanov, V. I. (1976). Numerical simulation of radiation fog and stratus clouds formation with account for interaction among dynamic, radiative and microphysical processes. Proc. 6th Intern. Conf. Cloud Phys., Boulder, CO, USA, 392–395.Google Scholar
Buikov, M. V., and Khvorostyanov, V. I. (1977). Formation and evolution of radiative fog and stratus clouds in the boundary layer of the atmosphere with explicit account for microphysical processes. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 13(4), 356–370.Google Scholar
Buikov, M. V., and Khvorostyanov, V. I. (1979). Dispersal of fogs with surface-active reagents. A review. Soviet Meteorol. Hydrol. 5, 28–35.Google Scholar
Buikov, M. V., and Pirnach, A. M. (1973). A numerical model of a two-phase stratiform cloud with explicit account for microstructure. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 9 (5), 486–499.Google Scholar
Buikov, M. V., and Pirnach, A. M. (1975). Numerical modeling of microphysical processes of precipitation formation in stratiform mixed-phase clouds with a 1D spectral bin microphysical model. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 11(5), 469–480.Google Scholar
Buikov, M. V., Ibragimov, K. Y., Pirnach, A. M., and Sorokina, L. P. (1976). A study of the two-phase stratiform clouds in the atmosphere of Jupiter. Astrophys. J., 53, 596–602.Google Scholar
Bunker, K. W., China, S., Mazzoleni, C., Kostinski, A., and Cantrell, W. (2012). Measurements of ice nucleation by mineral dusts in the contact mode, Atmos. Chem. Phys. Discuss., 12, 20,291–20,309, .CrossRefGoogle Scholar
Butorin, G. T., and Skripov, K. P. (1972). Crystallizaton of supercooled water. Soviet Phys. Crystallogr., 17, 322–326.Google Scholar
Callen, H. B. (1960). Thermodynamics: An introduction to the physical theories of equilibrium thermostatics and irreversible thermodynamics. J. Wiley and Sons, Inc., New York, 376 pp.Google Scholar
Cantrell, W., and Robinson, C. (2006). Heterogeneous freezing of ammonium sulfate and sodium chloride solutions by long chain alcohols. Geophys. Res. Lett., 33, L07802, .CrossRefGoogle Scholar
Charlson, R. J., Seinfeld, J. H., Nenes, A., Kulmala, M., Laaksonen, A., and Faccini, M. C. (2001). Reshaping the theory of cloud formation, Science, 292, 20205–2026.CrossRefGoogle ScholarPubMed
Chen, J.-P. (1994). Theory of deliquescence and modified Köhler curves, J. Atmos. Sci., 51, 3505–3516.2.0.CO;2>CrossRefGoogle Scholar
Chen, J.-P., Hazra, A., and Levin, Z. (2008). Parameterizing ice nucleation rates using contact angle and activation energy derived from laboratory data, Atmos. Chem. Phys., 8, 7431–7449.CrossRefGoogle Scholar
Chen, Y., DeMott, P. J., Kreidenweis, S. M., Rogers, D. C., and Sherman, E. (2000). Ice formation by sulfate and sulfur acid aerosols under upper-tropospheric conditions, J. Atmos. Sci., 57, 3752–3766.2.0.CO;2>CrossRefGoogle Scholar
Chen, Y., Kreidenweis, S. M., McInnes, L. M., Rogers, D. C., and DeMott, P. J. (1998). Single particle analyses of ice nucleating aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett., 25, 1391–1394.CrossRefGoogle Scholar
Chlond, A. (1992). Three-dimensional simulation of cloud street development during a cold air outbreak. Boundary Layer Meteorol., 58, 161–200.CrossRefGoogle Scholar
Chuang, P. (2003). Measurement of the timescale of hygroscopic growth for atmospheric aerosols. J. Geophys. Res., 108, 4282, .CrossRefGoogle Scholar
Chukin, V. V., and Platonova, A. S. (2012). Model of crystallization of supercooled droplets of aqueous solution. Proc. Intl. Conf. Clouds and Precipitation, Leipzig, August 2012.Google Scholar
Chukin, V. V., Pavlenko, E. A., and Platonova, A. S. (2010). Homogeneous ice nucleation rate in supercooled droplets of aqueous solutions. Rus. Meteorol. Hydrol., 35, No. 8, pp. 524–529.CrossRefGoogle Scholar
Chylek, P., and Klett, J. D. (1991a). Extinction cross sections of non-spherical particles in the anomalous diffraction approximation. J. Opt. Soc. Am., 8, 274–281.CrossRefGoogle Scholar
Chylek, P., and Klett, J. D. (1991b). Absorption and scattering of electromagnetic radiation by prismatic columns: Anomalous diffraction approximation. J. Opt. Soc. Am., 8, 1713–1720.CrossRefGoogle Scholar
Chylek, P. and , Videen (1994). Longwave radiative properties of polydispersed hexagonal ice crystals. J. Atmos. Sci., 51, 175–190.2.0.CO;2>CrossRefGoogle Scholar
Chylek, P., and Wong, J. G. D. (1998), Erroneous use of the modified Köhler equation in cloud and aerosol physics applications, J. Atmos. Sci., 55, 1473–1477.2.0.CO;2>CrossRefGoogle Scholar
Cirrus (2002). Eds.: Lynch, D., Sassen, K., Starr, D. O’C., and Stephens, G., Oxford University Press, New York, 480 pp.
Clark, T. (1974). A study of cloud phase parameterization using the gamma distribution. J. Atmos. Sci., 31, 142–155.2.0.CO;2>CrossRefGoogle Scholar
Clark, T. L. (1976). Use of log-normal distributions for numerical calculations of condensation and collection. J. Atmos. Sci., 33, 810–821.2.0.CO;2>CrossRefGoogle Scholar
Clegg, S. L., and Brimblecombe, P. (1995). Application of a multicomponent thermodynamic model to activities and thermal properties of 0–40 mol kg−1 aqueous sulfuric acid from <200 to 328 K, J. Chem. Eng. Ref. Data, 40, 43–64.CrossRefGoogle Scholar
Clegg, S. L., Brimblecombe, P., and Wexler, A. S. (1998). A thermodynamic model of the system H+-NH4+-SO42+-NO3+-H2O at tropospheric temperatures. J. Phys. Chem., 102, 2137–2154.CrossRefGoogle Scholar
Clegg, S. L., Ho, S. S., Chan, C. K., and Brimblecombe, P. (1995). Thermodynamic properties of aqueous (NH)2SO4 to high supersaturation as a function of temperature. J. Chem. Eng. Data, 40, 1079–1090.CrossRefGoogle Scholar
Coakley, J. A.., et al. (1987). Effect of ship-stack effluents on cloud reflectivity. Science, 237, 1020–1022.CrossRefGoogle ScholarPubMed
Cohard, J.-M., and Pinty, J.-P. (2000). A comprehensive two-moment warm microphysical bulk scheme. I: Description and tests. Q. J. Roy. Meteorol. Soc., 126, 1815–1842.CrossRefGoogle Scholar
Cohard, J.-M., Pinty, J.-P., and Bedos, C. (1998). Extending Twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra. J. Atmos. Sci., 55, 3348–3357.2.0.CO;2>CrossRefGoogle Scholar
Cohard, J.-M., Pinty, J.-P., and Suhre, K. (2000). On the parameterization of activation spectra from cloud condensation nuclei microphysical properties. J. Geophys. Res., 105 (D9), 11,753–11,766.CrossRefGoogle Scholar
Collins, W. D., Rasch, P. J., Boville, B. A., Hack, J. J., McCaa, J. R., Williamson, D. L., Briegleb, B. P., Bitz, C. M., Lin, S. J., and Zhang, M. H. (2006). The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3), J. Clim., 19 (11), 2144–2161, .CrossRefGoogle Scholar
Comstock, J. M., Ackerman, T. P., and Turner, D. D. (2004). Evidence of high ice supersaturation in cirrus clouds using ARM Raman lidar measurements, Geophys. Res. Lett., 31, L10106, .CrossRefGoogle Scholar
Comstock, J. M., Lin, R.-F., Starr, D. O’C., and Yang, P. (2008). Understanding ice supersaturation, particle growth, and number concentration in cirrus clouds. J. Geophys. Res., 113, D23211, .CrossRefGoogle Scholar
Connolly, P. J., Möhler, O., Field, P. R., Saathoff, H., Burgess, R., Choularton, T., and Gallagher, M. (2009). Studies of heterogeneous freezing by three different desert dust samples, Atmos. Chem. Phys., 9, 2805–2824, .CrossRefGoogle Scholar
Considine, G. and Curry, J. A. (1996). A statistical model of drop size spectra for stratocumulus clouds. Quart. J. Roy. Meteor. Soc., 122, 611–634.CrossRefGoogle Scholar
Considine, G. and Curry, J. A. (1998). Role of entrainment and droplet sedimentation on the microphysical structure in stratus and stratocumulus clouds. Quart. J. Roy. Meteorol. Soc., 24, 123–150.Google Scholar
Cooper, W. A. (1974). A possible mechanism for contact nucleation. J. Atmos. Sci., 31, 1832–1837.2.0.CO;2>CrossRefGoogle Scholar
Cooper, W. A. (1986). Ice initiation in natural clouds. In: Precipitation enhancement: A scientific challenge, Meteor. Monogr., 21, Amer. Meteor. Soc., Boston, 29–32.CrossRefGoogle Scholar
Cooper, W. A. (1989). Effects of variable droplet growth histories on droplet size distributions. Part I: Theory. J. Atmos. Sci., 46, 1301–1311.2.0.CO;2>CrossRefGoogle Scholar
Cooper, W. A. (1995). Ice formation in wave clouds: Observed enhancement during evaporation. In “Proc. Conf. on Cloud Physics.” pp. 147–152. Amer. Met. Soc, Dallas.Google Scholar
Cooper, W. A., and Vali, G. (1981). The origin of ice in mountain cap clouds. J. Atmos. Sci., 38, 1244–1259.2.0.CO;2>CrossRefGoogle Scholar
Cotton, R. J., and Field, P. R. (2002). Ice nucleation characteristics of an isolated wave cloud. Quart. J. Roy. Meteorol. Soc., 128, 2417–2437.CrossRefGoogle Scholar
Cotton, W. R., and Pielke, R. A. (2007). Human impacts on weather and climate, 2nd ed. Cambridge Univ. Press, 315 pp.CrossRefGoogle Scholar
Cotton, W. R., Bryan, G., and van den Heever, S. (2011). Storm and Cloud Dynamics, Intern. Geophys. Ser., v. 99, Academic Press, Elsevier Publishers, The Netherlands, 809 pp.Google Scholar
Cotton, W. R., Tripoli, G. J., Rauber, R. M., Mulvihill, E. A. (1986). Numerical simulation of the effects of varying ice nucleation rates and aggregation process on orographic snowfall. J. Climate Appl. Meteorol., 25, 1658–1680.2.0.CO;2>CrossRefGoogle Scholar
Cotton, W. R., Pielke, R. A.., Walko, R. L., Liston, G. E., Tremback, C. J., Jiang, H., McAnelly, R. L., Harrington, J. Y., Nicholls, M. E., Carrio, G. G., and McFadden, J. P. (2003). RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 5–29.CrossRefGoogle Scholar
CTBL (1985). Report of the JSC/CAS Workshop on modeling of Cloud-Topped Boundary Layer. Fort Collins, CO, USA, 22–26 April 1985, 96 pp.Google Scholar
Curry, J. A. (1983). On the formation of continental polar air. J. Atmos. Sci., 40, 2278–2292.2.0.CO;2>CrossRefGoogle Scholar
Curry, J. A. (1986). Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. J. Atmos. Sci., 43, 525–538.2.0.CO;2>CrossRefGoogle Scholar
Curry, J. A. (1995). Interactions among aerosols, clouds, and climate of the Arctic Ocean. Sci. Total Environ., 160, 777–791.CrossRefGoogle Scholar
Curry, J. A., and Herman, G. F. (1985). Infrared radiative properties of summertime Arctic stratus clouds. J. Clim. Appl. Meteorol., 24, 525–538.2.0.CO;2>CrossRefGoogle Scholar
Curry, J. A., and Khvorostyanov, V. I. (2012). Assessment of some parameterizations of heterogeneous ice nucleation in cloud and climate models. Atmos. Chem. Phys., 12, 1151–1172, , .CrossRefGoogle Scholar
Curry, J. A., and Webster, P. J. (1999), Thermodynamics of atmospheres and oceans, Academic Press, London, 467 pp.Google Scholar
Curry, J. A., Ebert, E. E., and Herman, G. F. (1988). Mean and turbulent structure of the summertime Arctic cloudy boundary layer. Quart. J. Roy. Meteor. Soc., 114, 715–746.CrossRefGoogle Scholar
Curry, J. A., Schramm, J., and Ebert, E. E. (1993). Impact of clouds on the surface radiation budget of the Arctic Ocean. Meteor. and Atmos. Phys, 57, 197–217.CrossRefGoogle Scholar
Curry, J. A., Rossow, W. B., Randall, D., and Schramm, J. L. (1996). Overview of Arctic cloud and radiation properties. J. Clim., 9, 1731–1764.2.0.CO;2>CrossRefGoogle Scholar
Curry, J. A., Meyer, F. G., Radke, L. F., Brock, C. A., and Ebert, E. E. (1990). The occurrence and characteristics of lower tropospheric ice crystals in the Arctic. Int. J. Climatol., 10, 749–764.CrossRefGoogle Scholar
Curry, J. A., Hobbs, P. V., King, M. D., Randall, D. A., Minnis, P., et al. (2000). FIRE Arctic clouds experiment, Bull. Amer. Meteor. Soc., 81, 5-29.2.3.CO;2>CrossRef
Cziczo, D. J., and Abbatt, J. P. D. (1999). Deliquescence, efflorescence and supercooling of ammonium sulfate aerosols at low temperature: Implications for cirrus cloud formation and aerosol phase in the atmosphere. J. Geophys. Res., 104, 13,781–13,790.CrossRefGoogle Scholar
Cziczo, D. J., Murphy, D. M., Hudson, P. K., and Thomson, D. S. (2004). Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE, J. Geophys. Res., 109, (D4), D04201, 10.1029/2003JD004032.CrossRefGoogle Scholar
Dash, J. G., Fu, H., and Wettlaufer, J. S. (1995). The premelting of ice and its environmental consequences. Rep. Progr. Phys., 58, 115–167.CrossRefGoogle Scholar
Debenedetti, P. K. (2003). Supercooled and glassy water. J. Phys. Condens. Matter, 15, R1669–1726.CrossRefGoogle Scholar
Debye, P. (1912). Zur theorie der spezifischen wärmen. Annaln. Phys., 39, 789–839.CrossRefGoogle Scholar
Defay, R., Prigogine, I., Bellemans, A., and Everett, D. (1966). Surface tension and absorption, 432 pp., Wiley, New York.Google Scholar
Deirmendijan, D. (1969). Electromagnetic scattering on spherical polydispersions. Elsevier, 291 pp.Google Scholar
DeMott, P. J. (2002). Laboratory studies of cirrus cloud processes. In: Cirrus. Eds.: Lynch, D., Sassen, K., Starr, D. O’C., and Stephens, G., Oxford University Press, 102–135.Google Scholar
DeMott, P. J., and Rogers, D. C. (1990). Freezing nucleation rates of dilute solution droplets measured between −30 and −40°C in laboratory simulations of natural clouds. J. Atmos. Sci., 47, 1056–1064.2.0.CO;2>CrossRefGoogle Scholar
DeMott, P. J., Meyers, M. P., and Cotton, W. R. (1994). Parameterization and impact of ice initiation processes relevant to numerical model simulation of cirrus clouds, J. Atmos. Sci., 51, 77–90.2.0.CO;2>CrossRefGoogle Scholar
DeMott, P. J., Rogers, D. C., and Kreidenweis, S. M. (1997). The susceptibility of ice formation in upper tropospheric clouds to insoluble aerosol components. J. Geophys. Res., 102, 19,575–19,584.CrossRefGoogle Scholar
DeMott, P. J., Rogers, D. C., Kreidenweis, S. M., Chen, Y., Twohy, C. H., Baumgardner, D., Heymsfield, A. J., and Chan, K. R. (1998). The role of heterogeneous freezing nucleation in upper tropospheric clouds: Inferences from SUCCESS. Geophys. Res. Lett., 25, 1387–1390.CrossRefGoogle Scholar
DeMott, P. J., Cziczo, D. J., Prenni, A. J., Murphy, D. M., Kreidenweis, S. M., Thomson, D. S., Borys, R., and Rogers, D. C. (2003). Measurements of the concentration and composition of nuclei for cirrus formation, Proc. Natl. Acad. Sci., 100, 14,655–14,660.CrossRefGoogle ScholarPubMed
DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C. (2010). Predicting global atmospheric ice nuclei distributions and their impacts on climate, Proc. Natl. Acad. Sci. USA, 107, 11,217–11,222.CrossRefGoogle ScholarPubMed
Denbigh, K. (1981). The principles of chemical equilibrium, Cambridge University Press, 494 pp.CrossRefGoogle Scholar
Dennis, A. S. (1980). Weather modification by cloud seeding. Academic Press, New York, 274 pp.Google Scholar
Deryagin, B. V. and Kurgin, Y. S. (1972). The theory of passivation of the droplet condensation growth by the vapor of cetyl alcohol. Colloid. J., 35, 26–42.Google Scholar
Deryagin, B. V., Fedoseev, V. A., and Rosentsveig, L. A. (1966). A study of the adsorption of the cetyl alcohol vapor and its impact on evaporation of water drops. Docl. Acad. Sci. USSR, 167 (3), 616–620.Google Scholar
Dick, W. D., Saxena, P., and McMurry, P. H. (2000). Estimation of water uptake by organic compounds in submicron aerosols measured during the Southeastern Aerosol and Visibility Study, J. Geophys. Res., 105 (D1), 1471–1479.CrossRefGoogle Scholar
Diehl, K., and Wurzler, S. (2004). Heterogeneous drop freezing in the immersion mode: Model calculations considering soluble and insoluble particles in drops. J. Atmos. Sci., 61, 2063–2072.2.0.CO;2>CrossRefGoogle Scholar
Djikaev, Y. S. and Ruckenstein, E. (2008). Thermodynamics of heterogeneous crystal nucleation in contact and immersion modes. J. Phys. Chem. A, 112, 11,677–11,687.CrossRefGoogle ScholarPubMed
Djikaev, Y. S., Tabazadeh, A., Hamill, P., and Reiss, H. (2002). Thermodynamic conditions for the surface-stimulated crystallization of atmospheric droplets. J. Phys. Chem., A106, 10,247–10,253.CrossRefGoogle Scholar
Dmitrieva-Arrago, L. R, and Akimov, I. V. (1998). A method for calculation of nonconvective precipitation on the basis of liquid water content forecast with account for cloud microphysics. Sov. Meteorol. Hydrol., 11, 47–59.Google Scholar
Dorsey, N. E. (1968). Properties of ordinary water-substance. Hafner Publish. Co., 637 pp.Google Scholar
Dufour, L., and Defay, R. (1963). Thermodynamics of clouds. Academic Press, New York, 255 pp.Google Scholar
Durant, A. J., and Shaw, R. A. (2005). Evaporating freezing by contact nucleation inside-out. Geophys. Res. Lett., 32, L20814, .CrossRefGoogle Scholar
Eadie, W. J. (1971). A molecular theory of the homogeneous nucleation of ice from supercooled water. PhD Dissertation, University of Chicago, Cloud Physics Lab, Tech. Note 40, 117 pp.Google Scholar
Ebert, E. E., and Curry, J. A. (1992). A parameterization of ice cloud optical properties for climate models. J. Geophys. Res., 97, 3831–3836.CrossRefGoogle Scholar
ECMWF-2007: European Centre for Medium Range Weather Forecast (ECMWF), (2007). “IFS documentation cycle 31rl, Part IV: Physical processes.” 155 pp., .Google Scholar
Eidhammer, T., DeMott, P. J., and Kreidenweis, S. M. (2009). A comparison of heterogeneous ice nucleation parameterization using a parcel model framework. J. Geophys. Res., 114, D06202, .CrossRefGoogle Scholar
Einstein, A. (1906). Die plancksche theorie der Strahlung und die spezifischen Wärme. Annaln. Phys., 22, 180–190.Google Scholar
Elbaum, M., and Schick, M. (1991). Application of the theory of dispersion forces to the surface melting of ice. Phys. Rev. Lett. 66, 1713–1716.CrossRefGoogle ScholarPubMed
Elbaum, M., Lipson, S. G., and Dash, J. D. (1993). Optical study of surface melting on ice. J. Cryst. Growth, 129, 491–505.CrossRefGoogle Scholar
Ervens, B., and Feingold, G. (2012). On the representation of immersion and condensation freezing in cloud models using different nucleation schemes. Atmos. Chem. Phys., 12, 5807–5826.CrossRefGoogle Scholar
Facchini, M. C., Mircea, M., Fuzzi, S., and Charlson, R. (1999). Cloud albedo enhancement by surface-active organic solutes in growing droplets. Nature, 401, 257–259.CrossRefGoogle Scholar
Falkovich, A. H., Ganor, E., Levin, Z., Formenti, P., and Rudich, Y. (2001). Chemical and mineralogical analysis of individual mineral dust particles, J. Geophys. Res., 106 (D16), 18,029–18,036.CrossRefGoogle Scholar
Fan, J., Ghan, S., Ovchinnikov, M., Liu, X., Rasch, P. J., and Korolev, A. (2011). Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study. J. Geophys. Res., 116, D00T07, .CrossRefGoogle Scholar
Farkas, L. (1927). Keimbildungsgeschwindigkeit in übersättigten Dämpfen. Z. Phyik Chem., A125, 236–242.Google Scholar
Feingold, G., and Chuang, P. (2002). Analysis of the influence of film-forming compounds on droplet growth: Implications for cloud microphysical processes and climate. J. Atmos. Sci., 59, 2006–2018.2.0.CO;2>CrossRefGoogle Scholar
Feingold, G., and Levin, Z. (1986). The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J. Clim. Appl. Meteor., 25, 1346–1363.2.0.CO;2>CrossRefGoogle Scholar
Feingold, G., Tzivion, S., and Levin, Z. (1988). Evolution of raindrop spectra. Part I: Solution to the collection/breakup equation using the method of moments. J. Atmos. Sci., 45, 3387–3399.2.0.CO;2>CrossRefGoogle Scholar
Feingold, G., Stevens, B., Cotton, W. R., and Walko, R. L. (1994). An explicit cloud microphysics/LES model designed to simulate the Twomey effect. Atmos. Res., 33, 207–233.CrossRefGoogle Scholar
Feistel, R. (2012). TEOS-10: A new international oceanographic standard for seawater, ice, fluid water and humid air. Intern. J. Thermophysics, 33, .CrossRefGoogle Scholar
Feistel, R. and Hagen, E. (1995). On the Gibbs thermodynamic potential of seawater. Progr. Oceanogr., 36, 249–327.CrossRefGoogle Scholar
Feistel, R. and Hagen, E. (1998). A Gibbs thermodynamic potential of sea ice. Cold Reg. Sci. Technol., 28, 83–142.CrossRefGoogle Scholar
Feistel, R. and Hagen, E. (1999). Corrigendum to “A Gibbs thermodynamic potential of sea ice.”Cold Reg. Sci. Technol., 29, 173–176.Google Scholar
Feistel, R., and Wagner, W. (2005). High-pressure thermodynamic Gibbs functions of ice and sea ice. J. Marine Res., 63, 95–139.CrossRefGoogle Scholar
Feistel, R., and Wagner, W. (2006). A new equation of state for H2O ice Ih. J. Phys. Chem. Ref. Data, 35, 1021–1047, .CrossRefGoogle Scholar
Feistel, R., and Wagner, W. (2007). Sublimation pressure and sublimation enthalpy of H2O ice Ih between 0 and 273.16 K. Geochimica et Cosmochimica Acta, 71, 36–45, .CrossRefGoogle Scholar
Feistel, R., Wright, D. G., Jackett, D. R., Miyagawa, K., Reissmann, J. H., Wagner, W., Overhoff, U., Guder, C., Feistel, A., and Marion, G. M. (2010b). Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 1: Background and equations. Ocean Sci., 6, 633–677.CrossRefGoogle Scholar
Feistel, R., Wright, D. G., Kretzschmar, H.-J., Hagen, E., Herrmann, S., and Span, R. (2010a). Thermodynamic properties of sea air. Ocean Sci., 6, 91–141, .CrossRefGoogle Scholar
Feistel, R., Wright, D. G., Miyagawa, K., Harvey, A. H., Hruby, J., Jackett, D. R., McDougall, T. J., and Wagner, W. (2008). Mutually consistent thermodynamic potentials for fluid water, ice and seawater: A new standard for oceanography. Ocean Sci., 275–291.CrossRefGoogle Scholar
Ferrier, B. S. (1994). A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. J. Atmos. Sci., 51, 249–280.2.0.CO;2>CrossRefGoogle Scholar
Findeisen, W. (1938). Kolloid-Meteorologische Vorgänge bei Neiderschlags-bildung. Meteor. Z., 55, 121–133.Google Scholar
FIRE-SHEBA (2001). First international regional experiment: Surface heat budget of the Arctic. FIRE Arctic Clouds Experiment (FIRE), J. Geophys. Res., 106, Special section, Ed.: Curry, J. A., 14,985–15,376.CrossRefGoogle Scholar
Fitzgerald, J. W. (1975). Approximation formulas for the equilibrium size of an aerosol particle as function of its dry size and composition and ambient relative humidity. J. Appl. Meteorol., 14, 1044–1049.2.0.CO;2>CrossRefGoogle Scholar
Fitzgerald, J. W., Hoppel, W. A., and Vietty, M. A. (1982). The size and scattering coefficient of urban aerosol particles at Washington D.C. as a function of relative humidity. J. Atmos. Sci., 39, 1838–1852.2.0.CO;2>CrossRefGoogle Scholar
Fletcher, N. H. (1958). Size effects in heterogeneous nucleation. J. Chem. Phys., 29, 572–576.CrossRefGoogle Scholar
Fletcher, N. H. (1962). The physics of rainclouds. Cambridge University Press, Cambridge, UK, 390 pp.Google Scholar
Fletcher, N. H. (1968). Ice nucleation behavior of silver iodide smokes containing a soluble component. J. Atmos. Sci., 25, 1058–1060.2.0.CO;2>CrossRefGoogle Scholar
Fletcher, N. H. (1969). Active sites and ice nucleation, J. Atmos. Sci., 26, 1266–1271.2.0.CO;2>CrossRefGoogle Scholar
Fletcher, N. H. (1970a). The chemical physics of ice. Cambridge University Press, 265 pp.CrossRefGoogle Scholar
Fletcher, N. H. (1970b). On contact nucleation. J. Atmos. Sci., 27, 1098–1099.2.0.CO;2>CrossRefGoogle Scholar
Fletcher, A. N. (1972). High-temperature contact nucleation of supercooled water by organic aerosols. J. Appl. Meteorol., 11, 988–993.2.0.CO;2>CrossRefGoogle Scholar
Flossmann, A. I., and Wobrock, W. (2010). A review of our understanding of the aerosol–cloud interaction from the perspective of a bin resolved cloud scale modeling. Atmos. Res., 97, 478–497.CrossRefGoogle Scholar
Flossman, A. I., Hall, W. D., and Pruppacher, H. P. (1985). A theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud droplets. J. Atmos. Sci., 42, 583–606.2.0.CO;2>CrossRefGoogle Scholar
Flubacher, P., Leadbetter, A. J., and Morrison, J. A. (1960). Heat capacity of ice at low temperatures. J. Chem. Phys., 33, 1751–1755.CrossRefGoogle Scholar
Ford, I. J. (1998a). How aircraft nucleate ice particles: A simple model. J. Aerosol Sci., 29, S1117, .CrossRefGoogle Scholar
Ford, I. J. (1998b). Ice nucleation in jet aircraft exhaust plumes. In: Air pollution research report 68: Pollution from aircraft emissions in the North Atlantic flight corridor (POLINAT2). Ed.: Schumann, U., Report EUR 18877, European Commission, 1998, 269–287.Google Scholar
Fornea, A. P., Brooks, S. D., Dooley, J. B., and Saha, A. (2009). Heterogeneous freezing of ice on atmospheric aerosols containing ash, soot, and soil. J. Geophys. Res., 114, D13201, .CrossRefGoogle Scholar
Fountoukis, C, and Nenes, A. (2005). Continued development of a cloud droplet formation parameterization for global climate models. J. Geophys. Res., 110, D11212, .CrossRefGoogle Scholar
Fowler, L. D., Randall, D. A., and Rutledge, S. A. (1996). Liquid and ice cloud microphysics in the CSU general circulation model. Part I: Model description and simulated microphysical processes. J. Climate, 9, 489–529.2.0.CO;2>CrossRefGoogle Scholar
Frenkel, Ya. I. (1946). Kinetic theory of liquids. Oxford University Press, 592 pp.Google Scholar
Fridlind, A., Ackerman, A. S., Jensen, E. J., Heymsfield, A. J., Poellot, M. R., et al. (2004). Evidence for the predominance of midtropospheric aerosols as subtropical anvil cloud nuclei. Science, 304, 718–722.CrossRefGoogle Scholar
Fu, Q. (1996). An accurate parameterization of the solar radiative properties of cirrus clouds for climate models. J. Climate, 9, 2058–2082.2.0.CO;2>CrossRefGoogle Scholar
Fu, Q., and Liou, K. N. (1993). Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2025.2.0.CO;2>CrossRefGoogle Scholar
Fu, Q., Yang, P., and Sun, W. B. (1998). An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models. J. Climate, 11, 2223–2237.2.0.CO;2>CrossRefGoogle Scholar
Fuchs, N. A. (1959). Evaporation and droplet growth in gaseous media, Pergamon, 242 pp.Google Scholar
Fuchs, N. A. (1964). The mechanics of aerosols. Pergamon, New York, 234 pp.Google Scholar
Fukuta, N. (1975). A study of the mechanism of contact ice nucleation. J. Atmos. Sci., 32, 1597–1603.2.0.CO;2>CrossRefGoogle Scholar
Fukuta, N., and Schaller, R. C. (1982). Ice nucleation by aerosol particles: Theory of condensation-freezing nucleation. J. Atmos. Sci., 39, 648–655.2.0.CO;2>CrossRefGoogle Scholar
Fukuta, N., and Walter, L. A. (1970). Kinetics of hydrometeors growth from a vapor-spherical model. J. Atmos. Sci., 27, 1160–1172.2.0.CO;2>CrossRefGoogle Scholar
Gaivoronsly, I. I., and Seregin, Y. A. (1962). Experiments on cloud dispersal over large areas. Proc. Centr. Aerolog. Obs., 44, 15–27 (in Russian).Google Scholar
Gao, R. S., Popp, P. J., Fahey, D. W., Marcy, T. P., et al. (2004). Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds. Science, 303, 516–520.CrossRefGoogle ScholarPubMed
Gao, Y., Chen, S. B., and Yu, L. E. (2006). Efflorescence relative humidity for ammonium sulfate particles. J. Phys. Chem., 110, 7602–7608.CrossRefGoogle ScholarPubMed
Gao, Y., Chen, S. B., and Yu, L. E. (2007). Efflorescence relative humidity of airborne sodium chloride particles: A theoretical investigation. Atmos. Environ., 41, 2019–2023, .CrossRefGoogle Scholar
Gayet, J.-F., Ovarlez, J., Shcherbakov, V., Strom, J., Schumann, U., Minikin, A., Auriol, F., Petzold, A., and Monier, M. (2004). Cirrus cloud microphysical and optical properties at southern and northern midlatitudes during the INCA experiment. J. Geophys. Res., 109, D20206, .CrossRefGoogle Scholar
Gerber, H. (1991). Supersaturation and droplet spectral evolution in fog. J. Atmos. Sci. 48, 2569–2588.2.0.CO;2>CrossRefGoogle Scholar
Gettelman, A., Morrison, H., and Ghan, S. J. (2008). A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, Version 3 (CAM3). Part II: Single-Column and Global Results. J. Clim., 21, 3660–3679.CrossRefGoogle Scholar
Ghan, S., Chuang, C., and Penner, J. (1993). A parameterization of cloud droplet nucleation. Part 1, Single aerosol species. Atmos. Res., 30, 197–222.CrossRefGoogle Scholar
Ghan, S., Chuang, C., Easter, R., and Penner, J. (1995). A parameterization of cloud droplet nucleation. Part 2, Multiple aerosol types. Atmos. Res., 36, 39–54.CrossRefGoogle Scholar
Ghan, S., Leung, L., Easter, R., and Abdul-Razzak, H. (1997). Prediction of cloud droplet number in a general circulation model. J. Geophys. Res., 102, 777–794.CrossRefGoogle Scholar
Ghan, S. J., Abdul-Razzak, H., Nenes, A., Ming, Y., Liu, X., Ovchinnikov, M., Shipway, B., Meskhidze, N., Xu, J., and Shi, X. (2011). Droplet nucleation: Physically-based parameterizations and comparative evaluation. J. Adv. Model. Earth Syst., 3, M10001, .Google Scholar
Giauque, W. F. and Stout, J. W. (1936). The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15 to 273 K. J. Amer. Chem. Soc., 58, 1144–1150.CrossRefGoogle Scholar
Gierens, K. M. (2003). On the transition between heterogeneous and homogeneous freezing. Atmos. Chem. Phys., 3, 437–446.CrossRefGoogle Scholar
Gierens, K. M., Monier, M., and Gayet, J.-F. (2003). The deposition coefficient and its role in cirrus clouds. J. Geophys. Res., 108 (D2), 4069, .CrossRefGoogle Scholar
Girard, E., and Curry, J. A. (2001). Simulation of Arctic low-level clouds observed during the FIRE Arctic Clouds Experiment using a new bulk microphysics scheme. J. Geophys. Res., 106, 15,139–15,154.CrossRefGoogle Scholar
Girard, E., and Blanchet, J.-P. (2001). Simulation of Arctic diamond dust, ice fog, and thin stratus using an explicit aerosol-cloud model. J. Atmos. Sci., 58, 1199–1221.2.0.CO;2>CrossRefGoogle Scholar
Glasstone, S., Laidler, K. J., and Eyring, H. (1941). The theory of rate processes. McGraw-Hill, New York, 354 pp.Google Scholar
Golovin, A. M. (1963). On the kinetic equation for coagulating cloud droplets with allowance for condensation. Izv. Acad. Sci. USSR, Ser. Geophys., 10, 949–953.Google Scholar
Goody, R. M. (1995). Principles of atmospheric physics and chemistry. Oxford University Press, New York, 324 pp.Google Scholar
Grabowski, W. W. and Morrison, H. (2008). Toward the mitigation of spurious cloud-edge supersaturation in cloud models. Mon. Weather Rev., 136, 1224–1234.CrossRefGoogle Scholar
Gradshteyn, I. S., and Ryzhik, I. M. (1994). Tables of integrals, series, and products, 5th ed., Ed.: Jeffery, A., Academic Press, 1204 pp.Google Scholar
Grassl, H. (1991). Possible climatic effects of contrails and additional water vapor. In Air traffic and the environment—Background, tendencies and potential global atmospheric effects. Ed.: Schumann, U., Springer-Verlag, 124–137.Google Scholar
Gu, Y., and Liou, K. N. (2000). Interactions of radiation, microphysics, and turbulence in the evolution of cirrus clouds. J. Atmos. Sci., 57, 2463–2479.2.0.CO;2>CrossRefGoogle Scholar
Gultepe, I., Isaac, G. A., Williams, A., Marcotte, D., and Strawbridge, K. B. (2003). Turbulent heat fluxes over leads and polynyas and their effect on Arctic clouds during FIRE-ACE: aircraft observations for April 1998. Atmos. Ocean, 41, 15–34.CrossRefGoogle Scholar
Gunn, R., and Kinzer, G. D. (1949). The terminal velocity of fall for water droplets in stagnant air. J. Meteorol., 6, 243–248.2.0.CO;2>CrossRefGoogle Scholar
Gunn, R., and Marshall, J. S. (1958). The distribution with size of aggregates snowflakes. J. Meteorol., 15, 452–461.2.0.CO;2>CrossRefGoogle Scholar
Gutzow, I., and Schmelzer, J. W. P. (1995). The vitreous state. Thermodynamics, structure, rheology, and crystallization. Springer-Verlag, Berlin, Heidelberg.Google Scholar
Gutzow, I. S., and Schmelzer, J. W. P. (2011). Glasses and the third law of thermodynamics. In Glasses and the glass tradition, edited by Schmelzer, J. W. P. and Gutzow, I. S., Wiley-VCH, Weinheim, p. 357–378.CrossRefGoogle Scholar
Haag, W., Kärcher, B., Ström, J., Minikin, A., Lohmann, U., Ovarlez, J., and Stohl, A. (2003). Freezing thresholds and cirrus cloud formation mechanisms inferred from in situ measurements of relative humidity. Atmos. Chem. Phys., 3, 1791–1806.CrossRefGoogle Scholar
Haar, L., Gallagher, J. S., and Kell, G. S. (1982). The anatomy of the thermodynamic surface of water: The formulation and comparison with data. Proc. 8th Symp. Thermophys. Properties. Ed.: Sengers, J. V.. The Amer. Soc. Mechan. Engineers, vol. 2, New York, pp. 298–300.Google Scholar
Haar, L., Gallagher, J. S., and Kell, G. S. (1984). NBS/NRC steam tables: Thermodynamic and transport properties and computer programs for vapor and liquid states of water in SI units. Hemisphere, Washington, and McGraw-Hill, New York, 271–276.Google Scholar
Hagen, D. E., Anderson, R. J., and Kassner, Jr J. L.. (1981). Homogeneous condensation-freezing nucleation rate measurement for small water droplets in an expansion clouds chamber. J. Atmos. Sci., 38, 1236–1243.2.0.CO;2>CrossRefGoogle Scholar
Hahn, C. J., and Warren, S. G. (2007). A gridded climatology of clouds over land (1971–96) and ocean (1954–97) from surface observations worldwide. Report, Numeric Data Product NDP-026E, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, ,CrossRefGoogle Scholar
Hahn, C. J., Warren, S. G., London, J., and Jenne, R. L. (1988). Climatological data for clouds over the globe from surface observations. NDP-026, Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory, Oak Ridge, TN. [Also available from Data Support Section, National Center for Atmospheric Research (NCAR), Boulder, CO.]Google Scholar
Hall, W. D. (1980). A detailed microphysical model within a two-dimensional dynamic framework: Model description and preliminary results. J. Atmos. Sci., 37, 2486–2506.2.0.CO;2>CrossRefGoogle Scholar
Hall, W. D. and Pruppacher, H. R. (1976). The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33, 1995–2006.2.0.CO;2>CrossRefGoogle Scholar
Hallett, J., and Mossop, S. C. (1974). Production of secondary ice particles during the riming process. Nature (London) 249, 26–28.CrossRefGoogle Scholar
Hämeri, K., Laaksonen, A., Vakeva, M., and Suni, T. (2001). Hygroscopic growth of ultrafine sodium chloride particles. J. Geophys. Res., 106, 20,749–20,757.CrossRefGoogle Scholar
Hämeri, K., Vakeva, M., Hansson, H.-C., and Laaksonen, A. (2000). Hygroscopic growth of ultrafine ammonium sulphate aerosol measured using an ultrafine tandem differential mobility analyzer. J. Geophys. Res., 105, 22,231–22,242.CrossRefGoogle Scholar
Han, Q., Rossow, W. B., Chou, J., and Welch, R. (1998). Global variation of column droplet concentration in low-level clouds. Geophys. Res. Lett., 25, 1419–1422.CrossRefGoogle Scholar
Hänel, G. (1976). The properties of atmospheric aerosol particles as functions of the relative humidity at thermodynamic equilibrium with the surrounding moist air, Adv. Geophys., 19, 73–188.CrossRefGoogle Scholar
Hare, D. E., and Sörensen, C. M. (1987). The density of supercooled water. II. Bulk samples cooled to the homogeneous nucleation limit. J. Chem. Phys., 87, 4840–4850.CrossRefGoogle Scholar
Harrington, J. Y., Meyers, M. P., Walko, R. L., and Cotton, W. R. (1995). Parameterization of ice crystal conversion process due to vapor deposition for mesoscale models using double-moment basis functions. Part I: Basic formulation and parcel model results. J. Atmos. Sci., 52, 4344–4366.2.0.CO;2>CrossRefGoogle Scholar
Hegg, D. A., and Hobbs, P. V. (1992). Cloud condensation nuclei in the marine atmosphere: A review. In: Nucleation and atmospheric aerosols. Eds.: Fukuta, N., and Wagner, P. E., A. Deepack Publishing, 181–192.Google Scholar
Hegg, D. A., Covert, D. S., Rood, M. J., and Hobbs, P. V. (1996). Measurements of aerosol optical properties in marine air. J. Geophys. Res., 101(D8), 12,893–12,903.CrossRefGoogle Scholar
Heide, H.-G. (1984). Observations of ice layers. Ultramicroscopy, 14, 271–278.CrossRefGoogle Scholar
Hellmuth, O., Khvorostyanov, V. I., Curry, J. A., Shchekin, A. K., Schmelzer, J. W. P., and Baidakov, V. G. (2012). Review on the phenomenology and mechanism of atmospheric ice formation: Selected questions of interest. In: Nucleation theory and applications. Eds.: Schmelzer, J. W. P., Röpke, G., and Priezzhev, V. B., Joint Institute for Nuclear Research, Bogoliubov Lab. Theor. Phys., Dubna, ISBN 978-5-9530-0301-8.Google Scholar
Hellmuth, O., Khvorostyanov, V. I., Curry, J. A., Shchekin, A. K., Schmelzer, J. W. P., Feistel, R., Djikaev, Y. S., and Baidakov, V. G. (2013). Selected aspects of atmospheric ice and salt crystallization. In: Nucleation theory and applications: Special issues. Review series on selected topics of atmospheric sol formation, vol. 1. Eds.: Schmelzer, J. W. P., and Hellmuth, O., Joint Inst. Nuclear Res., Bogoliubov Lab. Theor. Phys., Dubna, 548 pp.Google Scholar
Herman, G. F., and Curry, J. A. (1984). Observational and theoretical studies of solar radiation in Arctic stratus clouds. J. Clim. Appl. Met., 23, 5–24.2.0.CO;2>CrossRefGoogle Scholar
Herman, G. F., and Goody, R. M. (1976). Formation and persistence of summertime Arctic stratus clouds. J. Atmos Sci., 33, 1537–1553.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J. (1972). Ice crystals terminal velocities. J. Atmos. Sci., 29, 1348–1357.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J. (2003). Properties of tropical and midlatitude ice cloud particle ensembles. Part 1: Median mass diameters and terminal velocities. J. Atmos. Sci., 60, 2573–2591.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., and Iaquinta, J. (2000). Cirrus crystals terminal velocities. J. Atmos. Sci., 57, 916–938.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., and Kajikawa, M. (1987). An improved approach to calculating terminal velocities of plate-like crystals and graupel. J. Atmos. Sci., 44, 1088–1099.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., and McFarquhar, G. M. (2002). Mid-latitude and tropical cirrus. In: Cirrus. Eds.: Lynch, D., Sassen, K., Starr, D. O’C., and Stephens, G., Oxford University Press, 78–101.Google Scholar
Heymsfield, A. J., and Miloshevich, L. M. (1993). Homogeneous ice nucleation and supercooled liquid water in orographic wave clouds, J. Atmos. Sci., 50, 2335–2353.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., and Miloshevich, L. M. (1995). Relative humidity and temperature influences on cirrus formation and evolution: Observations from wave clouds and FIRE-II. J. Atmos. Sci., 52, 4302–4303.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., and Platt, C. M. R. (1984). A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content. J. Atmos. Sci., 41, 846–855.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., and Sabin, R. M. (1989). Cirrus crystal nucleation by homogeneous freezing of solution droplets. J. Atmos. Sci., 46, 2252–2264.2.0.CO;2>CrossRefGoogle Scholar
Heymsfield, A. J., Miloshevich, L. M., Twohy, C., Sachse, G., and Oltmans, S. (1998). Upper-tropospheric relative humidity observations and implications for cirrus ice nucleation, Geophys. Res. Lett., 25, 1343–1346, .CrossRefGoogle Scholar
Hicks, I., and Vali, G. (1973). Ice nucleation in clouds by liquefied propane spray. J. Appl. Met., 12, 1247–1258.2.0.CO;2>CrossRefGoogle Scholar
Hill, T. A., and Choularton, T. W. (1985). An airborne study of the microphysical structure of cumulus clouds. Q. J. Roy. Meteor. Soc., 111, 517–544.CrossRefGoogle Scholar
Hobbs, P. V. (1969). Ice multiplication in clouds. J. Atmos. Sci., 26, 315–318.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, P. V. (1974). Ice physics. Clarendon Press, Oxford, 837 pp.Google Scholar
Hobbs, P. V., and Rangno, A. L. (1985). Ice particle concentrations in clouds. J. Atmos. Sci., 42, 2523–2549.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, P. V., and Rangno, A. L. (1990). Rapid development of high ice particle concentrations in small polar maritime cumuliform cloud. J. Atmos. Sci., 47, 2710–2722.2.0.CO;2>CrossRefGoogle Scholar
Hobbs, P. V., Politovich, M. K., Bowdle, D. A., and Radke, L. F. (1978). Airborne studies of atmospheric aerosol in the High Plains and the structure of natural and artificially seeded clouds in eastern Montana. Rep. No. XIII, Dep. Atmos. Sci., Univ. of Washington, 125 pp.Google Scholar
Holten, V., Bertrand, C. E., Anisimov, M. A., and Sengers, J. V. (2011). Thermodynamic modeling of supercooled water. Tech. Rep., Intern. Assoc. for the Properties of Water and Steam (IAPWS) (September 2011), Inst. Phys. Sci. Technol., Dept. Chem. Biomolec. Eng., Univ. Maryland, College Park, MD 20742, USA, 43 pp.Google Scholar
Holten, V., Bertrand, C. E., Anisimov, M. A., and Sengers, J. V. (2012). Thermodynamics of supercooled water, J. Chem. Phys., 136, 094507, .CrossRefGoogle ScholarPubMed
Hoose, C., and Möhler, O. (2012). Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments. Atmos. Chem. Phys., 12, 9817–9854.CrossRefGoogle Scholar
Hoose, C., Kristjansson, J. E., Chen, J.-P., and Hazra, A. (2010). A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot and biological particles in a global climate model. J. Atmos. Sci., 67, 2483–2503.CrossRefGoogle Scholar
Houze, R. A., Hobbs, P. V., Herzegh, P. H., and Parsons, D. B. (1979). Size distribution of precipitating particles in frontal clouds. J. Atmos. Sci., 36, 156–162.2.0.CO;2>CrossRefGoogle Scholar
Howell, W. E. (1949). The growth of cloud drops in uniformly cooled air. J. Meteorol., 54, 134–149.2.0.CO;2>CrossRefGoogle Scholar
Hu, Z., and Srivastava, R. C. (1995). Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 1761–1783.2.0.CO;2>CrossRefGoogle Scholar
Huang, J., and Bartell, L. S. (1995). Kinetics of homogeneous nucleation in the freezing of large water clusters. J. Phys. Chem., 99, 3924–3931.CrossRefGoogle Scholar
Hudson, J. G. (1984). Cloud condensation nuclei measurements within clouds. J. Clim. Appl. Meteorol., 23, 42–51.2.0.CO;2>CrossRefGoogle Scholar
Huffman, P. J. (1973). Supersaturation spectra of AgI and natural ice nuclei. J. Appl. Meteorol., 12, 1080–1082.2.0.CO;2>CrossRefGoogle Scholar
Huffman, P. J., and Vali, G. (1973). The effect of vapor depletion on ice nucleus measurements with membrane filters. J. Appl. Meteorol., 12, 1018–1024.2.0.CO;2>CrossRefGoogle Scholar
Hung, H., Malinowski, A., and Martin, S. T. (2002). Ice nucleation kinetics of aerosols containing aqueous and solid ammonium sulfate particles. J. Phys. Chem. A, 106, 293–306.CrossRefGoogle Scholar
Hung, H., Malinowski, A., and Martin, S. T. (2003). Kinetics of heterogeneous ice nucleation on the surfaces of mineral dust cores inserted into aqueous ammonium sulfate particles. J. Phys. Chem. A, 107, 1296–1306.CrossRefGoogle Scholar
Hussain, K., and Saunders, C. P. R. (1984). Ice nucleus measurement with a continuous flow chamber, Quart. J. Roy. Meteor. Soc., 110, 75–84.CrossRefGoogle Scholar
Hyland, R. W., and Wexler, A. (1983). Formulations for the thermodynamic properties of the saturated phases of H2O from 173.15 K to 473.15 K. Trans. Amer. Soc. Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), 89 (2A), Atlanta, GA, USA, 500–519.Google Scholar
IAPWS (2009a). Revised release on the equation of state 2006 for H2O Ice Ih. Tech. Rep., The International Association for the Properties of Water and Steam, Doorwerth, The Netherlands, September 2009, .
IAPWS (2009b). Revised release on the IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. Tech. Rep., The International Association for the Properties of Water and Steam, Doorwerth, The Netherlands, September 2009, .
IAPWS (2011). Revised release on the pressure along the melting and sublimation curves of ordinary water substance. Tech. Rep., The International Association for the Properties of Water and Steam, Pilsen, Czech Republic, September 2011,.Google Scholar
IAPWS (2012). Guideline on a low-temperature extension of the IAPWS-95 formulation for water vapor. Tech. Rep., The International Association for the Properties of Water and Steam, Boulder, CO, USA, September/October 2012.Google Scholar
Ibragimov, K. Y. (1990). Numerical modeling of stratiform cloudiness in the atmospheres of the giant planets. Izd. Nauka, Alma-Ata, Kazakhstan, 239 pp. (in Russian).Google Scholar
Intrieri, J. M., Shupe, M. D., Uttal, T., and McCarty, B. J. (2002). Arctic cloud statistics from radar and lidar at SHEBA. J. Geophys., Res., 107, 8030–8039.CrossRefGoogle Scholar
IOC, SCOR, and IAPSO (2010). The international thermodynamic equation of seawater—2010: Calculation and use of thermodynamic properties. McDougall, T. J., Feistel, R., Wright, D. G., Pawlowicz, R., Millero, F. J., Jackett, D. R., King, B. A., Marion, G. M, Seitz, S., Spitzer, P., C. T. A. Chen. Tech. Rep., Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO, 196 pp., Paris 2010, .Google Scholar
IPCC (2007). Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Eds.: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, UK, and New York.Google Scholar
Jaenicke, R. (1988). Aerosol physics and chemistry. In: Numerical data and functional relationships in science and technology. Eds.: Fischer, G., Landolt-Börnstein New Series, vol. 4b, Springer, New York, pp. 391–457.Google Scholar
Jayaweera, L. O. L. F., and Cottis, R. E. (1969). Fall velocities of plate-like and column ice crystals. Quart. J. Roy. Meteor. Soc., 95, 703–709.CrossRefGoogle Scholar
Jeffery, C. A., and Austin, P. H. (1997). Homogeneous nucleation of supercooled water: Results from a new equation of state. J. Ceophys. Res., 102 (D21), 25,269–25,279.CrossRefGoogle Scholar
Jeffery, C. A., and Austin, P. H. (1999). A new analytic equation of state for liquid water. J. Chem. Phys., 110 (1), 484–496.CrossRefGoogle Scholar
Jeffery, C. A., Reisner, J. M., and Andrejczuk, M. (2007). Another look at stochastic condensation for subgrid cloud modeling: Adiabatic evolution and effects. J. Atmos. Sci., 64, 3953–3973.CrossRefGoogle Scholar
Jeffreys, H. (1918). Some problems of evaporation. Phil. Mag., 35, 270–280.CrossRefGoogle Scholar
Jensen, E. J., Toon, O. B., Westphal, D. L., Kinne, S., and Heymsfield, A. J. (1994). Microphysical modeling of cirrus, 1. Comparison with 1986 FIRE IFO measurements. J. Geophys. Res., 99, 10,421–10,442.CrossRefGoogle Scholar
Jensen, E. J., Toon, O. B., Tabazadeh, A., Sachsse, G. W., Anderson, B. E., et al. (1998). Ice nucleation processes in upper tropospheric wave-clouds observed during SUCCESS. Geophys. Res. Lett., 25 (9), 1363–1366.CrossRefGoogle Scholar
Jensen, E. J., Toon, O. B., Selkirk, H. B., Spinhirne, J. D., and Schoeberl, M. R. (1996). On the formation and persistence of subvisual cirrus near the tropical tropopause. J. Geophys. Res., 101, 21,361–21,375.CrossRefGoogle Scholar
Jensen, E., Pfister, L., Bui, T., Weinheimer, A., Weinstock, E., Smith, J, Pittman, J., Baumgardner, D., Lawson, P., and McGill, M. J. (2005). Formation of a tropopause cirrus layer observed over Florida during CRYSTAL-FACE. J. Geophys. Res., 110, D03208, .CrossRefGoogle Scholar
Jensen, E. J., Toon, O. B., Vay, S. A., Ovarlez, J., May, R., Bui, T. P., Twohey, C. H., Gandrud, B. W., Pueschel, R. F., and Schumann, U. (2001). Prevalence of ice-supersaturated regions in the upper troposphere: implications for optically thin ice cloud formation. J. Geophys. Res., 106, 17,253–17,266.CrossRefGoogle Scholar
Ji, Q., and Shaw, G. E. (1998). On supersaturation spectrum and size distribution of cloud condensation nuclei, Geophys. Res. Lett., 25, 1903–1906.CrossRefGoogle Scholar
Jiusto, J. E., and Bosworth, G. E. (1971). Fall velocity of snowflakes. J. Appl. Meteorol., 10, 1352–1354.2.0.CO;2>CrossRefGoogle Scholar
Jiusto, J. E., and Lala, G. G. (1981). CCN-supersaturation spectra slopes (k). J. Rech. Atmos., 15, 303–311.Google Scholar
Johari, G. P. (1998). An interpretation for the thermodynamic features of ice Ih ↔ ice XI transformations. J. Chem. Phys., 109 (21), 9543–9548.CrossRefGoogle Scholar
Johari, G. P., Fleissner, G., Hallbrucker, A., and Mayer, E. (1994). Thermodynamic continuity between glassy and normal water. J. Phys. Chem., 98, 4719–4725.CrossRefGoogle Scholar
Johnson, D. B. (1982). The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39, 448–460.2.0.CO;2>CrossRefGoogle Scholar
Jonas, P. R. (1972). The collision efficiency of small drops. Quart. J. Roy. Meteor. Soc., 98, 681–683.CrossRefGoogle Scholar
Joss, J., and Gori, E. G. (1978). Shapes of raindrop size distributions. J. Appl. Meteorol, 17, 1054–1061.2.0.CO;2>CrossRefGoogle Scholar
Junge, C. E. (1952). Die Constitution der Atmospherischen Aerosols. Ann. Meteorol., 1, 128–135.Google Scholar
Junge, C. E. (1963). Air chemistry and radioactivity. Academic Press, New York and London, 424 pp.Google Scholar
Kabanov, A. S, Mazin, I. P., and Smirnov, V. I. (1970). Effect of spatial inhomogeneity of nucleating droplets on their size spectrum in a cloud. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 6, 265–277.Google Scholar
Kachurin, L. G. (1978). Physical foundations of artificial modification of the atmospheric processes. Leningrad, Hydrometeoizdat, 456 pp. (in Russian).Google Scholar
Kanno, H., and Angell, C. A. (1977). Homogeneous nucleation and glass formation in aqueous alkali halide solutions at high pressures. J. Phys. Chem., 81(26), 2639–2643.CrossRefGoogle Scholar
Kärcher, B., and Lohmann, U. (2002a). A parameterization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols. J. Geophys. Res., 107(D2), 4010, .CrossRefGoogle Scholar
Kärcher, B., and Lohmann, U. (2002b). A parameterization of cirrus cloud formation: Homogeneous freezing including effects or aerosol size. J. Geophys. Res., 107(D23), 4698, .CrossRefGoogle Scholar
Kärcher, B., and Lohmann, U. (2003). A parameterization of cirrus cloud formation: Heterogeneous freezing, J. Geophys. Res., 108, 4402, .CrossRefGoogle Scholar
Kärcher, B. J.Hendricks, , and Lohmann, U. (2006). Physically based parameterization of cirrus cloud formation for use in global atmospheric models. J. Geophys. Res., 111, D01205, .CrossRefGoogle Scholar
Kärcher, B., Peter, T., Biermann, U. M., and Schumann, U. (1996). The initial composition of jet condensation trails. J. Atmos. Sci., 53, 3066–3083.2.0.CO;2>CrossRefGoogle Scholar
Kashchiev, D. (2000). Nucleation: Basic theory with applications. Batterworth-Heineman, Oxford, 512 pp.Google Scholar
Kashchiev, D., Borissova, A., Hammond, R. B., and Roberts, K. J. (2010). Effect of cooling rate on the critical undercooling for crystallization. J. Cryst. Growth, 312, 698–704.CrossRefGoogle Scholar
Kasten, F. (1969). Visibility forecast in the phase of pre-condensation. Tellus, 21(5), 631–635.CrossRefGoogle Scholar
Kell, G. S. (1975). Density, thermal expansivity, and compressibility of liquid water from 0° to 150°C: Correlations and tables for atmospheric pressure and saturation reviewed and expressed on 1968 temperature scale. J. Chem. Eng. Data, 20, 97–112.CrossRefGoogle Scholar
Ketcham, W. M., and Hobbs, P. V. (1969). An experimental determination of the surface energies of ice. Phil. Mag., 19, 1161.CrossRefGoogle Scholar
Kessler, E. (1969). On the distribution and continuity of water substance in atmospheric circulation. Meteor. Monogr., 10 (No. 32), Amer. Meteor. Soc., 84 pp.Google Scholar
Khain, A. P., Pokrovsky, A., Pinsky, M., Seifert, A., and Phillips, V. (2004). Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 2963–2982.CrossRefGoogle Scholar
Khairoutdinov, M. F., and Khvorostyanov, V. I. (1991). Modeling of artificial dispersal of orographic cloudiness by seeding from aircraft. Atmos. Optics, 4 (10), 650–676.Google Scholar
Khairoutdinov, M. F., and Kogan, Y. L. (2000). A new cloud physics parameterization in a large-eddy simulation model of marine stratocumulus. Mon. Wea. Rev., 128, 229–243.2.0.CO;2>CrossRefGoogle Scholar
Khairoutdinov, M. F., and Randall, D. (2003). Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60 (4), 607–625, .2.0.CO;2>CrossRefGoogle Scholar
Khvorostyanov, V. I. (1982). A two-dimensional time-dependent microphysical model of advective-radiative fog and low clouds. Sov. Meteorol. Hydrol., No. 7, 16–28.Google Scholar
Khvorostyanov, V. I. (1984). Modeling artificial crystallization and dispersal of supercooled fogs. Sov. Meteorol. Hydrol., No. 3, 35–45.Google Scholar
Khvorostyanov, V. I. (1987). Three-dimensional microphysical model of cloud crystallization after seeding with dry ice. Sov. Meteorol. Hydrol., No. 4, 29–37.Google Scholar
Khvorostyanov, V. I. (1995). Mesoscale processes of cloud formation, cloud-radiation interaction and their modelling with explicit cloud microphysics. Atmos. Res. 39, 1–67.CrossRefGoogle Scholar
Khvorostyanov, V. I., Khain, A. P., and Kogteva, E. A. (1989). A two-dimensional time-dependent microphysical model of the three-phase convective cloud and evaluation of seeding with a crystallizing agent. Sov. Meteorol. Hydrol., No. 5, 33–45.Google Scholar
Khvorostyanov, V. I., and Curry, J. A. (1999a). A simple analytical model of aerosol properties with account for hygroscopic growth. Part I: Equilibrium size spectra and CCN activity spectra. J. Geophys. Res., 104 (D2), 2163–2174.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (1999b). A simple analytical model of aerosol properties with account for hygroscopic growth. Part II: Scattering and absorption coefficients. J. Geophys. Res., 104 (D2), 2175–2184.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (1999c). Toward the theory of stochastic condensation in clouds. Part I: A general kinetic equation. J. Atmos. Sci., 56, 3985–3996.2.0.CO;2>CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (1999d). Toward the theory of stochastic condensation in clouds. Part II. Analytical solutions of gamma distribution type. J. Atmos. Sci., 56, 3997–4013.2.0.CO;2>CrossRefGoogle Scholar
Khvorostyanov, V. I, and Curry, J. A. (2000). A new theory of heterogeneous nucleation for application in cloud and climate models, Geophys. Res. Lett., 27, 4081–4084.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2002). Terminal velocities of droplets and crystals: Power laws with continuous parameters over the size spectrum. J. Atmos. Sci., 59, 1872–1884.2.0.CO;2>CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2004a). Thermodynamic theory of freezing and melting of water and aqueous solutions. J. Phys. Chem. A, 108 (50), 11,073–11,085.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2004b). The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part 1: Critical radius, energy and nucleation rate. J. Atmos. Sci., 61, 2676–2691.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2005a). The theory of ice nucleation by heterogeneous freezing of deliquescent mixed CCN. Part 2: Parcel model simulation. J. Atmos. Sci., 62, 261–285.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2005b). Fall velocities of hydrometeors in the atmosphere: Refinements to a continuous analytical power law. J. Atmos. Sci., 62 (12), 4343–4357.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2006). Aerosol size spectra and CCN activity spectra: Reconciling the lognormal, algebraic and power laws. J. Geophys. Res., 111, D12202, .CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2007). Refinements to the Köhler’s theory of aerosol equilibrium radii, size spectra, and droplet activation: Effects of humidity and insoluble fraction. J. Geophys. Res., 112 (D5), D05206, CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2008a). Kinetics of cloud drop formation and its parameterization for cloud and climate models. J. Atmos. Sci., 65, 2784–2802.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2008b). Analytical solutions to the stochastic kinetic equation for liquid and ice particle size spectra. Part I: Small-size fraction. J. Atmos. Sci., 65, 2025–2043.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2008c). Analytical solutions to the stochastic kinetic equation for liquid and ice particle size spectra. Part II: Large-size fraction in precipitating clouds. J. Atmos. Sci., 65, 2044–2063.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2009a). Parameterization of cloud drop activation based on analytical asymptotic solutions to the supersaturation equation. J. Atmos. Sci., 66, 1905–1925.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2009b). Critical humidities of homogeneous and heterogeneous ice nucleation: Inferences from extended classical nucleation theory. J. Geophys. Res., 114, D04207, .CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. (2012). Parameterization of homogeneous ice nucleation for cloud and climate models based on classical nucleation theory. Atmos. Chem. Phys., 12, 9275–9302, 2012, , .CrossRefGoogle Scholar
Khvorostyanov, V. I., Curry, J. A., Pinto, J. O., Shupe, M., Baker, B., and Sassen, K. (2001). Modeling with explicit spectral water and ice microphysics of a two-layer cloud system of altostratus and cirrus observed during the FIRE Arctic Clouds Experiment. J. Geophys. Res., 106, 15,099–15,112.CrossRefGoogle Scholar
Khvorostyanov, V. I., Curry, J. A., Gultepe, I., and Strawbridge, K. (2003). A springtime cloud over the Beaufort Sea polynya: Three-dimensional simulation with explicit spectral microphysics and comparison with observations. J. Geophys. Res., 108 (D9), 4296, .CrossRefGoogle Scholar
Khvorostyanov, V. I., Morrison, H., Curry, J. A., Baumgardner, D., and Lawson, P. (2006). High supersaturation and modes of ice nucleation in thin tropopause cirrus: Simulation of the 13 July 2002 Cirrus Regional Study of Tropical Anvils and Cirrus Layers case. J. Geophys. Res., 111 (No. D2), D02201, .CrossRefGoogle Scholar
Khvorostyanov, V. I., and Khairoutdinov, M. F. (1990). Modeling precipitation enhancement over extended mountainous country by aircraft seeding of orographic cloudiness. Sov. Meteorol. Hydrol., No. 11, 43–54.Google Scholar
Khvorostyanov, V. I., and Sassen, K. (1998a). Cirrus cloud simulation using explicit microphysics and radiation: Part I: Model description, J. Atmos. Sci., 55, 1808–1821.2.0.CO;2>CrossRefGoogle Scholar
Khvorostyanov, V. I., and Sassen, K. (1998b). Cirrus cloud simulation using explicit microphysics and radiation: Part II: Microphysics, vapor and ice mass budgets, and optical and radiative properties. J. Atmos. Sci., 55, 1822–1845.2.0.CO;2>CrossRefGoogle Scholar
Khvorostyanov, V. I., and Sassen, K. (1998c). Towards the theory of homogeneous nucleation and its parameterization for cloud models. Geophys. Res. Lett., 25 (16), 3155–3158.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Sassen, K. (2002). Microphysical processes in cirrus and their impact on radiation: A mesoscale modeling perspective. In: Cirrus. Eds.: Lynch, D., Sassen, K., Starr, D. O’C., and Stephens, G., Oxford University Press, 397–432.Google Scholar
Kimizuka, N., and Suzuki, T. (2007). Supercooling behavior in aqueous solutions. J. Phys. Chem. B, 111, 2268–2273.CrossRefGoogle ScholarPubMed
Kiselev, S. B. (2001). Physical limit of stability in supercooled liquids. Int. J. Thermophys., 22 (5), 1421–1433.CrossRefGoogle Scholar
Kiselev, S. B., and Ely, J. F. (2002). Parametric crossover model and physical limit of stability in supercooled water. J. Chem. Phys., 116 (13), 5657–5665.CrossRefGoogle Scholar
Klein, S. A., McCoy, R. B., Morrison, H., Ackerman, A. S., et al. (2009). Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. I. Single-layer cloud. Q. J. Roy. Meteor. Soc., 135, 979–1002.CrossRefGoogle Scholar
Klotz, I. M., and Rosenberg, R. M. (1972). Chemical thermodynamics, basic theory and methods, 3rd ed. Benjamin/Cummings: Menlo Park, CA, USA.Google Scholar
Klug, D. D. (2002). Dense ice in detail, Nature, 420, 749–751.CrossRefGoogle ScholarPubMed
Knight, C. A. (1971). Experiments on contact angle of water on ice. Philos. Mag. 23, 153–165.CrossRefGoogle Scholar
Knight, N. C., and Heymsfield, A. J. (1983). Measurement and interpretation of hailstone density and terminal velocity. J. Atmos. Sci., 40, 1510–1516.2.0.CO;2>CrossRefGoogle Scholar
Knopf, D. A., and Koop, T (2006). Heterogeneous nucleation of ice on surrogates of mineral dust. J. Geophys. Res., 111, D12201, .CrossRefGoogle Scholar
Köhler, H. (1921). Zur Kondensation des Wasserdampfes in der Atmosphäre, Geophys. Publ., 2, 3–15.Google Scholar
Köhler, H. (1936). The nucleus in and the growth of hygroscopic droplets, Trans. Farad. Soc., 32, 1152–1161.CrossRefGoogle Scholar
Kolmogorov, A. N. (1941). Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Dokl. Acad. Sci. USSR, 30, 301–305. Reprinted in Sov. Phys. Usp., 10, 734–736, 1968, and Proc. Roy. Soc., London, A, 434, 9–13, 1991.Google Scholar
Kondratyev, K. Ya. (1969). Radiation in the atmosphere. Academic Press, New York, 912 pp.Google Scholar
Kondratyev, K. Ya., and Khvorostyanov, V. I. (1989). Modeling of cloud formation due to air-sea interaction over the oceanic hydrological front. Boundary Layer Meteorol., 46, 229–249.CrossRefGoogle Scholar
Kondratyev, K. Ya., Ovtchinnikov, M. V., and Khvorostyanov, V. I. (1990a). Mesoscale model of mixed-phase cloud development with account for the interaction among optical, radiative and microphysical processes. Atmos. Optics, 3 (6), 639–646.Google Scholar
Kondratyev, K. Ya., Ovtchinnikov, M. V., and Khvorostyanov, V. I. (1990b). Modeling the evolution of the optical, radiative and microphysical properties of the atmosphere after crystallization of cloudiness. Part I: Complete dispersal of the clouds. Atmos. Optics, 3 (No 6), 647–654.Google Scholar
Koop, T. (2004). Homogeneous ice nucleation in water and aqueous solutions. Z. Phys. Chem., 218, 1231–1258.CrossRefGoogle Scholar
Koop, T., and Zobrist, B. (2009). Parameterizations for ice nucleation in biological and atmospheric systems. Phys. Chem. Chem. Phys., 11, 10,839–10,850, .CrossRefGoogle ScholarPubMed
Koop, T., Bertram, A. K., Molina, L. T., and Molina, M. J. (1999). Phase transitions in aqueous NH4HSO4 solutions. J. Phys. Chem. A., 103, 9042–9048.CrossRefGoogle Scholar
Koop, T., Luo, B. P., Tsias, A., and Peter, T. (2000). Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611–614.CrossRefGoogle ScholarPubMed
Koop, T., Ng, H. P., Molina, L. T., and Molina, M. J. (1998). A new optical technique to study aerosol phase transitions: The nucleation of ice from H2SO4 aerosols. J. Phys. Chem. A, 102, 8924–8931.CrossRefGoogle Scholar
Korhonen, P., Laaksonen, A., Batris, E., and Viisanen, Y. (1998). Thermodynamics for highly concentrated water-ammonium sulfate solutions. J. Aerosol Sci., 29 (Suppl. 1), S379–S380.CrossRefGoogle Scholar
Korn, G. A., and Korn, T. M. (1968). Mathematical handbook for scientists and engineers. McGraw-Hill Co., New York, 831 pp.Google Scholar
Korolev, A. V., Isaac, G. A, Cober, S. G., Strapp, J. W., and Hallett, J. (2003). Microphysical characterization of mixed-phase clouds. Q. J. Roy. Meteor. Soc., 129, 39–65.CrossRefGoogle Scholar
Kovetz, A., and Olund, B. (1969). The effect of coalescence and condensation on rain formation in a cloud of finite vertical extent. J. Atmos. Sci., 26, 1060–1065.2.0.CO;2>CrossRefGoogle Scholar
Kotchenruther, R. A., Hobbs, P. V., and Hegg, D. A. (1999). Humidification factors for atmospheric aerosols off the mid-Atlantic coast of the United States. J. Geophys. Res., 104, 2239–2251.CrossRefGoogle Scholar
Krakovskaia, S. V., and Pirnach, A. M. (2004). A theoretical study of the microphysical structure of mixed stratiform frontal clouds and their precipitation. Atmos. Res., 47–48, 491–503.Google Scholar
Krämer, B., Schwell, M., Hubner, O., Vortisch, H, Leisner, T., Ruhl, E., Baumgartel, H, and Woste, L. (1996). Homogeneous ice nucleation observed in single levitated micro droplets. Ber. Bunsenges Phys. Chem., 100, 1911–1914.CrossRefGoogle Scholar
Krämer, M., Schiller, C., Afchine, A., Bauer, R., Gensch, I., Mangold, A., Schlicht, S., Spelten, N., Sitnikov, N., Borrmann, S., de Reus, M., and Spichtinger, P. (2009). Ice supersaturations and cirrus cloud crystal numbers. Atmos. Chem. Phys., 9, 3505–3522, .CrossRefGoogle Scholar
Krasnovskaya, L. I. (1964). Physical basics of artificial cloud modification with cooling agents. Proc. Centr. Aerolog. Obs., 58, 79 pp. (in Russian).Google Scholar
Krasnovskaya, L. I., Seregin, Y. A., and Khvorostyanov, V. I. (1987). State-of-the-art in studies of artificial seeding of supercooled clouds and fogs with cooling agents. In: Problems of cloud physics, weather modification. Leningrad, Hydrometeoidat, 1987, 50–64 (in Russian).Google Scholar
Kreidenweis, S. M., Koehler, K., DeMott, P. J., Prenni, A. P., Carrico, C., and Ervens, B. (2005). Water activity and activation diameters from hygroscopicity data—Part I: Theory and application to inorganic salts. Atmos. Chem. Physics, 5, 1357–1370.CrossRefGoogle Scholar
Kulmala, M., Laaksonen, A., Korhonen, P., Vesala, T., Ahonen, T., and Barrett, J. C. (1993). The effect of atmospheric nitric acid vapor on cloud condensation nucleus activation. J. Geophys. Res., 98, 22,949–22,958.CrossRefGoogle Scholar
Kulmala, M., Rannik, U., Zapadinsky, E., and Clement, C. (1997). The effect of saturation fluctuations on droplet growth. J. Aerosol Sci., 28, 1395–1409.CrossRefGoogle Scholar
Kumar, B., Janetzko, F., Schumacher, J., and A Shaw, R. (2012). Extreme responses of a coupled scalar–particle system during turbulent mixing. New Journal of Physics, 14, 115,020–115,041, .CrossRefGoogle Scholar
Kuo, J.-L., Coe, J. V., Singer, S. J., Band, Y. B., and Ojamäe, L. (2001). On the use of graph invariants for efficiently generating hydrogen bond topologies and predicting physical properties of water clusters and ice. J. Chem. Phys., 114, 2527–2540.CrossRefGoogle Scholar
Kuo, J.-L., Klein, M. L., Singer, S. J., and Ojamäe, L. (2004). Ice Ih – Ice XI phase transition. A quantum mechanical study. In: Abstracts of papers, 227th ACS National Meeting, Anaheim, CA, USA, March 28–April 1, 2004, PHYS-463, Amer. Chem. Soc.Google Scholar
Laaksonen, A., Talanquer, V., and Oxtoby, D. (1995). Nucleation: Measurements, theory and atmospheric applications. Annu. Rev. Phys. Chem., 46, 489–524.CrossRefGoogle ScholarPubMed
Laaksonen, A., Korhonen, P., Kulmala, M., and Charlson, R. J. (1998). Modification of the Köhler equation to include soluble trace gases and slightly soluble substances. J. Atmos. Sci., 55, 853–862.2.0.CO;2>CrossRefGoogle Scholar
Ladino, L., Stetzer, O., Lüönd, F., Welti, A., and Lohmann, U. (2011). Contact freezing experiments of kaolinite particles with cloud droplets. J. Geophys. Res., 116, D22202, .CrossRefGoogle Scholar
Ladino Moreno, L. A., Stetzer, O., and Lohmann, U. (2013). Contact freezing: A review of experimental studies. Atmos. Chem. Phys., 13, 9745–9769, , .CrossRefGoogle Scholar
Laktionov, A. G. (1972). Fraction of soluble in water substances in the particles of atmospheric aerosol. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 8, 389–395.Google Scholar
Landau, L. D., and Lifshitz, E. M. (1958a). Quantum mechanics. Non-relativistic theory. Course of theoretical physics, v. 3. Addison-Wesley, 526 pp.Google Scholar
Landau, L. D., and Lifshitz, E. M. (1958b). Statistical physics, Part I. Course of theoretical physics, v. 5. Pergamon Press, 544 pp.Google Scholar
Landau, L. M., and Lifshitz, E. M. (1959). Fluid mechanics. Course of theoretical physics, v. 6. 1st ed., Pergamon Press, 536 pp.Google Scholar
Landau, L. D., and Lifshitz, E. M. (1966). Electrodynamics of continuous media. Course of theoretical physics, v. 8. Addison-Wesley, 417 pp.Google Scholar
Landau, L. D., and Lifshitz, E. M. (2005). The classical theory of fields. Course of theoretical physics, v. 2. Pergamon Press, 428 pp.Google Scholar
Langham, E. J., and Mason, B. J. (1958). The heterogeneous and homogeneous nucleation in supercooled water. Proc. Roy. Soc., A247, 493–504.CrossRefGoogle Scholar
Larson, B. H., and Swanson, B. D. (2006). Experimental investigation of the homogeneous freezing of aqueous ammonium sulfate droplets. J. Phys. Chem. A, 110 (5), 1907–1916.CrossRefGoogle ScholarPubMed
Latham, J., and Reed, R. L. (1977). Laboratory studies of the effects of mixing on the evolution of cloud droplet spectra. Quart. J. Roy. Meteor. Soc., 103, 297–306.CrossRefGoogle Scholar
Lawson, R. P., Stewart, R. E., and Agnus, L. J. (1998). Observations and numerical simulations of the origin and development of very large snowflakes. J. Atmos., Sci., 55, 3209–3229.2.0.CO;2>CrossRefGoogle Scholar
Lawson, R. P., Baker, B. A., Schmitt, C. G., and Jensen, T. L. (2001). An overview of microphysical properties of Arctic clouds observed in May and July 1998 during FIRE ACE. J. Geophys. Res., 106 (D14), 14,989–15,014.CrossRefGoogle Scholar
Lawson, R. P., Baker, B., Pilson, B., and Mo, Q. (2006). In situ observations of the microphysical properties of wave, cirrus, and anvil clouds. Part II: Cirrus clouds. J. Atmos. Sci., 63, 3186–3203.CrossRefGoogle Scholar
Leberman, R., and Soper, A. K. (1995). Effect of high salt concentrations on water structure. Nature, 378, 364–366.CrossRefGoogle ScholarPubMed
Leck, K., Nilsson, E. D., Bigg, E. K., and Bäcklin, L. (2001). Atmospheric program on the Arctic Ocean Expedition 1996 (AOE-96): An overview of scientific goals, experimental approach, and instruments. J. Geophys. Res., 106 (D23), 32,051–32,067.CrossRefGoogle Scholar
Lemons, D. S. (2002). An introduction to stochastic processes in physics. The Johns Hopkins University Press, 110 pp.Google Scholar
Levich, V. G. (1969). The course of theoretical physics, v. 1. Moscow, “Nauka,” 910 pp. (in Russian).Google Scholar
Levin, L. M. (1954). On the size distributions functions of the cloud and rain droplets. Dokl. Acad. Sci. USSR, 44, 1045–1049.Google Scholar
Levin, L. M., and Sedunov, Y. S. (1966a). A theoretical model of condensation nuclei: The mechanism of cloud formation in clouds. J. Rech. Atmos., 2 (2–3), 416–424.Google Scholar
Levin, L. M., and Sedunov, Y. S. (1966b). Stochastic condensation of drops and kinetics of cloud spectrum formation. J. Rech. Atmos., 2, 425–432.Google Scholar
Levin, Z., Ganor, E., and Gladstein, V. (1996). The effects of desert particles coated with sulfate on rain formation in the eastern Mediterranean. J. Appl. Meteorol., 35, 1511–1523.2.0.CO;2>CrossRefGoogle Scholar
Lewis, J. S. (1995). Physics and chemistry of the solar system. Academic Press, San Diego, CA, USA, 556 pp.Google Scholar
Lewis, J. S., and Prinn, R. E. (1984). Planets and their atmospheres: Origins and evolutions. Academic Press, New York, 470 pp.Google Scholar
Li, Zh., , A. L.Williams, , and Rood, M. J. (1998). Influence of soluble surfactant properties on the activation of aerosol particles containing inorganic solute. J. Atmos. Sci., 55, 1859–1866.2.0.CO;2>CrossRefGoogle Scholar
Lifshitz, E. M., and Pitaevskii, L. P. (1997). Physical kinetics. Course of theoretical physics by Landau and Lifshitz, v. 10. Butterworth Heinemann, 452 pp.Google Scholar
Lifshitz, I. M., and Slezov, V. V. (1958). On the theory of diffusional decay of supersaturated solid solutions. J. Exper. Theor. Phys., 35, 479–492.Google Scholar
Lifshitz, I. M., and Slezov, V. V. (1961). On the kinetics of precipitation of supersaturated solid solutions. J. Phys. Chem. Solids, 19, 35–50.CrossRefGoogle Scholar
Lilly, D. K. (1968). Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Met. Soc., (4), 292–309.CrossRefGoogle Scholar
Lin, R.-F., Starr, D. O’C., DeMott, P. J., Cotton, R., Sassen, K., Jensen, E., Kärcher, B., and Liu, X. (2002). Cirrus parcel model comparison project. Phase 1: The critical components to simulate cirrus initiation explicitly. J. Atmos. Sci., 59, 2305–2329.2.0.CO;2>CrossRefGoogle Scholar
Lin, Y. L., Farley, R. D., and Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteorol., 22, 1065–1092.2.0.CO;2>CrossRefGoogle Scholar
Liou, K. N. (1980). An introduction to atmospheric radiation. Academic Press, 384 pp.Google Scholar
Liou, K. N. (1992). Radiation and cloud processes in the atmosphere. Oxford University Press, 487 pp.Google Scholar
Liou, K. N., and Ou, S. C. (1989). The role of cloud microphysical processes in climate: An assessment from a one-dimensional perspective. J. Geophys. Res., 94D, 8599–8607.CrossRefGoogle Scholar
Liou, K.-N., Ou, S. C., and Koenig, G. (1991). An investigation of the climatic effect of contrail cirrus. In: Air traffic and the environment—Background, tendencies, and potential global atmospheric effects. Ed.: Schumann, U., Springer-Verlag, 154–169.Google Scholar
Litvinov, I. V. (1956). Determination of falling velocity of snow particles. Izv. Acad. Sci. USSR, Ser. Geophys., 7, 853–856.Google Scholar
Liu, X., and Penner, J. E. (2005). Ice nucleation parameterization for global models. Meteorol. Z., 14, 499–514.CrossRefGoogle Scholar
Liu, Y. (1993). Statistical theory of the Marshall-Palmer distribution of raindrops. Atmos. Environ., 27A, 15–19.Google Scholar
Liu, Y. (1995). On the generalized theory of atmospheric particles systems. Adv. Atmos. Sci., 12, 419–438.Google Scholar
Liu, Y., and Hallett, J. (1998). On size distribution of cloud drops growing by condensation: A new conceptual model. J. Atmos. Sci., 55, 527–536.2.0.CO;2>CrossRefGoogle Scholar
Liu, Y., and Daum, P. H. (2004). Parameterization of the autoconversion Process. Part I: Analytical formulation of the Kessler-type parameterizations. J. Atmos. Sci., 61, 1539–1548.2.0.CO;2>CrossRefGoogle Scholar
Liu, Y., Laiguang, Y., Weinong, Y., and Feng, L. (1995). On the size distribution of cloud droplets. Atmos. Res., 35, 201–216.CrossRefGoogle Scholar
Locatelli, J. D., and Hobbs, P. V. (1974). Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 2185–2197.CrossRefGoogle Scholar
Lohmann, U. (2002). Possible aerosol effects on ice clouds via contact nucleation. J. Atmos. Sci., 59, 647–656.2.0.CO;2>CrossRefGoogle Scholar
Lohmann, U., and Kärcher, B. (2002). First interactive simulations of cirrus clouds formed by homogeneous freezing in the ECHAM GCM, J. Geophys. Res., 107, .CrossRefGoogle Scholar
Lohmann, U., and Feichter, J. (2005). Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715–737, .CrossRefGoogle Scholar
Lohmann, U., Feichter, J., Chuang, C. C., and Penner, J. E. (1999). Predicting the number of cloud droplets in the ECHAM GCM. J. Geophys. Res., 104, 9169–9198.CrossRefGoogle Scholar
Lohmann, U., and Diehl, K. (2006). Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds. J Atmos Sci., 63, 968–982.CrossRefGoogle Scholar
London, J. (1957). A study of the atmospheric heat balance, Final report. Contract AF19(122)-165. Dept. Meteorol. and Oceanogr., New York Univ. (ASTIA 117227, Air Force Geophysical Laboratory, Hanscom AFB), 99 pp.Google Scholar
Long, A. (1974). Solutions to the droplet collection equation for polynomial kernels. J. Atmos. Sci., 31, 1040–1052.2.0.CO;2>CrossRefGoogle Scholar
Low, R. D. H. (1969). A generalized equation for the solution effect in droplet growth. J. Atmos. Sci., 26, 608–612.2.0.CO;2>CrossRefGoogle Scholar
Low, T. B., and List, R. (1982a). Collision, coalescence, and breakup of raindrops. Part I: Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39, 1591–1606.2.0.CO;2>CrossRefGoogle Scholar
Low, T. B., and List, R. (1982b). Collision, coalescence, and breakup of raindrops. Part II: Parameterization of fragment size distributions. J. Atmos. Sci., 39, 1607–1618.2.0.CO;2>CrossRefGoogle Scholar
Lübken, F.-J., Lautenbach, J., Höffner, J., Rapp, M., and Zecha, M. (2009). First continuous temperature measurements within polar mesosphere summer echoes. J. Atmos. Solar-Terr. Phys., 71, 453–463, .CrossRefGoogle Scholar
Ludwig, F. L., and Robinson, E. (1970). Observations of aerosols and droplets in California stratus. Tellus, 22 (1), 78–89.CrossRefGoogle Scholar
Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U. (2010). Experimental study on the ice nucleation ability of size selected kaolinite particles in the immersion mode. J. Geophys. Res., 115, D14201, .CrossRefGoogle Scholar
Lushnikov, A. A. (1973). Evolution of coagulating systems. J. Coll. Interface Sci., 45 (3), 549–556.CrossRefGoogle Scholar
Lushnikov, A. A. (1974). Evolution of coagulating systems. II. Asymptotic size distributions and analytical properties of generating functions. J. Coll. Interface Sci., 48 (3), 400–409.CrossRefGoogle Scholar
Lushnikov, A. A., and Piskunov, V. N. (1982). Three new exactly solvable models in the theory of coagulation. Dokl. Acad. Sci. USSR, 247, 132–136.Google Scholar
Lushnikov, A. A., and Smirnov, V. I. (1975). Stationary coagulation and size distribution of atmospheric aerosol particles. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 11, 139–151.Google Scholar
MacKenzie, A. R., Laaksonen, A., Batris, E., and Kulmala, M. (1998). The Turnbull correlation and the freezing of stratospheric aerosol droplets. J. Geophys. Res. D, 103, 10875–10884.CrossRefGoogle Scholar
Magono, C., and Lee, C. (1966). Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ., Ser. VII, 2, 321–335.Google Scholar
Magono, C., and Nakamura, T. (1965). Aerodynamic studies of falling snowflakes. J. Meteor. Soc. Japan, Ser. 2, 43, 139–147.CrossRefGoogle Scholar
Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J., and Salzmann, C. G. (2012). Structure of ice crystallized from supercooled water. Proc. Nat. Acad. Sci., , .CrossRefGoogle ScholarPubMed
Manton, M. J. (1979). On the broadening of a droplet distribution by turbulence near cloud base. Quart. J. Roy. Meteor. Soc., 105, 899–914.CrossRefGoogle Scholar
Manton, M. J. (1981). Reply to the comments on the paper “On the broadening of a droplet distribution by turbulence near cloud base.”Quart. J. Roy. Meteor. Soc., 112, 977–978.Google Scholar
Manton, M. J., and Cotton, W. R. (1977). Formulation of approximate equations for modeling moist deep convection on the mesoscale. Atmospheric Science Paper No. 266, Colorado State University, 62 pp.Google Scholar
Marchuk, G. I., Kondratyev, K. Ya., Kozoderov, V. V., and Khvorostyanov, V. I. (1986). Clouds and climate. Leningrad, Hydrometeoizdat, 512 pp.Google Scholar
Marcolli, C., Gedamke, S., Peter, T., and Zobrist, B. (2007). Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys., 7, 5081–5091.CrossRefGoogle Scholar
Marshall, J. S., and Palmer, W. M. K. (1948). The distribution of raindrops with size. J. Meteor., 5, 165–166.2.0.CO;2>CrossRefGoogle Scholar
Martin, S. T. (2000). Phase transitions of aqueous atmospheric particles. Chem. Rev., 100, 3403–3453.CrossRefGoogle ScholarPubMed
Mason, B. J. (1971). The physics of clouds. Oxford Univ. Press, Clarendon, London, 481 pp.Google Scholar
Mason, P. J. (1985). A numerical study of cloud streets in the planetary boundary layer. Boundary Layer Meteorol., 32, 281–304.CrossRefGoogle Scholar
Mason, P. J. (1989). Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci., 46, 1492–1516.2.0.CO;2>CrossRefGoogle Scholar
Matrosov, S. Y. (1997). Variability of microphysical parameters in high-altitude ice clouds: Results of the remote sensing method. J. Appl. Met., 36 (6), 633–648.CrossRefGoogle Scholar
Matrosov, S. Y., and Heymsfield, A. J. (2000). Use of Doppler radar to assess ice cloud particle fall velocity-size relations for remote sensing and climate studies. J. Geophys. Res., 105, 22,427–22,436.CrossRefGoogle Scholar
Matson, R. J., and Huggins, A. W. (1980). The direct measurement of the sizes, shapes and kinematics of falling hailstones. J. Atmos., Sci., 37, 797–816.2.0.CO;2>CrossRefGoogle Scholar
Matveev, L. T. (1984). Cloud dynamics. D. Reidel Publish Co., 212 pp.CrossRefGoogle Scholar
Maxwell, J. C. (1890). Theory of the wet bulb thermometer. In: The scientific papers of James Clerk Maxwell, vol. 2. Dover Publisher, New York, 636–640 pp.Google Scholar
Mayer, E., and Hallbrucker, A. (1987). Cubic ice from liquid water. Nature, 325, 601–602.CrossRefGoogle Scholar
Mazin, I. P., and Smirnov, V. I. (1969). To the theory of formation of the size spectrum of cloud droplets at stochastic condensation. Proc. Centr. Aerolog. Observ., 89, 92–94.Google Scholar
McFarquhar, G. M. (2004). A new representation of collision-induced breakup of raindrops and its implications for the shapes of raindrop size distributions. J. Atmos. Sci., 61, 777–794.2.0.CO;2>CrossRefGoogle Scholar
McFarquhar, G., Zhang, G., Poellot, M. R., Kok, G. L., McCoy, R., Tooman, T., Fridlind, A. M., and Heymsfield, A. J. (2007). Ice properties of single-layer stratocumulus clouds during the Mixed-Phase Arctic Cloud Experiment: 1. Observations, J. Geophys. Res., 112, D24202, .CrossRefGoogle Scholar
McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S., Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O’Dowd, C. D., Snider, J. R., and Weingartner, E. (2006). The effect of physical and chemical aerosol properties on warm cloud droplet activation. Atmos. Chem. Phys., 6, 2593–2649, .CrossRefGoogle Scholar
McGraw, R., and Lewis, E. (2009). Deliquescence and efflorescence of small particles. J. Chem. Phys., 131, 194705(1)–194705(14), .CrossRefGoogle ScholarPubMed
McGraw, R., and Liu, Y. (2006). Brownian drift-diffusion model for evolution of droplet size distributions in turbulent clouds. Geophys. Res. Lett., 33, L03802, .CrossRefGoogle Scholar
Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler, S., Meleux, F., Monge, J.-L., Pison, I., Turquety, S., Valari, M., Vautard, R., and Vivanco, M. G. (2013). Regional atmospheric composition modeling with CHIMERE. Geosci. Model Dev. Discuss., 6, 203–329. , .CrossRefGoogle Scholar
Merkulovich, V. M., and Stepanov, A. S. (1977). Hygroscopicity effects and surface tension forces during condensational growth of cloud droplets in the presence of turbulence. Izv. Akad. Sci. USSR, Atmos. Oceanic Phys., 13, 163–171.Google Scholar
Merkulovich, V. M., and Stepanov, A. S. (1981). Comments on the paper “On the broadening of a droplet distribution by turbulence near cloud base” by M. J. Manton (Q. J., 1979, 105, 899–914). Quart. J. Roy. Meteor. Soc., 112, 976–977.Google Scholar
Meyers, M. P., DeMott, P. J., and Cotton, W. R. (1992). New primary ice-nucleation parameterizations in an explicit cloud model. J. Appl. Meteor., 31, 708–721.2.0.CO;2>CrossRefGoogle Scholar
Meyers, M. P., Walko, R. L., Harrington, J. Y., and Cotton, W. R. (1997). New RAMS cloud microphysics parameterization. Part II: The two-moment scheme. Atmos. Res., 45, 3–39.CrossRefGoogle Scholar
Milbrandt, J. A., and Yau, M. K. (2005a). A multimoment microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci. 62, 3051–3064.CrossRefGoogle Scholar
Milbrandt, J. A., and Yau, M. K. (2005b). A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J. Atmos. Sci. 62, 3065–3081.CrossRefGoogle Scholar
Millero, F. J. (1978). Freezing point of seawater. In: Eighth Report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Tech. Pap. Mar. Sci., No. 28, Annex 6, UNESCO, Paris.Google Scholar
Millero, F. J., Feistel, R., Wright, D. G., and McDougall, T. J. (2008). The composition of standard seawater and the definition of the reference-composition salinity scale. Deep Sea Res. 55 (1), 50–72.CrossRefGoogle Scholar
Ming, Y., Ramaswamy, V., Donner, L. J., and Phillips, V. T. J. (2006). A new parameterization of cloud droplet activation applicable to general circulation models. J. Atmos. Sci., 63, 1348–1356.CrossRefGoogle Scholar
Mishchenko, M. I. (1991). Light-scattering by randomly oriented axially symmetrical particles. J. Optical Soc. Amer. A—Optics Image Sci. Vision, 8, 871–882.CrossRefGoogle Scholar
Mishchenko, M. I., Travis, L. D., and Mackowski, D. W. (1996). T-matrix computations of light scattering by nonspherical particles: A review. J. Quant. Spectrosc. Radiat. Transfer, 55, 535–575.CrossRefGoogle Scholar
Mishima, O. (1996). Relationship between melting and amorphization of ice. Nature, 384, 546–549.CrossRefGoogle Scholar
Mishima, O., and Stanley, H. E. (1998). The relationship between liquid, supercooled and glassy water. Nature, 396, 329–335.CrossRefGoogle Scholar
Mishima, O., Calvert, L. D., and Whalley, E. (1984). Melting ice I at 77 K and 10 kbar: A new method of making amorphous solids. Nature, 310, 393–395.CrossRefGoogle Scholar
Mishima, O., Calvert, L. D., and Whalley, E. (1985). An apparently first-order transition between two amorphous phases of ice induced by pressure. Nature, 314, 76–78.CrossRefGoogle Scholar
Mitchell, D. L. (1994). A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part I: Microphysics. J. Atmos. Sci., 51, 797–816.2.0.CO;2>CrossRefGoogle Scholar
Mitchell, D. L. (1996). Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 1710–1723.2.0.CO;2>CrossRefGoogle Scholar
Mitchell, D. L., and Arnott, W. P. (1994). A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part II: Dependence of absorption and extintion on ice crystal morphology. J. Atmos. Sci., 51, 817–832.2.0.CO;2>CrossRefGoogle Scholar
Mitchell, D. L., and Heymsfield, A. J. (2005). Refinements in the treatment of ice particle terminal velocities: Highlighting aggregates. J. Atmos. Sci., 62, 1637–1644.CrossRefGoogle Scholar
Mitchell, D. L., Baran, A. J., Arnott, W. P., and Schmitt, C. (2006). Testing and comparing the modified anomalous diffraction approximation. J. Atmos. Sci., 63, 2948–2962.CrossRefGoogle Scholar
Mitchell, D. L., Chai, S. K., Liu, Y., Heymsfield, A. J., and Dong, Y. (1996). Modeling cirrus clouds. Part I: Treatment of bimodal spectra and case study analysis. J. Atmos. Sci., 53, 2952–2966.2.0.CO;2>CrossRefGoogle Scholar
Miyata, K., Kanno, H., Tomizawa, K., and Yoshimura, Y. (2001). Supercooling of aqueous solutions of alkali chlorides and acetates. Bull. Chem. Soc. Jpn., 74, 1629–1633.CrossRefGoogle Scholar
Miyata, K., Kanno, H., Niino, Y., and Tomozawa, K. (2002). Cationic and anionic effects on the homogeneous nucleation of ice in aqueous halide solutions. Chem. Phys. Lett., 354, 51–55.CrossRefGoogle Scholar
Moeng, C. H., and Arakawa, A. (1980). A numerical study of a marine subtropical stratus cloud layer and its stability. J. Atmos. Sci., 37, 2661–2676.2.0.CO;2>CrossRefGoogle Scholar
Möhler, O., Field, P. R., Connolly, P., Benz, S., Saathoff, H., Schnaiter, M., Wagner, R., Cotton, R., Krämer, M., Mangold, A., and Heymsfield, A. J., (2006). Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys., 6, 3007–3021.CrossRefGoogle Scholar
Mokhov, I. I., Demchenko, P. F., Eliseev, A. V., Khon, V. Ch., and Khvorostyanov, D. V. (2002). Estimations of global and regional climate changes during the 19th–21st centuries on the basis of the IAP RAS Model with consideration for anthropogenic forcing. Izvestia Rus. Acad. Sci., Atmos. Oceanic Phys., 38 (5), 629–642.Google Scholar
Monier, M., Wobrock, W., Gayet, J.-F., and Flossmann, A. (2006). Development of a detailed microphysics cirrus model tracking aerosol particle’s histories for interpretation of the recent INCA campaign. J. Atmos. Sci., 63, 504–525.CrossRefGoogle Scholar
Monin, A. S., and Yaglom, A. M. (2007a). Statistical fluid mechanics. Mechanics of turbulence, v. 1. Ed.: Lumley, J. L.Dover Publications Inc., Mineola, NY, USA, 769 pp.Google Scholar
Monin, A. S., and Yaglom, A. M. (2007b). Statistical fluid mechanics. Mechanics of turbulence, v. 2. Ed.: Lumley, J. L.Dover Publications Inc., Mineola, NY, USA, 874 pp.Google Scholar
Mordy, W. A. (1959). Computations of the growth by condensation of a population of cloud droplets. Tellus, 11, 16–44.CrossRefGoogle Scholar
Morrison, H., and Gettelman, A. (2008). A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3(CAM3). Part I: Description and numerical tests. J. Clim., 21, 3642–3659, .CrossRefGoogle Scholar
Morrison, H., Curry, J. A., and Khvorostyanov, V. I. (2005a). A new double-moment microphysics parameterization for application in cloud and climate models, Part 1: Description. J. Atmos. Sci., 62, 1665–1677.CrossRefGoogle Scholar
Morrison, H., Curry, J. A., Shupe, M. D., and Zuidema, P. (2005b). A new double-moment microphysics scheme for application in cloud and climate models, Part 2: Single-column modeling of arctic clouds. J. Atmos. Sci., 62, 1678–1693.CrossRefGoogle Scholar
Morrison, H., and Pinto, J. (2005). Mesoscale modeling of springtime Arctic mixed-phase stratiform clouds using a new two-moment bulk microphysics scheme. J. Atmos. Sci., 62, 3683–3704.CrossRefGoogle Scholar
Morrison, H., McCoy, R. B., Klein, S. A., et al. (2009). Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. II. Multilayer cloud. Quart. J. Roy. Meteor. Soc., 135, 1003–1019.CrossRefGoogle Scholar
Morse, B., and Richard, M. (2009). A field study of suspended frazil ice particles. Cold Regions Sci. Technol., 55, 86–102.CrossRefGoogle Scholar
Mossop, S. C. (1955). The freezing of supercooled water. Proc. Phys. Soc., 68, 193–208.CrossRefGoogle Scholar
Mossop, S. C., and Hallett, J. (1974). Ice crystal concentration in cumulus clouds: Influence of the drop spectrum. Science, 186, 632–633.CrossRefGoogle ScholarPubMed
Moynihan, C. T. (1997). Two species / nonideal solution model for amorphous / amorphous phase transitions. Mater. Res. Soc., Symp. Proc., 455, 411–425.CrossRefGoogle Scholar
Müller, H. (1928). Zur allgemeinen theory der raschen Koagulation. Kolloid-Chem. Beib., Bd. 27, 223–250.CrossRefGoogle Scholar
Murphy, D. M. (2003). Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice. Geophys. Res. Lett., 30 (23), 2230, .CrossRefGoogle Scholar
Murphy, D. M., and Koop, T. (2005). Review of the vapor pressures of ice and supercooled water for atmospheric applications. Quart. J. Roy. Meteorol. Soc., 131, 1539–1565.CrossRefGoogle Scholar
Murray, B. J., and Bertram, A. K. (2006). Formation and stability of cubic ice in water droplets, Phys. Chem. Chem. Phys, 8, 186–192.CrossRefGoogle ScholarPubMed
Murray, B. J., and Jensen, E. J. (2010). Homogeneous nucleation of amorphous solid water particles in the upper mesosphere. J. Atmos. Solar-Terrestrial Phys., 72, 51–61.CrossRefGoogle Scholar
Murray, B. J., Knopf, D. A., and Bertram, A. K. (2005). The formation of cubic ice under conditions relevant to Earth’s atmosphere. Nature, 434, 202–205.CrossRefGoogle ScholarPubMed
Murray, B. J., Broadley, S. L., Wilson, T. W., Bull, S. J., Wills, R. H., Christenson, H. K., and Murray, E. J. (2010). Kinetics of the homogeneous freezing of water. Phys. Chem. Chem. Phys., 12 (35), 10,380–10,387.CrossRefGoogle ScholarPubMed
Myhre, C. E. L., Nielsen, C. J., and Saastad, O. W. (1998). Density and surface tension of aqueous H2SO4 at low temperature. J. Chem. Eng. Data, 43, 617–622.CrossRefGoogle Scholar
Nagle, J. F. (1966). Lattice statistics of hydrogen-bonded crystals. I. The residual entropy of ice. J. Math. Phys., 7, 1484–1491.CrossRefGoogle Scholar
Neiburger, M., and Chien, C. W. (1960). Computations of the growth of cloud drops by condensation using an electronic digital computer. Geophys. Monogr., No. 5, Amer. Geophys. Union, 191–208.Google Scholar
Nenes, A., and Seinfeld, J. H. (2003). Parameterization of cloud droplet formation in global climate models. J. Geophys. Res., 108, 4415, .CrossRefGoogle Scholar
Nenes, A., Charlson, R. J., Facchini, M. C., Kulmala, M., Laaksonen, A., and Seinfeld, J. H. (2002). Can chemical effects on cloud droplet number rival the first indirect effect? Geophys. Res. Lett., 29, 1848, .CrossRefGoogle Scholar
Nevzorov, A. N. (1967). Distribution of large drops in liquid stratiform clouds. Proc. Centr. Aerolog. Observ., 79, 57–69.Google Scholar
Newkirk, J. B., and Turnbull, D. (1955). Nucleation of ammonium sulfate crystals from aqueous solutions. J. Appl. Phys., 26, 579–583.CrossRefGoogle Scholar
Niemand, M., Möhler, O., Vogel, B., Vogel, H., Hoose, C., Connolly, P., Klein, H., Bingemer, H., Skrotzki, J., and Leisner, T. (2012). A particle-surface-area-based parameterization of immersion freezing on mineral dust particles. J. Atmos. Sci., .CrossRefGoogle Scholar
Noonkester, V. R. (1984). Droplet spectra observed in marine stratus cloud layers. J. Atmos. Sci., 41, 829–845.2.0.CO;2>CrossRefGoogle Scholar
Oatis, S., Imre, D., McGraw, R., and Xu, J. (1998). Heterogeneous nucleation of a common atmospheric aerosol: Ammonium sulfate. Geophys. Res. Lett., 25, 4469–4472.CrossRefGoogle Scholar
Obukhov, A. M. (1959). Description of turbulence in terms of Lagrangian variables. Adv. Geophys., 6, 113–116.CrossRefGoogle Scholar
Ohtake, T., and Huffman, P. T. (1969). Visual range in ice fog. J. Appl. Meteorol., 8, 499–505.2.0.CO;2>CrossRefGoogle Scholar
Ohtake, T., Jayaweera, K. O. L. F., and Sakurai, K.-I. (1982). Observation of ice crystal formation in lower Arctic atmosphere. J. Atmos. Sci., 39, 2898–2904.2.0.CO;2>CrossRefGoogle Scholar
Okita, T. (1961). Size distribution of large droplets in precipitating clouds. Tellus, 13, 456–467.CrossRefGoogle Scholar
Onasch, T. B., McGraw, R., and Imre, D. (2000). Temperature-dependent heterogeneous efflorescence of mixed ammonium sulfate / calcium carbonate particles. J. Phys. Chem. A, 104, 10,797–10,806.CrossRefGoogle Scholar
Onasch, T. B., Siefert, R. L., Brooks, S. D., Prenni, A. J., Murray, B., Wilson, M. A., and Tolbert, M. A. (1999). Infrared spectroscopic study of the deliquescence and efflorescence of ammonium sulfate aerosol as a function of temperature. J. Geophys. Res., 104, 21,317–21,326.CrossRefGoogle Scholar
Orville, H. D., and Chen, J.-M. (1982). Effects of cloud seeding. Latent heat of fusion and condensate loading on cloud dynamics and precipitation evolution: A numerical study. J. Atmos. Sci., 39, 2807–2827.2.0.CO;2>CrossRefGoogle Scholar
Ovarlez, J., Gayet, J.-F., Gierens, K., Strom, J., Ovarlez, H., Auriol, F., Busen, R., and Schumann, U. (2002). Water vapour measurements inside cirrus clouds in northern and southern hemispheres during INCA. Geophys. Res. Lett., 29, 1813, 10.1029/2001GL014440.CrossRefGoogle Scholar
Ovtchinnikov, M. V., and Kogan, Y. L. (2000). An investigation of ice production mechanisms in small cumuliform clouds using a 3D model with explicit microphysics. Part I: Model description. J. Atmos. Sci., 57, 2989–3003.2.0.CO;2>CrossRefGoogle Scholar
Ovtchinnikov, M. V., Kogan, Y. L., and Blyth, A. M. (2000). An investigation of ice production mechanisms in small cumuliform clouds using a 3D model with explicit microphysics. Part II: Case study of New Mexico cumulus clouds. J. Atmos. Sci., 57, 3004–3020.2.0.CO;2>CrossRefGoogle Scholar
Oxtoby, D. W. (2003). Crystal nucleation in simple and complex fluids. Phil. Trans. Roy. Soc. London, A, 361, 419–428, .CrossRefGoogle ScholarPubMed
Paltridge, G. W., and Platt, C. M. R. (1976). Radiative processes in meteorology and climatology. Elsevier, 318 pp.Google Scholar
Paluch, I. R., and Knight, C. A. (1986). Does mixing promote droplet growth? J. Atmos. Sci., 43, 1994–1998.2.0.CO;2>CrossRefGoogle Scholar
Paoli, R., and Shariff, K. (2004). Direct numerical simulation of turbulent condensation in clouds. Annual Res. Briefs, Center for Turbul. Res., NASA Ames Res. Center, 305–316.Google Scholar
Paoli, R., and Shariff, K. (2009). Turbulent condensation of droplets: Direct simulation and a stochastic model. J. Atmos. Sci., 66, 723–740.CrossRefGoogle Scholar
Passarelli, R. E. (1978a). An approximate analytical model of the vapor deposition and aggregation growth of snowflakes. J. Atmos. Sci., 35, 118–124.2.0.CO;2>CrossRefGoogle Scholar
Passarelli, R. E. (1978b). Theoretical and observational study of snow-sized spectra and snowflake aggregation efficiencies. J. Atmos. Sci., 35, 882–889.2.0.CO;2>CrossRefGoogle Scholar
Pauling, L. (1935). The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Amer. Chem. Soc., 57, 2680–2684.CrossRefGoogle Scholar
Pawlowicz, R., McDougall, T., Feistel, R., and Tailleux, R. (2012). Preface. An historical perspective on the development of the Thermodynamic Equation of Seawater – 2010. Ocean Sci., 8, 161–174, .CrossRefGoogle Scholar
Penner, J. E., Bergmann, D. J., Walton, J. J., Kinnison, D., Prather, M. J., Rotman, D., Price, C., Pickering, K. E., and Baughcum, S. L. (1998). An evaluation of upper troposphere NOx with two models. J. Geophys. Res., 103 (D17), 22,097–22,113, .CrossRefGoogle Scholar
Petch, J. C., Craig, G. C., and Shine, K. P. (1997). A comparison of two bulk microphysical schemes and their effects on radiative transfer using a single-column model. Quart. J. Roy. Meteor. Soc., 123, 1561–1580.CrossRefGoogle Scholar
Petrenko, V. F., and Whitworth, R. W. (1999). Physics of ice. Oxford University Press, 373 pp.Google Scholar
Pinto, J. O., Curry, J. A., and Intriery, J. M. (2001). Cloud-aerosol interactions during autumn over Beaufort sea. J. Geophys. Res., 106 (D14), 15,077–15,097.CrossRefGoogle Scholar
Pirnach, A. M., and Krakovskaya, S. V. (1994). Numerical studies of dynamics and cloud microphysics of the frontal rainbands. Atmos. Res., 33, 333–365.CrossRefGoogle Scholar
Pirnach, A. M., and Krakovskaya, S. V. (1998). Theoretical study of the microphysical structure of mixed stratiform frontal clouds and their precipitation. Atmos. Res., 47–48, 491–503.Google Scholar
Platt, C. M. R. (1997). A parameterization of the visible extinction coefficient in terms of the ice/water content. J. Atmos. Sci., 54, 2083–2098.2.0.CO;2>CrossRefGoogle Scholar
Poellot, M. R., Hilburn, K. A., Arnott, W. P., and Sassen, K. (1999). In situ observation of cirrus clouds from the 1994 ARM RCS IOP. Ninth ARM Science Team Meeting Proceedings, San Antonio, Texas, March 22–26, 1999. Sponsored by the U.S. Department of Energy.Google Scholar
Ponyatovsky, E. G., Senitsyn, V. V., and Pozdnyakova, T. A. (1994). Second critical point and low-temperature anomalies in the physical properties of water. J.P.T. Lett., 60, 360–364.Google Scholar
Ponyatovsky, E. G., Senitsyn, V. V., and Pozdnyakova, T. A. (1998). The metastable T-P phase diagram and anomalous thermodynamic properties of supercooled water. J. Chem. Phys., 109 (6), 2413–2422.CrossRefGoogle Scholar
Poole, P. H., Sciortino, F., Essmann, U., and Stanley, H. E. (1992). Phase behavior of metastable water. Nature, 360, 324–328.CrossRefGoogle Scholar
Poole, P. H., Sciortino, F., Grande, T., Stanley, H. E., and Angell, C. A. (1994). Effect of hydrogen bonds on the thermodynamic behavior of liquid water. Phys. Rev. Lett., 73 (12), 1632–1635.CrossRefGoogle ScholarPubMed
Popovicheva, O. B., Persiantseva, N. M., Lukhovitskaya, E. E., Shonija, N. K., Zubareva, N. A., Demirdjian, B., Ferry, D., and Suzanne, J. (2004). Aircraft engine soot as contrail nuclei. Geophys. Res. Lett., 31, L11104, .CrossRefGoogle Scholar
Prenni, A. J., Harrington, J. Y., Tjernström, M., DeMott, P. J., Avramov, A., Long, C. N., Kreidenweis, S. M., Olsson, P. Q., and Verlinde, J. (2007). Can ice-nucleating aerosols affect Arctic seasonal climate? Bull. Am. Meteorol. Soc. 88, 541–550.CrossRefGoogle Scholar
Pruppacher, H. R., and Klett, J. D. (1997). Microphysics of clouds and precipitation, 2nd ed. Kluwer Academic Publishers: Boston, MA, USA, 954 pp.Google Scholar
Quante, M., and Starr, D. O’C. (2002). Dynamical processes in cirrus clouds. In: Cirrus. Eds.: Lynch, D., Sassen, K., Starr, D. O’C., and Stephens, G., Oxford University Press, pp. 346–374.Google Scholar
Raddatz, R. L., Asplin, M. G., Candlish, L., and Barber, D. G. (2011). General characteristics of the atmospheric boundary layer in a flaw lead polynya region for winter and spring. Boundary Layer Meteorol., 138, 321–335. CrossRefGoogle Scholar
Raddatz, R. L., Galley, R. J., and Barber, D. G. (2012). Linking the atmospheric boundary layer to the Amundsen Gulf sea-ice cover: A mesoscale to synoptic-scale perspective from winter to summer 2008. Boundary Layer Meteorol., 142, 123–148. CrossRefGoogle Scholar
Räisänen, P., Bogdan, A., Sassen, K., Kulmala, M., and Molina, M. J. (2006). Impact of H2SO4/H2O coating and ice crystal size on radiative properties of sub-visible cirrus. Atmos. Chem. Phys., 6, 4659–4667.CrossRefGoogle Scholar
Randall, D. A. (1980). Conditional instability of the first kind upside-down. J.Atmos.Sci., 37, 125–139.2.0.CO;2>CrossRefGoogle Scholar
Randall, D. A., Krueger, S., Bretherton, C. S., Curry, J. A., Duynkerke, P., Moncrieff, M., Ryan, B., Starr, D., Miller, M., Rossow, W., Tselioudis, G., and Wielicki, B. (2003). Confronting models with data: The GEWEX Cloud Systems Study. Bull. Am. Meteorol. Soc., 84, 455–469.CrossRefGoogle Scholar
Rangno, A. L., and Hobbs, P. V. (1991). Ice particle concentrations and precipitation development in small polar maritime cumuliform clouds. Quart. J. Roy. Meteor. Soc., 117, 207–241.CrossRefGoogle Scholar
Rangno, A. L., and Hobbs, P. V. (2001). Ice particles in stratiform clouds in the Arctic and possible mechanisms for the production of high ice concentrations. J. Geophys. Res., 106 (D14), 15,065–15,075.CrossRefGoogle Scholar
Rasmussen, D. H. (1982). Thermodynamic and nucleation phenomena: A set of experimental observations. J. Cryst. Growth, 56, 56–66.CrossRefGoogle Scholar
Rasmussen, D. H., and Mackenzie, A. P. (1972). Effect of solute on ice-solution interfacial free energy; calculation from measure homogeneous nucleation temperatures. In: Water structure at the water polymer interface. Ed.: Jellinek, H. H. G., Plenum Press, New York, pp. 126–145.CrossRefGoogle Scholar
Rempel, A. W., Wettlaufer, J. S., and Worster, M. G. (2004). Premelting dynamics in a continuum model of frost heave. J. Fluid Mech., 498, 227–244.CrossRefGoogle Scholar
Ren, C., and MacKenzie, A. R. (2005). Cirrus parameterisation and the role of ice nuclei. Quart. J. Roy. Meteorol. Soc., 131, 1585–1605.CrossRefGoogle Scholar
Ren, C., and MacKenzie, A. R. (2007). Closed-form approximations to the error and complementary error functions and their applications in atmospheric science. Atmos. Sci. Let., 8 (3), 70–73, .CrossRefGoogle Scholar
Richardson, C. B., and Snider, T. D. (1994). A study of heterogeneous nucleation in aqueous solutions. Langmuir, 10, 2462–2465.CrossRefGoogle Scholar
Risken, H. (1989). The Fokker–Planck Equation, 2nd ed., Springer-Verlag, 472 pp.CrossRefGoogle Scholar
Rissler, J., Vestin, A., Swietlicki, E., Frisch, G., Zhou, J., Artaxo, P., and Andreae, M. O. (2006). Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos. Chem. and Physics, 6, 471–491.CrossRefGoogle Scholar
Rissman, T. A., Nenes, A., and Seinfeld, J. H. (2004). Chemical amplification (or dampening) of the Twomey effect: Conditions derived from droplet activation theory. J. Atmos. Sci., 61, 919–930.2.0.CO;2>CrossRefGoogle Scholar
Robinson, R. A., and Stokes, R. H. (1970). Electrolyte solutions, 2nd ed., Butterworths, 559 pp.Google Scholar
Rodean, H. C. (1996). Stochastic Lagrangian models of turbulent diffusion. Meteorological Monographs, Amer. Meteorol. Soc., v. 26 (48), Boston, MA, USA, 84 pp.Google Scholar
Rogers, D. C. (1982). Field and laboratory studies of ice nucleation in winter orographic clouds. PhD dissertation. Dept. Atmospheric Science, Univ. of Wyoming, Laramie, WY, USA, 161 pp.Google Scholar
Rogers, D. C. (1988). Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies. Atmos. Res., 22, 149–181.CrossRefGoogle Scholar
Rogers, D. C., DeMott, P. J., and Grant, L. O. (1994). Concerning primary ice concentration and water supersaturations in the atmosphere. Atmos. Res., 33, 151–168.CrossRefGoogle Scholar
Rogers, D. C., DeMott, P. J., and Kreidenweis, S. M. (2001). Airborne measurements of tropospheric ice-nucleating aerosol particles in the Arctic spring. J. Geophys. Res., 106, 15,053–15,063.CrossRefGoogle Scholar
Rogers, D. C., DeMott, P. J., Kreidenweis, S. M., and Chen, Y. (1998). Measurements of ice nucleating aerosols during SUCCESS. Geophys. Res. Lett., 25, 1383–1386.CrossRefGoogle Scholar
Rogers, P. S. Z., and Pitzer, K. S. (1982). Volumetric properties of aqueous NaCl solutions. J. Phys. Chem. Ref. Data, 11, 15–81.CrossRefGoogle Scholar
Rogers, R. R., and Yau, M. K. (1989). A short course in cloud physics, 3rd ed., Pergamon Press, 293 pp.Google Scholar
Rosenberg, R. (2005). Why is ice slippery? Phys. Today, 58 (12), 50–57.CrossRefGoogle Scholar
Rosenfeld, D., Rudich, Y., and Lahav, R. (2001). Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci., 98, 5975–5980.CrossRefGoogle ScholarPubMed
Rossow, W. B., and Schiffer, R. A. (1999). Advances in understanding clouds from ISCCP. Bull. Amer. Meteorol. Soc., 80, 2261–2287.2.0.CO;2>CrossRefGoogle Scholar
Rotman, D. A., et al. (2004). IMPACT, the LLNL 3-D global atmospheric chemical transport model for the combined troposphere and stratosphere: Model description and analysis of ozone and other trace gases. J. Geophys. Res., 109, D04303, .CrossRefGoogle Scholar
Russell, L. M. and Ming, Y. (2002). Deliquescence of small particles. J. Chem. Phys., 116 (1), 311–321, .CrossRefGoogle Scholar
Rutledge, S. A., and Hobbs, P. V. (1983). The mesoscale and microscale structure and organization of clouds and precipitations in midlatitude cyclones. VIII. A model for the “Seeder-feeder” process in warm frontal rainbands. J. Atmos. Sci., 40, 1185–1206.2.0.CO;2>CrossRefGoogle Scholar
Ryan, B. F. (1996). On the global variation of precipitating layer clouds. Bull. Amer. Meteor. Soc., 77, 53–70.2.0.CO;2>CrossRefGoogle Scholar
Rzesanke, D., Duft, D., and Leisner, T. (2011). Laboratory experiments on the microphysics of electrified cloud droplets. In: Climate and weather of the Sun–Earth system (CAWSES): Highlights from a priority program. Ed.: Lübken, F.-J., Springer, Dordrecht, The Netherlands.Google Scholar
Sassen, K. (1980). Remote sensing of planar ice crystal fall attitudes. J. Meteorol. Soc. Japan, 58, 422–429.CrossRefGoogle Scholar
Sassen, K. (1992). Ice nuclei availability in the higher tropospheric: Implications of a remote sensing cloud phase climatology. In: Nucleation and atmospheric aerosols. Eds.: Fukuta, N., and Wagner, P., Deepak Publishing, pp. 287–290.Google Scholar
Sassen, K. (1997). Contrail-Cirrus and their potential for regional climate change. Bull. Amer. Meteorol. Soc, 78 (9), 1885–1903.2.0.CO;2>CrossRefGoogle Scholar
Sassen, K., and Benson, S. (2000). Ice nucleation in cirrus clouds, A model study of the homogeneous and heterogeneous nucleation modes. Geophys. Res. Lett., 27, 521–524.CrossRefGoogle Scholar
Sassen, K., and Campbell, J. R. (2001). A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing. Part I: Macrophysical and synoptic properties. J. Atmos. Sci., 58, 481–496.2.0.CO;2>CrossRefGoogle Scholar
Sassen, K., and Dodd, G. C. (1988). Homogeneous nucleation rate for highly supercooled cirrus cloud droplets. J. Atmos. Sci., 45, 1357–1369.2.0.CO;2>CrossRefGoogle Scholar
Sassen, K., and Dodd, G. C. (1989). Haze particle nucleation simulation in cirrus clouds, and application for numerical and lidar studies. J. Atmos. Sci., 46, 3005–3014.2.0.CO;2>CrossRefGoogle Scholar
Sassen, K., and Khvorostyanov, V. I. (2007). Microphysical and radiative properties of mixed-phase altocumulus: A model evaluation of glaciation effects. Atmos. Res., 84 (4), 390–398.CrossRefGoogle Scholar
Sassen, K., and Khvorostyanov, V. I. (2008). Cloud effects from boreal forest fire smoke: evidence for ice nucleation from polarization lidar data and cloud model simulations. Environ. Res. Lett. 3, 025006, .CrossRefGoogle Scholar
Sassen, K., and Wang, Z. (2012). The clouds of the middle troposphere: Composition, radiative impact, and global distribution. Surv. Geophys., .CrossRefGoogle Scholar
Sassen, K., Starr, D. O’C., and Uttal, T. (1989). Mesoscale and microscale sructure of cirrus clouds: Three case studies. J. Atmos. Sci., 46, 371–396.2.0.CO;2>CrossRefGoogle Scholar
Sassen, K., Cobb, P., Zhu, J., and Khvorostyanov, V. (2006). Polarization lidar studies of Alaskan forest fire smoke and indirect effect of clouds. Summer Intern. Laser Radar Conf., Japan, 2006.Google Scholar
Sassen, K., DeMott, P. J., Prospero, J. M., and Poellot, M. R. (2003). Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL-FACE results. Geophys. Res. Lett., 30, 4714, .CrossRefGoogle Scholar
Sassen, K., Wang, Z., Khvorostyanov, V. I., Stephens, G. L., and Bennedetti, A. (2002). Cirrus cloud ice water content radar algorithm evaluation using an explicit cloud microphysical model. J. Appl. Meteorol., 41, 620–628.2.0.CO;2>CrossRefGoogle Scholar
Sastry, S. (2002). Sculpting ice out of water. Nature, 416, 376–377.CrossRefGoogle ScholarPubMed
Saul, A., and Wagner, W. (1989). A fundamental equation for water covering the range from the melting line to 1273 K at pressures up to 25000 MPa. J. Phys. Chem. Ref. Data, 18, 1537–1564.CrossRefGoogle Scholar
Schaeffer, V. J. (1949). The formation of the ice crystals in the laboratory and the atmosphere. Chem. Rev., 44, 291–320.CrossRefGoogle Scholar
Schiffer, R. A., and Rossow, W. B. (1983). The International Satellite Cloud Climatology Project (ISCCP): The first project of the World Climate Research Programme. Bull. Amer. Meteor. Soc., 64, 779–784.CrossRefGoogle Scholar
Schumann, U. (1994). On the effect of emissions from aircraft engines on the state of the atmosphere. Ann. Geophys., 12, 365–384.CrossRefGoogle Scholar
Scott, W. T. (1968). Analytic studies of cloud droplet coalescence. J. Atmos. Sci., 25, 54–65.2.0.CO;2>CrossRefGoogle Scholar
Sedunov, Y. S. (1965). The fine structure of the clouds and its role in formation of the cloud droplet spectra. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 1, 416–421.Google Scholar
Sedunov, Y. S. (1967). Kinetics of initial stage of condensation in clouds. Izvestia Acad. Sci. USSR, Atmos Oceanic Phys., 3, 34–46.Google Scholar
Sedunov, Y. S. (1974). Physics of drop formation in the atmosphere. Wiley, New York, 234 pp.Google Scholar
Seifert, A. (2005). On the shape-slope relation of drop size distributions in convective rain. J. Appl. Meteorol. 44, 1146–1151.CrossRefGoogle Scholar
Seifert, A., and Beheng, K. D. (2001). A double-moment parameterization for simulating autoconversion, accretion and selfcollection. Atmos. Res., 59–60, 265–281.Google Scholar
Seifert, A., and Beheng, K. D. (2006). A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: Model description, Meteorol. Atmos. Phys., 92, 45–66.CrossRefGoogle Scholar
Seinfeld, J. H., and Pandis, S. N. (1998). Atmospheric chemistry and physics, Wiley, New York, 1326 pp.Google Scholar
Serpolay, R. (1969). Perfectionnement d’une technique d’ensemencement et recherches de procedes de modification des brouillards. Météorologie, 9, 45–54.Google Scholar
Shaw, R. A. (2003). Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183–227.CrossRefGoogle Scholar
Shaw, R. A., Durant, A. J., and Mi, Y. (2005). Heterogeneous surface crystallization observed in undercooled water. J. Phys. Chem., 109 B, 9865–9868.CrossRefGoogle Scholar
Shaw, R. A., Reade, W. C., Collins, L. R., and Verlinde, J. (1998). Preferential concentration of cloud droplets by turbulence: Effects on the early evolution of cumulus cloud droplet spectra. J. Atmos. Sci., 55, 1965–1976.2.0.CO;2>CrossRefGoogle Scholar
Shchekin, A. K., and Rusanov, A. I. (2008a). Generalization of the Gibbs-Kelvin-Köhler and Oswald-Freundlich equations for a liquid film on a soluble nanoparticle. J. Chem. Phys., 129, 154116, .CrossRefGoogle ScholarPubMed
Shchekin, A. K., and Shabaev, I. V. (2010). Activation barriers for the complete dissolution of condensation nucleus and its reverse crystallization in droplets in the undersaturated solvent vapor. Colloid J., 72, 432–439, .CrossRefGoogle Scholar
Shchekin, A. K., Shabayev, I. V., and Rusanov, A. I. (2008b). Thermodynamics of droplet formation around a soluble condensation nucleus in the atmosphere of a solvent vapor. J. Chem. Phys., 129, 214111, .CrossRefGoogle ScholarPubMed
Shifrin, K. S. (1955). On the calculation of radiative properties of clouds. Proc. Main Geophys. Observatory, Leningrad, 46 (108), 5–33 (in Russian).Google Scholar
Shifrin, K. S., and Perelman, V. Y. (1960). Kinetics of distillation in a mixed cloud. Proc. Acad. Sci. USSR, 132, 1148–1151.Google Scholar
Shilling, J. E., Fortin, T. J., and Tolbert, M. A. (2006). Depositional ice nucleation on crystalline organic and inorganic solids. J. Geophys. Res., 111, D12 204, .CrossRefGoogle Scholar
Shipway, B. J., and Abel, S. J. (2010). Analytical estimation of cloud droplet nucleation based on an underlying aerosol population. Atmos. Res., 96, 344–355.CrossRefGoogle Scholar
Shulmann, M. L., Jacobson, M. L., Charlson, R. J., Synovec, R. E., and Young, T. E. (1996). Dissolution behavior and surface tension effects of organic compounds in nucleating cloud droplets. Geophys. Res. Lett., 23, 277–280.CrossRefGoogle Scholar
Shupe, M. D., Matrosov, S. Y., and Uttal, T. (2006). Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697–711.CrossRefGoogle Scholar
Silverman, B. A., and Weinstein, A. I. (1973). Fog modification – A technology assessment. Air Force Surveys in Geophysics, No. 2, AFC-0159, 126 pp.Google Scholar
Singer, S. J., Kuo, J.-L., Hirsch, T. K., Knight, C., Ojamäe, L., and Klein, M. L. (2005). Hydrogen-bond topology and the ice VII-VIII and ice Ih-XI proton-ordering phase transitions. Phys. Rev. Lett., 94, 135,701–135,705.CrossRefGoogle ScholarPubMed
Slingo, A. (1989). A GCM parameterization for the shortwave radiative properties of water clouds. J Atmos. Sci., 46, 1419–1427.2.0.CO;2>CrossRefGoogle Scholar
Slingo, A., and Schecker, H. M. (1982). On the shortwave radiative properties of stratiform water clouds. Quart. J. Roy. Meteor. Soc., 108, 407–426.CrossRefGoogle Scholar
Slinn, W. G. N., and Hales, J. M. (1971). A reevaluation of the role of thermophoresis as a mechanism of in- and below-cloud scavenging. J. Atmos. Sci., 28, 1465–1471.2.0.CO;2>CrossRefGoogle Scholar
Smirnov, V. I. (1978). On the equilibrium sizes and size spectra of aerosol particles in a humid atmosphere. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 14, 1102–1106.Google Scholar
Smirnov, V. I., and Kabanov, A. S. (1970). Effect of horizontal inhomogeneity of activated cloud drops on their size spectrum. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 6, 1262–1275.Google Scholar
Smirnov, V. I., and Nadeykina, L. A. (1986). On the theory of the drop size spectrum formed by condensation in turbulent cloud. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 22, 478–487.Google Scholar
Smirnov, V. I., and Sergeev, B. N. (1973). Size distribution of large cloud drops grown on hygroscopic cloud condensation nuclei. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 9, 1288–1300.Google Scholar
Smoluchowski, M. (1916). Drei Vortäge über Diffusion, Brounische Bewegung und Koagulation von Kolloidteilchen. Phys. Zeits., Bd. 17, 557–585.Google Scholar
Snider, J. R., Guibert, S., Brenguier, J.-L., and Putaud, J.-P. (2003). Aerosol activation in marine stratocumulus clouds: Köhler and parcel theory closure studies. J. Geophys. Res., 108 (D15), 8629, .CrossRefGoogle Scholar
Song, Y., and Mason, E. A. (1990a). Analytical equation of state for molecular fluids: Kihara model for rodlike molecules. Phys. Rev. A, 42, 4743–4748.CrossRefGoogle ScholarPubMed
Song, Y., and Mason, E. A. (1990b). Analytical equation of state for molecular fluids: Comparison with experimental data, Phys. Rev. A, 42, 4749–4758.CrossRefGoogle ScholarPubMed
Song, Y., and Mason, E. (1989). Statistical-mechanical theory of a new analytical equation of state. J. Chem. Phys., 91, 7840.CrossRefGoogle Scholar
Speedy, R. J. (1982). Stability-limit conjecture: An interpretation of the properties of water. J. Phys. Chem., 86, 982–991.CrossRefGoogle Scholar
Speedy, R. J. (1996). Two waters and no ice please. Nature, 380, 289–290.CrossRefGoogle Scholar
Speedy, R. J., and Angell, C. A. (1976). Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at −45°C. J. Chem. Phys., 65, 851–858.CrossRefGoogle Scholar
Spice, A., Johnson, D. W., Brown, P. R. A., Darlison, A. G., and Saunders, C. P. R. (1999). Primary ice nucleation in orographic cirrus cloud: A numerical simulation of the microphysics. Quart. J. Roy. Meteor. Soc., 125, 1637–1667.CrossRefGoogle Scholar
Spichtinger, P., and Gierens, K. M. (2009). Modelling of cirrus clouds – Part 2: Competition of different nucleation mechanisms. Atmos. Chem. Phys., 9, 2319–2334.CrossRefGoogle Scholar
Spichtinger, P., and Krämer, M. (2012). Tropical tropopause ice clouds: A dynamic approach to the mystery of low crystal numbers. Atmos. Chem. Phys. Discuss., 12, 28,109–28,153.CrossRefGoogle Scholar
Squires, P. (1958). The microstructure and colloidal stability of warm clouds, II, The causes of the variations of microstructure. Tellus, 10, 262–271.Google Scholar
Srivastava, R. C. (1969). Note on the theory of growth of cloud drops by condensation. J. Atmos. Sci., 26, 776–780.Google Scholar
Srivastava, R. C. (1971). Size distribution of raindrops generated by their breakup and coalescence. J. Atmos. Sci., 28, 410–415.2.0.CO;2>CrossRefGoogle Scholar
Srivastava, R. C. (1978). Parameterization of raindrop size distribution. J. Atmos. Sci., 35, 108–117.2.0.CO;2>CrossRefGoogle Scholar
Srivastava, R. C. (1982). A simple model of particle coalescence and breakup. J. Atmos. Sci., 39, 1317–1322.2.0.CO;2>CrossRefGoogle Scholar
Srivastava, R. C. (1989). Growth of cloud drops by condensation: A criticism of currently accepted theory and a new approach. J. Atmos. Sci., 46, 869–887.2.0.CO;2>CrossRefGoogle Scholar
Srivastava, R. C., and Passarelli, R. E. (1980). Analytical solutions to simple models of condensation and coalescence. J. Atmos. Sci., 37, 612–621.2.0.CO;2>CrossRefGoogle Scholar
Stanley, H. E., Kumar, P., Xu, L., Yan, Z., Mazza, M. G., Buldyrev, S. V., Chen, S.-H., and Mallamace, F. (2007). The puzzling unsolved mysteries of liquid water: Some recent progress. In: Proc. Pan American Sci. Inst. (PASI) Conference “Disorder and Complexity,” Mar del Plata, Argentina, 11–20 December 2006, Physica, A, 386, 729–743.Google Scholar
Starr, D. O’C., et al. (2000). Comparison of cirrus cloud models: A Project of the GEWEX Cloud System Study (GCSS) Working Group on Cirrus Cloud Systems. Proc. Int. Cloud Phys. Conf., Reno, NV, USA, August 2000, 1–4.Google Scholar
Starr, D. O’C., and Cox, S. K. (1985). Cirrus clouds. Part I: A cirrus cloud model. J. Atmos. Sci., 42, 2663–2681.2.0.CO;2>CrossRefGoogle Scholar
Stepanov, A. S. (1975). Condensational growth of cloud droplets in a turbulized atmosphere. Izv. Akad. Sci. USSR, Atmos. Oceanic Phys., 11, 27–42.Google Scholar
Stepanov, A. S. (1976). On the effect of turbulence on the size spectrum of cloud droplets at condensation. Izv. Acad. Sci. USSR, Atmos. Oceanic Phys., 12, 281–292.Google Scholar
Stephens, G. L. (1983). The influence of radiative transfer on the mass and heat budgets of ice crystals falling in the atmosphere. J. Atmos. Sci., 40, 1729–1739.2.0.CO;2>CrossRefGoogle Scholar
Stephens, G. L. (1984). The parameterization of radiation for numerical weather prediction and climate models. Review. Mon. Wea. Rev., 112, 826–867.2.0.CO;2>CrossRefGoogle Scholar
Stephens, G. L. (2005). Cloud feedbacks in the climate system: A critical review. J. Clim. 18, 237–273.CrossRefGoogle Scholar
Stephens, G. L., Vane, D. G., and Walter, S. J. (2000). The CLOUDSAT mission: A new dimension to space-based observations of cloud in the coming millennium. Workshop on Cloud Processes and Cloud Feedback in Large-Scale Models, 9–13 November 1999, Reading, UK. Report WCRP-110, WMO/TD-No 993, Geneva, 2000.Google Scholar
Stephens, G. L., Tsay, S. C., Stackhouse, P. W., and Flatau, P. J. (1990). The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos Sci., 47, 1742–1753.2.0.CO;2>CrossRefGoogle Scholar
Stöckel, P., Weidinger, I. M., Baumgärtel, H., and Leisner, T. (2005). Rates of homogeneous ice nucleation in levitated H2O and D2O droplets. J. Phys. Chem. A, 109, 2540–2546.CrossRefGoogle ScholarPubMed
Straka, J. M. (2009). Cloud and precipitation microphysics. Cambridge Univ. Press, 392 pp.CrossRefGoogle Scholar
Ström, J., Strauss, B., Anderson, T., Schröder, F., Heintzenberg, J., and Wendling, P. (1997). In situ observations of the microphysical properties of young cirrus clouds. J. Atmos. Sci., 54, 2542–2553.2.0.CO;2>CrossRefGoogle Scholar
Ström, J., Seifert, M., Kärcher, B., Ovarlez, J., Minikin, A., Gayet, J.-F., Krejci, R., Petzold, A., Auriol, F., Haag, W., Busen, R., Schumann, U., and Hansson, H. C. (2003). Cirrus cloud occurrence as function of ambient relative humidity: A comparison of observations obtained during INCA experiment. Atmos. Chem. Phys., 3, 1807–1816.CrossRefGoogle Scholar
Sud, Y. C., and Lee, D. (2007). Parameterization of aerosol indirect effect to complement McRAS cloud scheme and its evaluation with the 3-year ARM-SGP analyzed data for single column models. Atmos. Res., 86, 105–125.CrossRefGoogle Scholar
Sud, Y. C., Wilcox, E., Lau, W. K.-M., Walker, G. K., Liu, X.-H., Nenes, A., Lee, D., Kim, K.-M, Zhou, Y., and Bhattacharjee, P. S. (2009). Sensitivity of boreal-summer circulation and precipitation to atmospheric aerosols in selected regions – Part 1: Africa and India. Ann. Geophys., 27, 3989–4007, .CrossRefGoogle Scholar
Swanson, B. D. (2009). How well does water activity determine homogeneous ice nucleation temperature in aqueous sulfuric acid and ammonium sulfate droplets? J. Atmos. Sci., 66, 741–754.CrossRefGoogle Scholar
Swietlicki, E., et al. (1999). A closure study of submicrometer aerosol particle behavior. Atmos. Res., 50, 205–240.CrossRefGoogle Scholar
Swietlicki, E., et al. (2000). Hygroscopic properties of aerosol particles in the north-eastern Atlantic during ACE-2. Tellus, Ser. B, 52, 201–227.CrossRefGoogle Scholar
Szyrmer, W., and Zawadski, I. (2010). Snow studies. Part II: Average relationship between mass of snowflakes and their terminal fall velocity. J. Atmos. Sci., 67, 3319–3335.CrossRefGoogle Scholar
Tabazadeh, A., and Toon, O. B. (1998). The role of ammoniated aerosols in cirrus cloud nucleation. Geophys. Res. Lett., 25, 1379–1382.CrossRefGoogle Scholar
Tabazadeh, A., Jensen, E. J., and Toon, O. B. (1997). A model description for cirrus cloud nucleation from homogeneous freezing of sulfate aerosols. J. Geophys. Res., 102 (D20), 23,845–23,850.CrossRefGoogle Scholar
Tabazadeh, A., Martin, S. T., and Lin, J.-S. (2000). The effect of particle size and nitric acid uptake on the homogeneous freezing of aqueous sulfuric acid particles. Geophys. Res. Lett., 27, 1111–1114.CrossRefGoogle Scholar
Tabazadeh, A., Djikaev, Y. S., and Reiss, H. (2002b). Surface crystallization of supercooled water in clouds. Proc. Natl. Acad. Sci. (Geophysics), 99 (25), 15873–15878.CrossRefGoogle ScholarPubMed
Tabazadeh, A., Djikaev, Y. S., Hamill, P., and Reiss, H. (2002a). Laboratory evidence for surface nucleation of solid polar stratospheric cloud particles. J. Phys. Chem. A, 106, 10,238–10,246.CrossRefGoogle Scholar
Takahashi, T. (1976). Hail in axisymmetric cloud model. J. Atmos. Sci., 33, 1579–1601.2.0.CO;2>CrossRefGoogle Scholar
Takano, Y., and Liou, K.-N. (1989). Solar radiative transfer in cirrus clouds, I, Single scattering and optical properties of hexagonal ice crystals. J. Atmos. Sci., 46, 3–19.2.0.CO;2>CrossRefGoogle Scholar
Tammann, G. (1900). Ueber die Grenzen des festen Zustandes IV. Annaln. Phys., 2, 1–31.Google Scholar
Tanaka, H. (1996). A self-consistent phase diagram for supercooled water. Nature, 380, 328–330.CrossRefGoogle Scholar
Tang, I. N. (1997). Thermodynamic and optical properties of mixed-salt aerosols of atmospheric importance. J. Geophys. Res., 102 (D2), 1883–1893.CrossRefGoogle Scholar
Tang, I. N., and Munkelwitz, H. R. (1993). Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmos. Environ., 27A, 467–473.CrossRefGoogle Scholar
Tang, I. N., and Munkelwitz, H. R. (1994). Water activities, densities, surface and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. J. Geophys. Res., 99, 18,801–18,808.CrossRefGoogle Scholar
Tang, I. N., Tridicao, A. C., and Fung, K. H. (1997). Thermodynamic and optical properties of sea salt aerosols. J. Geophys. Res., 102 (D19), 23,269–23,275.CrossRefGoogle Scholar
Tao, W.-K., Chen, J.-P., Li, Z., Wang, C., and Zhang, C. (2012). Impact of aerosols on convective clouds and precipitation. Rev. Geophys., 50, RG2001, .CrossRefGoogle Scholar
Tejero, C. F., and Baus, M. (1998). Liquid polymorphism of simple fluids within a van der Waals theory. Phys. Rev. E, 57 (4), 4821–4823.CrossRefGoogle Scholar
Telford, J. W. (1987). Comment on “Does mixing promote cloud droplet growth?”J. Atmos. Sci., 44, 2352–2354.2.0.CO;2>CrossRefGoogle Scholar
Telford, J. W., and Chai, S. K. (1980). A new aspect of condensation theory. Pure Appl. Geophys., 118, 720–742.CrossRefGoogle Scholar
Telford, J. W., Keck, T. S., and Chai, S. K. (1984). Entrainment at cloud tops and the droplet spectra. J. Atmos. Sci., 41, 3170–3179.2.0.CO;2>CrossRefGoogle Scholar
Thomson, J. J. (1888). Application of dynamics to physics and chemistry, 1st ed., Cambridge University Press, 163 pp.Google Scholar
Tillner-Roth, R. (1998). Fundamental equations of state, Shaker Verlag, 126 pp.Google Scholar
Tomasi, C., Caroli, E., and Vitale, V. (1983). Study of the relationship between Ångström’s wavelength exponent and Junge particle size distribution exponent. J. Clim. Appl. Meteorol., 22, 1707–1716.2.0.CO;2>CrossRefGoogle Scholar
Tomasi, C., Vitale, V., Lupi, A., Di Carmine, C., et al. (2007). Aerosol in polar regions: A historical overview based on optical depth and in situ observations. J. Geophys. Res., 112, D16205.CrossRefGoogle Scholar
Tripoli, G. J., and Cotton, W. R. (1980). A numerical investigation of several factors contributing to the observed variable intensity of deep convection over South Florida. J. Appl. Meteor., 19, 1037–1063.2.0.CO;2>CrossRefGoogle Scholar
Truskett, T. M., Debenedetti, P. G., Sastry, S., and Torquato, S. (1999). A single-bond approach to orientation-dependent interactions and its implications for liquid water. J. Chem. Phys., 111, 2647–2656.CrossRefGoogle Scholar
Tsay, S. C., and Jayaweera, K. (1984). Physical characteristics of Arctic stratus clouds. J. Clim. Appl. Met., 23, 584–596.2.0.CO;2>CrossRefGoogle Scholar
Tse, J. S. (1992). Mechanical instability in ice Ih: A mechanism for pressure-induced amorphization. J. Chem. Phys., 96 (7), 5482–5487.CrossRefGoogle Scholar
Tse, J. S., Klug, D. D., Tulk, C. A., Swainson, I., Svensson, E. C., Loong, C.-K., Shpakov, V., Belosludov, V. R., Belosludov, R. V., and Kawazoe, Y. (1999). The mechanism for pressure-induced amorphization of ice Ih. Nature, 400, 647–649.CrossRefGoogle Scholar
Turnbull, D., and Fisher, J. C. (1949). Rate of nucleation in condensed systems. J. Chem. Phys., 17 (1), 71–73.CrossRefGoogle Scholar
Turnbull, D., and Vonnegut, B. (1952). Nucleation catalysis. Industr. Eng. Chem., 44, 1292–1298.CrossRefGoogle Scholar
Twomey, S. (1959). The nuclei of natural cloud formation. II. The supersaturation in natural clouds and the variation of cloud droplet concentration. Geoph. Pura Appl., 43, 243–249.CrossRefGoogle Scholar
Twomey, S. A. (1977a). The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152.2.0.CO;2>CrossRefGoogle Scholar
Twomey, S. (1977b). Atmospheric aerosols. Elsevier, New York, 302 pp.Google Scholar
Twomey, S., and Wojciechowski, T. A. (1969). Observations of the geographical variations of cloud nuclei. J. Atmos. Sci., 26, 684–696.2.0.CO;2>CrossRefGoogle Scholar
Tzivion, S., Feingold, G., and Levin, Z. (1987). An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 3139–3149.2.0.CO;2>CrossRefGoogle Scholar
Ulbrich, C. W. (1983). Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764–1775.2.0.CO;2>CrossRefGoogle Scholar
Uttal, T., Curry, J. A., McPhee, M. G., et al. (2002). Surface heat budget of the Arctic Ocean. Bull. Am. Meteorol. Soc., 83, 255–275.2.3.CO;2>CrossRefGoogle Scholar
UNESCO (1981). Tenth Report of the Joint Panel on Oceanographic Tables and Standards. UNESCO Technical Papers in Marine Sci., No. 26, Paris, 126 pp.Google Scholar
Vaillancourt, P. A., and Yau, M. K. (2000). Review of particle–turbulence interactions and consequences for cloud physics. Bull. Amer. Meteor. Soc., 81, 285–298.2.3.CO;2>CrossRefGoogle Scholar
Vaillancourt, P. A., Yau, M. K., Bartello, P., and Grabowski, W. W. (2002). Microscopic approach to cloud droplet growth by condensation. Part II. Turbulence, clustering, and condensational growth. J. Atmos. Sci., 59, 3421–3435.2.0.CO;2>CrossRefGoogle Scholar
Vali, G. (1974). Contact ice nucleation by natural and artificial aerosols. In: “Conf. on Cloud Physics,” Amer. Meteorol. Soc, Tucson., pp. 34–37.Google Scholar
Vali, G. (1976). Contact-freezing nucleation measured by the DFC instrument. In: “Third International Workshop on Ice Nucleus Measurements.”Laramie, University of Wyoming, WY, USA, pp. 159–178.Google Scholar
Vali, G. (1985). Atmospheric ice nucleation: A review. J. Rech. Atmos., 19, 105–115.Google Scholar
Vali, G. (1994). Freezing rate due to heterogeneous nucleation. J. Atmos. Sci., 51, 1843–1856.2.0.CO;2>CrossRefGoogle Scholar
Vali, G. (2008). Repeatability and randomness in heterogeneous freezing nucleation. Atmos. Chem. Phys., 8, 5017–5031.CrossRefGoogle Scholar
van de Hulst, H. C. (1957). Light scattering by small particles. Dover, 470 pp.Google Scholar
van Kampen, N. G. (1992). Stochastic processes in physics and chemistry, 2nd ed. North-Holland Publishing Company, 465 pp.Google Scholar
Vasilyeva, K. I., Merkulovich, V. M., and Stepanov, A. S. (1984). Behavior of the droplet spectrum in a turbulized two-phase cloud. Sov. Meteorol. Hydrol., 11, 31–42.Google Scholar
Veltishchev, N. F., Zhupanov, V. D., and Pavlyukov, Yu. B. (2011). Short-range forecast of heavy precipitation and strong wind using the convection-allowing WRF models. Russian Meteorol. Hydrol., 36 (1), 47–58.Google Scholar
Verlinde, J., Flatau, P. J., and Cotton, W. R. (1990). Analytical solutions to the collection growth equation: Comparison with approximate methods and application to cloud microphysics parameterization schemes. J. Atmos. Sci., 47, 2871–2880.2.0.CO;2>CrossRefGoogle Scholar
Verlinde, J., Harrington, J. Y., McFarquhar, G. M., Yannuzzi, V. T., et al. (2007). Overview of the Mixed-Phase Arctic Cloud Experiment (MPACE). Bull. Am. Meteorol. Soc., 88, 205–201.CrossRefGoogle Scholar
Vertsner, V. N., and Zhdanov, G. S. (1966). Electron-microscope study of the low-temperature forms of ice. Sov. Phys. Crystallogr., 10, 597–602.Google Scholar
Vignati, E., Wilson, J., and Stier, P. (2004). An efficient size-resolved aerosol microphysics module for large-scale aerosol transport models. J. Geophys. Res., D22 202.CrossRefGoogle Scholar
Vlasiuk, M. P., Mukiy, N. G., Seregin, Yu. A., Khvorostyanov, V. I., Chernikov, A. A., Yaroshevich, L. V. (1994). Progress in the development and the use of nitrogen technology for artificial dispersal of supercooled fogs at airports. Proc. 6th WMO Scientif. Conf. Weather Modification, Italy, May, WMO/TD-596, pp. 665–668Google Scholar
Volmer, M. (1939). Kinetic der phasenbildung. Steinkopf, Drezden and Leipzig, 325 pp.Google Scholar
Volmer, M., and Weber, A. (1926). Keimbildung in übersättigten Gebilden. Z. Phys. Chem., A119, 277–301.Google Scholar
Voloshchuk, V. M. (1977). The kinetic equation of stochastic coagulation. Sov. Meteorol. Hydrol., No. 5, 3–12.Google Scholar
Voloshchuk, V. M. (1984). The kinetic theory of coagulation. Hydrometeoizdat, Leningrad, 283 pp. (in Russian).Google Scholar
Voloshchuk, V. M., and Sedunov, Y. S. (1975). The processes of coagulation in the disperse systems. Leningrad, Hydrometeoizdat, 320 pp. (in Russian).Google Scholar
Voloshchuk, V. M., and Sedunov, Y. S. (1977). The kinetic equation for the evolution of the droplet spectrum in the turbulent medium at the condensation stage of cloud development. Sov. Meteorol. Hydrol., 3, 1–10.Google Scholar
von der Emde, K., and Wacker, U. (1993). Comments on the relationship between aerosol size spectra, equilibrium drop size spectra and CCN spectra. Contrib. Atmos., Phys., 66, 157–162.Google Scholar
Vonnegut, B. (1947). The nucleation of ice by silver iodide. J. Appl. Phys., 18, 593–595.CrossRefGoogle Scholar
Wagner, W., and Prua, A. (2002). The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data, 31, 387–535.CrossRefGoogle Scholar
Wagner, W., Saul, A., and Prua, A. (1994). International equations for the pressure along the melting and along the sublimation curve of ordinary water substance. J. Phys. Chem. Ref. Data, 23 (3), 515–527.CrossRefGoogle Scholar
Wagner, W., Riethmann, T., Feistel, R., and Harvey, A. H. (2011). New equations for the sublimation pressure and melting pressure of H2O ice Ih. J. Phys. Chem. Ref. Data, 40, 043103, .CrossRefGoogle Scholar
Waldman, L., and Schmidt, K. H. (1966). Thermophoresis and diffusionphoresis of aerosols. Academic Press, New York, 468 pp.Google Scholar
Wang, P. K., and Ji, W. (1992). Preprints Cloud Phys. Conf. Montreal, McGill Univ., pp. 76–80.Google Scholar
WMO (1975). International cloud atlas, vol. I. Manual on the observations of clouds and other meteors. World Meteorological Organization (WMO), Geneva.Google Scholar
WMO (1987). International cloud atlas, vol. II. Plates. World Meteorological Organization (WMO), No. 407, Geneva.Google Scholar
Warner, J. (1969a). The microstructure of cumulus cloud. Part I: General features of the droplet spectrum. J. Atmos. Sci., 26, 1049–1059.2.0.CO;2>CrossRefGoogle Scholar
Warner, J. (1969b). The microstructure of cumulus cloud. Part II. The effect on droplet size distribution of the cloud nucleus spectrum and vertical velocity. J. Atmos. Sci., 26, 1272–1282.2.0.CO;2>CrossRefGoogle Scholar
Warren, S. G. (1984). Optical constants of ice from ultraviolet to the microwave. Appl. Opt., 23, 1206–1225.CrossRefGoogle ScholarPubMed
Warren, S. G., Hahn, C. J., and London, J. (1985). Simultaneous occurrence of different cloud types. J. Clim. Appl. Meteor. 24 (7), 658–667.2.0.CO;2>CrossRefGoogle Scholar
Warren, S. G., Eastman, R., and Hahn, C. J. (2013). Cloud climatology. Encyclopedia of atmospheric sciences. Oxford University Press, 137–147.Google Scholar
Wegener, A. (1911). Thermodynamik der atmosphäre. J. A. Barth, 331 pp.Google Scholar
Weingartner, E., Burtscher, H., and Baltensperger, U. (1997). Hygroscopic properties of carbon and diesel soot particles. Atmos. Env., 31, 3211–3227.CrossRefGoogle Scholar
Wettlaufer, J. S. (1999). Impurity effects in the premelting of ice. Phys. Rev. Lett., 82, 2516–2523.CrossRefGoogle Scholar
Wettlaufer, J. S., and Dash, J. G. (2000). Melting below zero. Scientific American, 282 (2), 50–53.CrossRefGoogle ScholarPubMed
Wexler, A. (1976). Vapor pressure formulation for water in range 0 to 100 °C: A revision. J. Res. Nat. Bur. Stand., 80A, 775–785.CrossRefGoogle Scholar
Wexler, A. S., and Seinfeld, J. H. (1991). Second-generation inorganic aerosol model. Atmos. Environ., 25A, 2731–2748.CrossRefGoogle Scholar
Whalley, E. (1969). Structural problems of ice. In: Physics of ice. Eds.: Riehl, N., Bullemer, B., and Engelgardt, H., Plenum, New York, pp. 19–43.CrossRefGoogle Scholar
Whalley, E., and Davidson, D. W. (1965). Entropy changes in the phase transitions of ice. J. Chem. Phys., 43, 2148–2149.CrossRefGoogle Scholar
Whalley, E., Heath, J. B. R., and Davidson, D. W. (1968). Ice IX: An antiferroelectric phase related to ice III. J. Chem. Phys., 48, 2362–2370.CrossRefGoogle Scholar
Whitby, K. (1978). The physical characteristics of sulfur aerosols. Atmos. Environ., 12, 135–159.CrossRefGoogle Scholar
Willis, P. T. (1984). Functional fits to some observed drop size distributions and parameterization of rain. J. Atmos. Sci., 41, 1648–1661.2.0.CO;2>CrossRefGoogle Scholar
Woodcock, A. H., Duce, R. A., and Moyers, J. L. (1971). Salt particles and raindrops in Hawaii. J. Atmos. Sci., 28, 1252–1257.2.0.CO;2>CrossRefGoogle Scholar
Wright, D. G., Feistel, R., Reissmann, J. H., Miyagawa, K., Jackett, D. R., Wagner, W., Overhoff, U., Guder, C., Feistel, A., and Marion, G. M. (2010). Numerical implementation and oceanographic application of the thermodynamic potentials of liquid water, water vapour, ice, seawater and humid air – Part 2: The library routines. Ocean Sci., 6, 695–718, .CrossRefGoogle Scholar
Wurzler, S., Reisin, T. G., and Levin, Z. (2000). Modification of mineral dust particles by cloud processing and subsequent effect on drop size distributions. J. Geophys. Res., 105 (D4), 4501–4512.CrossRefGoogle Scholar
Xu, J., Imre, D., McGraw, R., and Tang, I. (1998). Ammonium sulfate: Equilibrium and metastability phase diagrams from 40 to −50 °C. J. Phys. Chem., B, 102, 7462–7469.CrossRefGoogle Scholar
Xue, L., Teller, A., Rasmussen, R., Geresdi, I., and Pan, Z. (2010). Effects of aerosol solubility and regeneration on warm-phase orographic clouds and precipitation simulated by a detailed bin microphysical scheme. J. Atmos. Sci., 67, 3336–3354.CrossRefGoogle Scholar
Yang, P., Gao, B.-C., Baum, B. A., Hu, Y. X., Wiscombe, W. J., Tsay, S.-C., Winker, D. M., and Nasiri, S. L. (2001). Radiative properties of cirrus clouds in the infrared (8–13 μm) spectral region. J. Quant. Spectrosc. Radiat. Transfer, 70, 473–504.CrossRefGoogle Scholar
Young, K. C. (1974a). A numerical simulation of wintertime, orographic precipitation. Part I: Description of model microphysics and numerical techniques. J. Atmos. Sci., 31, 1735–1748.2.0.CO;2>CrossRefGoogle Scholar
Young, K. C. (1974b). The role of contact nucleation in ice phase initiation in clouds. J. Atmos. Sci., 31, 768–776.2.0.CO;2>CrossRefGoogle Scholar
Young, K. C. (1993). Microphysical processes in clouds. Oxford University Press, 427 pp.Google Scholar
Young, K. C., and Warren, A. J. (1992). A reexamination of the derivation of the equilibrium supersaturation curve for soluble particles. J. Atmos. Sci., 49, 1138–1143.2.0.CO;2>CrossRefGoogle Scholar
Yum, S. S., and Hudson, J. G. (2001). Vertical distributions of cloud condensation nuclei spectra over the springtime Arctic Ocean. J. Geophys. Res., 106 (D14), 15,045–15,052.CrossRefGoogle Scholar
Yun, Y., and Penner, J. E. (2012). Global model comparison of heterogeneous ice nucleation parameterizations in mixed phase clouds. J. Geophys. Res., 117, D07203, .CrossRefGoogle Scholar
Zawadski, I., and de Agostinho, de M. A. (1988). Equilibrium raindrop size distributions in tropical rain. J. Atmos. Sci., 45, 3452–3459.2.0.CO;2>CrossRefGoogle Scholar
Zawadski., I., Jung, E., and Lee, G. W. (2010). Snow studies. Part I: A study of natural variability of snow terminal velocity. J. Atmos. Sci., 67, 1591–1604.CrossRefGoogle Scholar
Zeldovich, J. B. (1942). Toward the theory of formation of a new phase. Cavitation. J. Exper. Theor. Phys., 12, 525.Google Scholar
Zhang, G., Vivekanandan, J., and Brandes, E. A. (2001). A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830–841.CrossRefGoogle Scholar
Zhang, G., Vivekanandan, J., and Brandes, E. A. (2003a). Constrained gamma drop size distribution model for polarimetric radar rain estimation: Justification and development. Preprints, 31st Int. Conf. on Radar Meteorology, Seattle, WA, USA, Amer. Meteor. Soc., 206–225.Google Scholar
Zhang, G., Vivekanandan, J., Brandes, E. A., Meneghini, R., and Kozu, T. (2003b). The shape- slope relation in observed gamma raindrop size distributions: Statistical error or useful information? J. Atmos. Oceanic Technol., 20, 1106–1119.2.0.CO;2>CrossRefGoogle Scholar
Zhang, H., Sokolik, I. N., and Curry, J. A. (2011). Impact of dust aerosols on Hurricane Helene’s early development through the deliquescent heterogeneous freezing mode. Atmos. Chem. Phys. Discuss., 11, 14,339–14,381, .CrossRefGoogle Scholar
Zhou, J., Swietlicki, E., Berg, O. H., Aalto, P. A., Hämeri, K., Nilsson, E. D., and Leck, C. (2001). Hygroscopic properties of aerosol particles over the central Arctic Ocean during summer. J. Geophys. Res., 106 (D23), 32,111–32,123.CrossRefGoogle Scholar
Zobrist, B. (2006). Heterogeneous ice nucleation in upper tropospheric aerosols. Dr. Dissertation, Swiss Federal Inst. Technology, Zurich, 148 pp.Google Scholar
Zobrist, B., Marcolli, C., Peter, T., and Koop, T. (2008). Heterogeneous ice nucleation in aqueous solutions: The role of water activity. J. Phys. Chem., A, 112, 3965–3975.CrossRefGoogle ScholarPubMed
Zobrist, B., Koop, T., Luo, B. P., Marcolli, C., and Peter, T. (2007). Heterogeneous ice nucleation rate coefficient of water droplets coated by a nonadecanol monolayer. J. Phys. Chem. C, 111, 2149–2155, .CrossRefGoogle Scholar
Zuberi, B., Bertram, A. K., Cassa, C. A., Molina, L. T., and Molina, M. J. (2002). Heterogeneous nucleation of ice in (NH4)2SO4-H2O particles with mineral dust immersions. Geophys. Res. Lett, 29 (10), 1504, .CrossRefGoogle Scholar
Zubler, E. M., Lohmann, U., Lüthi, D., and Schär, C. (2011). Statistical analysis of aerosol effects on simulated mixed-phase clouds and precipitation in the Alps. J. Atmos. Sci., 68, 1474–1492.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Vitaly I. Khvorostyanov, Judith A. Curry, Georgia Institute of Technology
  • Book: Thermodynamics, Kinetics, and Microphysics of Clouds
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139060004.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Vitaly I. Khvorostyanov, Judith A. Curry, Georgia Institute of Technology
  • Book: Thermodynamics, Kinetics, and Microphysics of Clouds
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139060004.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Vitaly I. Khvorostyanov, Judith A. Curry, Georgia Institute of Technology
  • Book: Thermodynamics, Kinetics, and Microphysics of Clouds
  • Online publication: 05 September 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139060004.016
Available formats
×