Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T10:24:51.729Z Has data issue: false hasContentIssue false

7 - Photon–matter interaction probabilities, absorption cross sections, and opacity

from Part II - Basic physical processes in stellar interiors

Published online by Cambridge University Press:  05 December 2012

Icko Iben
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

An understanding of the manner in which matter and radiation interact is crucial for understanding how the structure of a star is influenced by the flow of energy. In this chapter, the physics of three processes whereby photons are absorbed by electrons interacting through the Coulomb potential with heavy ions is examined. The three processes are photo-ionization, inverse bremsstrahlung on free electrons, and transitions between bound atomic levels. Approximations to the cross sections for these processes are derived and the manner in which calculated cross sections are weighted to obtain the opacity under conditions of thermodynamic equilibrium is described and utilized in sample calculations of the opacity. Of primary interest here is not a presentation of definitive results, but rather a conceptual understanding of the basic ingredients of a quantitative calculation of absorption cross sections and of the related opacity.

An excellent monograph which describes the processes rigorously is The Quantum Theory of Radiation by Walter Heitler (1954), a pedagogically excellent text of relevance is Quantum Mechanics by Leonard I. Schiff (1949), and a delightfully intuitive approach to the calculation of transition probabilities is presented in Quantum Electrodynamics, based on lectures by Richard P. Feynman (1962). It would be remiss not to acknowledge the debt which the theory of quantum electrodynamics owes to Michael Faraday (1791–1867) and James Clerk Maxwell (1831–1879), the principle inventors of classical electrodynamics, as described in Maxwell's two volume Treatise on Electricity and Magnetism (1873).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

R., Alexander & J. W., Ferguson, ApJ, 437, 879, 1994.
P. W., Anderson, Phys. Rev., 76, 647, 1949.
M., Asplund, N., Grevesse, & A. J., Sauval, in Cosmic Abundances as Records of Stellar Evolution and Nucleosynthesis, eds. F. N., Bash & T. G., Barnes, ASP Conf. Ser., Vol. 30, 2005.Google Scholar
Hans A., Bethe, Zeits. für Physik, 57, 815, 1929.
L. C., Biedenharn, Phys. Rev., 102, 262, 1956.
J. J., Boyle & M. D., Kutzner, in Many Body Atomic Physics, eds. J. J., Boyle & M. S., Pinzola, Cambridge: Cambridge University Press, 1998.Google Scholar
Lewis M., Branscomb & Stephan J., Smith, Phys. Rev., 98, 1028, 1955.CrossRef
R. G., Breene Jr., Rev. Mod. Phys., 29, 94, 1957.
Subrahmanyan, Chandrasekhar, The Study of Stellar Structure, (Chicago: University of Chicago Press), 1939.Google Scholar
Subrahmanyan, Chandrasekhar, ApJ, 102, 223, 395, 1945
Subrahmanyan, Chandrasekhar, ApJ, 128, 114, 1958.
S., Chandrasekhar & F. H., Breen, ApJ, 104, 430, 1946.
Hong-Yee, Chiu, Stellar Physics, (Waltham, Mass.: Blaisdell), 1968.Google Scholar
Arthur N., Cox & John N., Stewart, ApJS, 19, 243, 261, 1970.
Thomas George, Cowling, MNRAS, 94, 768, 1934.
Ben, Dorman & Robert T., Rood, ApJ, 409, 387, 1993.
Albert, Einstein, Phys. Zeits., 18, 121, 1917.
Dilan, Ezer and Alastair G. W., Cameron, Icarus 1, No. 5–6, 1963.
J. W., Ferguson, ApJ, 437, 879, 1994.
J. W., Ferguson, D. R., Alexander, F., Allard, et al., ApJ, 623, 585, 2005.
Richard P., Feynman, Quantum Electrodynamics (New York: Benjamin), 1962.Google Scholar
John Arthur, Gaunt, Proc. Roy. Soc. (A) London, 126, 654, 1930.
S., Geltman, ApJ, 136, 935, 1962.
N., Grevesse & A., Noels, in Origin and Evolution of the Elements, eds. N., Pranzo, E., Vangioni-Flam, & M., Casse (Cambridge: Cambridge University Press), 1993.Google Scholar
Harvey, Hall, Rev. Mod. Phys., 8, 358, 1936.
Chuchiro, Hayashi, R., Hoshi, & Daiíchiro, Sugimoto, Prog. Theoret. Phys., Supp. No. 22, 1962.
Walter, Heitler, The Quantum Theory of Radiation (Oxford: Clarendon Press), 1954.Google Scholar
Charles D., Hodgman, Robert C., Weast, & Samuel M., Selby, eds., Handbook of Chemistry and Physics, 39th edition, (Cleveland, Ohio: Chemical Rubber Publishing Co.), 1957.
Egil A., Hylleraas, Zeits. für Physik, 54, 347, 1929; 60, 624, 1930.
Icko, Iben Jr., ARAA, 5, 571, 1967.
Icko, Iben Jr., ApJ, 196, 525, 1975.
Icko, Iben Jr., & John, Ehrman, ApJ, 135, 770, 1962.
Carlos A., Iglesias & Forrest J., Rogers, ApJ, 412, 752, 1993; 464, 943, 1996.
J. David, Jackson, Classical Electrodynamics (New York: Wiley), third edition, 1999Google Scholar
William J., Karzas & R., Latter, ApJS, 6, 167, 1961.
G., Keller & R. E., Meyerott, ApJ, 122, 32, 1955.
O., Klein & Y., Nishina, Zeits. für Phys., 52, 853, 1929.
Hendrik Anthony, Kramers, Phil. Mag., 436, 836, 1923.
Russell M., Kulsrud, ApJ, 119, 386, 1954.
H. S. W., Massey & R. A., Smith, Proc. Roy. Soc., A., 155, 472, 1936.
A. W., Maue, Ann. Phys., 13, 161, 1932.
James Clerk, Maxwell, Treatise on Electricity and Magnetism (Oxford: Clarendon Press), 1873.Google Scholar
Peter J., Mohr and Barry N., Taylor, Physics Today, August, BG5, 2002.Google Scholar
Philip M., Morse, ApJ, 92, 27, 1940.
Lloyd, Motz, Astrophysics and Stellar Structure (Waltham, Mass.: Ginn), 1970.Google Scholar
Peter, Naur and Donald E., Osterbrock, ApJ, 117, 306, 1953.
Y., Nishina, Zeits. für Phys., 52, 869, 1929.
T., Ohmura and H., Ohmura, ApJ, 131, 8, 1960.
T., Pannekoek, Pub. Astr. Inst. U. Amsterdam, No. 4 (cited in this way with no date given by Rupert Wildt, ApJ, 90, 611, 1939).
H., Ritz, J. Reine Angewante Math., 135, 1, 1909.
Forrest J., Rogers & Carlos A., Iglesias, ApJS, 79, 507, 1992; 401, 361, 1992.
P. W. Svein, Rosseland, MNRAS, 84, 525, 1924.
Martin, Schwarzschild, Structure and Evolution of the Stars, (Princeton: Princeton University Press), 1958.Google Scholar
Mike J., Seaton, MNRAS, 265, L25, 1993.
Leonard I., Schiff, Quantum Mechanics (New York: McGraw-Hill), 1949.Google Scholar
S. J., Smith & D. S., Burch, Phys. Rev., 116, 248, 1959.
Arnold, Sommerfeld, Ann. Phys., 11, 257, 1931.
M., Stobbe, Ann. der Phys., 7, 661, 1930.
Bengt, Strömgren, Zeits. für Phys., 4, 118, 1932.
Bengt, Strömgren, Chapter 4 (pages 269–296) in Stellar Structure, eds. L.H., Aller & D.B., McLaughlin (Chicago: University of Chicago Press), 1965.Google Scholar
Roger Tayler, PhD Thesis, University of Cambridge, 1950.
Roger, Tayler, MNRAS, 135, 225, 1967.
Rupert, Wildt, ApJ, 90, 611, 1939.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×