Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T03:09:37.528Z Has data issue: false hasContentIssue false

1 - The formation of the Milky Way in the CDM paradigm

Published online by Cambridge University Press:  05 November 2013

K. C. Freeman
Affiliation:
Australian National University
David Martínez-Delgado
Affiliation:
Max-Planck-Institut für Astronomie, Heidelberg
Get access

Summary

1.1 Introduction

What does our Galaxy look like? We can compare the COBE image of our Galaxy, taken in the near-IR, with the visible image of the edge on spiral NGC 891. Our Galaxy would probably look much like NGC 891 if it were observed in visible light from far away (see Figure 1.1). The Milky Way is very clearly a disk galaxy: its disk is the primary component and is supported almost entirely by its rapid rotation. We also see a small central bulge which contributes about 20% of the total light. Some galaxies have much larger bulges. The small bulge of the Milky Way is a pointer to the events that occurred as it formed and evolved. We would like to understand how our Galaxy came to look like this.

Figure 1.2 shows schematically the five main components of the stellar galaxy. The thin disk and bulge are the main visible components. The thin disk is enveloped in a thicker thick disk which contributes only about 10% of the light of the disk. These thick disks are very common and their formation appears to be part of the formation process of disk galaxies. The stellar halo provides only about 1—2% of the total light but is very important for understanding how the Galaxy was assembled. The stars of the halo are metal-poor, mostly with abundances of [Fe/H] < —1.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abadi, M. G., Navarro, J. F., Steinmetz, M., and Eke, V. R. 2003. Simulations of galaxy formation in a A Cold Dark Matter Universe. II. The fine structure of simulated galactic disks. ApJ, 597(Nov.), 21–34.Google Scholar
Athanassoula, E. 2008. Boxy/peanut and discy bulges: formation, evolution and properties. IAU Symposium, 245(July), 93–102.Google Scholar
Athanassoula, E. and Beaton, R. L. 2006. Unraveling the mystery of the M31 bar. MNRAS, 370(Aug.), 1499–1512.Google Scholar
Barnes, S. A. 2007. Ages for illustrative field stars using gyrochronology: viability, limitations, and errors. ApJ, 669(Nov.), 1167–1189.Google Scholar
Beaton, R. L., and 8 colleagues. 2007. Unveiling the boxy bulge and bar of the Andromeda spiral galaxy. ApJ, 658(Apr.), L91–L94.Google Scholar
Beaulieu, S. F., Freeman, K. C., Kalnajs, A. J., Saha, P., and Zhao, H. 2000. Dynamics of the galactic bulge using planetary nebulae. AJ, 120(Aug.), 855–871.Google Scholar
Bensby, T., Feltzing, S., and Lundström, I. 2003. Elemental abundance trends in the Galactic thin and thick disks as traced by nearby F and G dwarf stars. A&A, 410(Nov.), 527–551.Google Scholar
Bensby, T., Oey, M. S., Feltzing, S., and Gustafsson, B. 2007. Disentangling the Hercules stream. ApJ, 655(Feb.), L89–L92.Google Scholar
Bertelli, G., Bressan, A., Chiosi, C., Fagotto, F., and Nasi, E. 1994. Theoretical isochrones from models with new radiative opacities. A&AS, 106(Aug.), 275–302.Google Scholar
Bertelli, G., Girardi, L., Marigo, P., and Nasi, E. 2008. Scaled solar tracks and isochrones in a large region of the Z-Y plane. I. From the ZAMS to the TP-AGB end for 0.15-2.5 M⊙stars. A&A, 484(June), 815–830.Google Scholar
Binney, J. and Merrifield, M. 1998. Galactic Astronomy. Princeton, NJ: Princeton University Press.
Binney, J. and Tremaine, S. 1987. Galactic Dynamics. Princeton, NJ: Princeton University Press.
Binney, J. and Tremaine, S. 2008. Galactic Dynamics. 2nd ed. Princeton NJ: Princeton University Press.
Bissantz, N. and Gerhard, O. 2002. Spiral arms, bar shape and bulge microlensing in the Milky Way. MNRAS, 330(Mar.), 591–608.Google Scholar
Bland-Hawthorn, J., Vlajić, M., Freeman, K. C., and Draine, B. T. 2005. NGC 300: an extremely faint, outer stellar disk observed to 10 scale lengths. ApJ, 629(Aug.), 239–249.Google Scholar
Brocato, E., Castellani, V., Poli, F. M., and Raimondo, G. 2000. Predicted colours for simple stellar populations. II. The case of old stellar clusters. A&AS, 146(Oct.), 91–101.Google Scholar
Brocato, E., Castellani, V., Raimondo, G., and Romaniello, M. 1999. Predicted HST FOC and broad band colours for young and intermediate simple stellar populations. A&AS, 136(Apr.), 65–80.Google Scholar
Brook, C. B., Kawata, D., Gibson, B. K., and Freeman, K. C. 2004. The emergence of the thick disk in a Cold Dark Matter Universe. ApJ, 612(Sept.), 894–899.Google Scholar
Brook, C., Richard, S., Kawata, D., Martel, H., and Gibson, B. K. 2007. Two disk components from a gas-rich disk-disk merger. ApJ, 658(Mar.), 60–64.Google Scholar
Bureau, M. and Freeman, K. C. 1999. The nature of boxy/peanut-shaped bulges in spiral galaxies. AJ, 118(July), 126–138.Google Scholar
Cantiello, M., Raimondo, G., Brocato, E., and Capaccioli, M. 2003. New optical and near-infrared surface brightness fluctuation models: a primary distance indicator ranging from globular clusters to distant galaxies?AJ, 125(June), 2783–2808.Google Scholar
Carney, B. W., Laird, J. B., Latham, D. W., and Aguilar, L. A. 1996. A survey of proper motion stars. XIII. The halo population. AJ, 112(Aug.), 668–692.Google Scholar
Carney, B. W., Yong, D., Teixera de Almeida, M. L., and Seitzer, P. 2005. Elemental abundance ratios in stars of the outer galactic disk. II. Field red giants. AJ, 130(Sept.), 1111–1126.Google Scholar
Carollo, C. M., Stiavelli, M., de Zeeuw, P. T., and Mack, J. 1997. Spiral galaxies with WFPC2.I. Nuclear morphology, bulges, star clusters, and surface brightness profiles. AJ, 114(Dec.), 2366–2380.Google Scholar
Chiba, M. and Beers, T. C. 2000. Kinematics of metal-poor stars in the Galaxy. III. Formation of the stellar halo and thick disk as revealed from a large sample of sonkinematically selected stars. AJ, 119(June), 2843–2865.Google Scholar
Combes, F., Debbasch, F., Friedli, D., and Pfenniger, D. 1990. Box and peanut shapes generated by stellar bars. A&A, 233(July), 82–95.Google Scholar
Combes, F. and Sanders, R. H. 1981. Formation and properties of persisting stellar bars. A&A, 96(Mar.), 164–173.Google Scholar
Côté, P. 1999. Kinematics of the galactic globular cluster system: new radial velocities for clusters in the direction of the inner Galaxy. AJ, 118(July), 406–420.Google Scholar
Courteau, S., de Jong, R. S., and Broeils, A. H. 1996. Evidence for secular evolution in late-type spirals. ApJ, 457(Feb.), L73–L76.Google Scholar
de Blok, W. J. G. and Bosma, A. 2002. High-resolution rotation curves of low surface brightness galaxies. A&A, 385(Apr.), 816–846.Google Scholar
de Grijs, R. and Peletier, R. F. 1997. The shape of galaxy disks: how the scale height increases with galactocentric distance. A&A, 320(Apr.), L21–L24.Google Scholar
de Jong, R. S., and 14 colleagues 2007. Stellar Populations across the NGC 4244 Truncated Galactic Disk. ApJ, 667(Sept.), L49–L52.Google Scholar
De Silva, G. M., Freeman, K. C., and Bland-Hawthorn, J. 2009. Reconstructing fossil substructures of the Galactic disk: clues from abundance patterns of old open clusters and moving groups. PASA, 26(Apr.), 11–16.Google Scholar
De Silva, G. M., Freeman, K. C., Bland-Hawthorn, J., Asplund, M., and Bessell, M. S. 2007. Chemically tagging the HR 1614 moving group. AJ, 133(Feb.), 694–704.Google Scholar
Dehnen, W. 2000. The effect of the outer Lindblad resonance of the Galactic bar on the local stellar velocity distribution. AJ, 119(Feb.), 800–812.Google Scholar
Diemand, J., Madau, P., and Moore, B. 2005. The distribution and kinematics of early high-σ peaks in present-day haloes: implications for rare objects and old stellar populations. MNRAS, 364(Dec.), 367–383.Google Scholar
Dotter, A. L. and Chaboyer, B. C. 2002. The impact of pollution on stellar evolution models. Bulletin of the American Astronomical Society, 34(Dec.), 1127.Google Scholar
Dotter, A., Chaboyer, B., Jevremović, D., Kostov, V., Baron, E., and Ferguson, J. W. 2008. The Dartmouth stellar evolution database. ApJS, 178(Sept.), 89–101.Google Scholar
Edvardsson, B., Andersen, J., Gustafsson, B., Lambert, D. L., Nissen, P. E., and Tomkin, J. 1993. The chemical evolution of the Galactic disk – Part One – analysis and results. A&A, 275(Aug.), 101–152.Google Scholar
Eggen, O. J., Lynden-Bell, D., and Sandage, A. R. 1962. Evidence from the motions of old stars that the Galaxy collapsed. ApJ, 136(Nov.), 748–766.Google Scholar
Erwin, P., Beckman, J. E., and Pohlen, M. 2005. Antitruncation of disks in early-type barred galaxies. ApJ, 626(June), L81–L84.Google Scholar
Falcón-Barroso, J., and 10 colleagues 2004. A SAURON look at galaxy bulges. Astronomische Nachrichten, 325(Feb.), 92–95.Google Scholar
Fall, S. M. and Efstathiou, G. 1980. Formation and rotation of disc galaxies with haloes. MNRAS, 193(Oct.), 189–206.Google Scholar
Freeman, K. C. 1991. Observational properties of disks. Dynamics of Disc Galaxies, ed. B., Sundelius: Göteborgs University and Chalmers University of Technology, p. 15.
Freeman, K. C. 1993. Globular clusters and nucleated dwarf ellipticals. The Globular Cluster-Galaxy Connection, ed. G., Smith and J., Brodie (ASP), 48(Jan.), 608–614.
Freeman, K. and Bland-Hawthorn, J. 2002. The new galaxy: signatures of its formation. ARA&A, 40, 487–537.Google Scholar
Fuhrmann, K. 2008. Nearby stars of the galactic disc and halo IV. MNRAS, 384(Feb.), 173–224.Google Scholar
Fulbright, J. P., McWilliam, A., and Rich, R. M. 2007. Abundances of Baade's Window Giants from Keck HIRES Spectra. II. The alpha and light odd elements. ApJ, 661(June), 1152–1179.Google Scholar
Gao, L., White, S. D. M., Jenkins, A., Stoehr, F., and Springel, V. 2004. The subhalo populations of ACDM dark haloes. MNRAS, 355(Dec.), 819–834.Google Scholar
Gilmore, G. and Reid, N. 1983. New light on faint stars III. Galactic structure towards the South Pole and the Galactic thick disc. MNRAS, 202(Mar.), 1025–1047.Google Scholar
Gilmore, G., Wyse, R. F. G., and Jones, J. B. 1995. A determination of the thick disk chemical abundance distribution: implications for galaxy evolution. AJ, 109(Mar.), 1095–1111.Google Scholar
Governato, F., Willman, B., Mayer, L., Brooks, A., Stinson, G., Valenzuela, O., Wadsley, J., and Quinn, T. 2007. Forming disc galaxies in ACDM simulations. MNRAS, 374(Feb.), 1479–1494.Google Scholar
Gratton, R. G., Carretta, E., Claudi, R., Lucatello, S., and Barbieri, M. 2003. Abundances for metal-poor stars with accurate parallaxes. I. Basic data. A&A, 404(June), 187–210.Google Scholar
Han, S.-I., Kim, Y.-C., Lee, Y.-W., Yi, S. K., Kim, D.-G., and Demarque, P. 2009. New Yonsei-Yale (Y22) isochrones and horizontal-branch evolutionary tracks with helium enhancements. Globular Clusters – Guides to Galaxies. eds. Richtler, T. and Larsen, S.: Springer, Berlin Heidelberg. p. 33.
Hansen, B. M. S., and 9 colleagues 2002. The white dwarf cooling sequence of the globular cluster Messier 4. ApJ, 574(Aug.), L155–L158.Google Scholar
Harding, P. and Morrison, H. 1993. The Bulge/halo interface: rotational kinematics from [Fe/H]=-:3.0 to Solar. Galactic Bulges, 153, 297–298.Google Scholar
Helmi, A. and de Zeeuw, P. T. 2000. Mapping the substructure in the Galactic halo with the next generation of astrometric satellites. MNRAS, 319(Dec.), 657–665.Google Scholar
Holmberg, J., Nordström, B., and Andersen, J. 2007. The Geneva-Copenhagen survey of the Solar neighbourhood II. New uvby calibrations and rediscussion of stellar ages, the G dwarf problem, age-metallicity diagram, and heating mechanisms of the disk. A&A, 475(Nov.), 519–537.Google Scholar
Howard, C. D., Rich, R. M., Reitzel, D. B., Koch, A., de Propris, R., and Zhao, H. 2008. The Bulge Radial Velocity Assay (BRAVA). I. Sample selection and a rotation curve. ApJ, 688(Dec.), 1060–1077.Google Scholar
Ivezić, Ž., and 52 colleagues 2008. The Milky Way tomography with SDSS. II. Stellar metallicity. ApJ, 684(Sept.), 287–325.Google Scholar
Kaufmann, T., Mayer, L., Wadsley, J., Stadel, J., and Moore, B. 2007. Angular momentum transport and disc morphology in smoothed particle hydrodynamics simulations of galaxy formation. MNRAS, 375(Feb.), 53–67.Google Scholar
Knebe, A., Gill, S. P. D., Kawata, D., and Gibson, B. K. 2005. Mapping substructures in dark matter haloes. MNRAS, 357(Feb.), L35–L39.Google Scholar
Koch, A., McWilliam, A., Grebel, E. K., Zucker, D. B., and Belokurov, V. 2008. The highly unusual chemical composition of the Hercules Dwarf Spheroidal Galaxy. ApJ, 688(Nov.), L13–L16.Google Scholar
Kormendy, J. 1993. Kinematics of extragalactic bulges: evidence that some bulges are really disks. Galactic Bulges, 153, p. 209.Google Scholar
Kroupa, P. 2002. Thickening of galactic discs through clustered star formation. MNRAS, 330(Mar.), 707–718.Google Scholar
Kuijken, K. and Merrifield, M. R. 1995. Establishing the connection between peanut-shaped bulges and galactic bars. ApJ, 443(Apr.), L13–L16.Google Scholar
Launhardt, R., Zylka, R., and Mezger, P. G. 2002. The nuclear bulge of the Galaxy. III. Large-scale physical characteristics of stars and interstellar matter. A&A, 384(Mar.), 112–139.Google Scholar
Leggett, S. K., Ruiz, M. T., and Bergeron, P. 1998. The cool white dwarf luminosity function and the age of the Galactic disk. ApJ, 497(Apr.), p. 294.Google Scholar
Lewis, J. R. and Freeman, K. C. 1989. Kinematics and chemical properties of the old disk of the Galaxy. AJ, 97(Jan.), 139–162.Google Scholar
Lin, D. N. C. and Pringle, J. E. 1987. The formation of the exponential disk in spiral galaxies. ApJ, 320(Sept.), L87–L91.Google Scholar
López-Corredoira, M., Cabrera-Lavers, A., Mahoney, T. J., Hammersley, P. L., Garzón, F., and González-Fernández, C. 2007. The long bar in the Milky Way: corroboration of an old hypothesis. AJ, 133(Jan.), 154–161.Google Scholar
Luck, R. E., Kovtyukh, V. V., and Andrievsky, S. M. 2006. The distribution of the elements in the Galactic Disk. AJ, 132(Aug.), 902–918.Google Scholar
Maeder, A. and Meynet, G. 1989. Grids of evolutionary models from 0.85 to 120 solar masses. Observational tests and the mass limits. A&A, 210(Feb.), 155–173.Google Scholar
Maeder, A. and Meynet, G. 2008. Massive Star Evolution with Mass Loss and Rotation. Revista Mexicana de Astronomia y Astrofisica Conference Series, 33(Aug.), 38–43.Google Scholar
Marinacci, F., Binney, J., Fraternali, F., Nipoti, C., Ciotti, L., and Londrillo, P. 2010. The mode of gas accretion on to star-forming galaxies. MNRAS, 404(May), 1464–1474.Google Scholar
Mekéndez, J., and 10 colleagues 2008. Chemical similarities between Galactic bulge and local thick disk red giant stars. A&A, 484(June), L21–L25.Google Scholar
Minniti, D. 1995. Metal-rich globular clusters with R less than or equal 3 kpc: Disk or bulge clusters. AJ, 109(Apr.), 1663–1669.Google Scholar
Minniti, D., Olszewski, E. W., Liebert, J., White, S. D. M., Hill, J. M., and Irwin, M. J. 1995. The metallicity gradient of the Galactic bulge. MNRAS, 277(Dec.), 1293–1311.Google Scholar
Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., and Tozzi, P. 1999. Dark matter substructure within Galactic halos. ApJ, 524(Oct.), L19–L22.Google Scholar
Morrison, H. L., and 11 colleagues. 2009. Fashionably late? Building up the Milky Way's inner halo. ApJ, 694(Mar.), 130–143.Google Scholar
Navarro, J. F., Helmi, A., and Freeman, K. C. 2004. The extragalactic origin of the Arcturus Group. ApJ, 601(Jan.), L43–L46.Google Scholar
Navarro, J. F., Frenk, C. S., and White, S. D. M. 1996. The structure of cold dark matter halos. ApJ, 462(May), 563–575.Google Scholar
Nordström, B., and 8 colleagues. 2004. The Geneva-Copenhagen survey of the Solar neighbourhood. Ages, metallicities, and kinematic properties of ~14 000 F and G dwarfs. A&A, 418(May), 989–1019.Google Scholar
Pace, G., Melendez, J., Pasquini, L., Carraro, G., Danziger, J., François, P., Matteucci, F., and Santos, N. C. 2009. An investigation of chromospheric activity spanning the Vaughan-Preston gap: impact on stellar ages. A&A, 499(May), L9–L12.Google Scholar
Pont, F. and Eyer, L. 2004. Isochrone ages for field dwarfs: method and application to the age-metallicity relation. MNRAS, 351 (June), 487–504.Google Scholar
Quillen, A. C. and Garnett, D. R. 2000. The saturation of disk heating in the solar neighborhood and evidence for a merger 9 Gyrs ago. (Apr.), arXiv:astro-ph/0004210.
Raimondo, G., Brocato, E., Cantiello, M., and Capaccioli, M. 2005. New optical and near-infrared surface brightness fluctuation models. II. Young and intermediate-age stellar populations. AJ, 130(Dec.), 2625–2646.Google Scholar
Reid, I. N., Turner, E. L., Turnbull, M. C., Mountain, M., and Valenti, J. A. 2007. Searching for earth analogs around the nearest stars: the disk age-metallicity relation and the age distribution in the Solar neighborhood. ApJ, 665(Aug.), 767–784.Google Scholar
Rocha-Pinto, H. J., Scalo, J., Maciel, W. J., and Flynn, C. 2000. Chemical enrichment and star formation in the Milky Way disk. II. Star formation history. A&A, 358(June), 869–885.Google Scholar
Roškar, R., Debattista, V. P., Stinson, G. S., Quinn, T. R., Kaufmann, T., and Wadsley, J. 2008. Beyond inside-out growth: formation and evolution of disk outskirts. ApJ, 675(Mar.), L65–L68.Google Scholar
Samland, M. and Gerhard, O. E. 2003. The formation of a disk galaxy within a growing dark halo. A&A, 399(Mar.), 961–982.Google Scholar
Scannapieco, E., Kawata, D., Brook, C. B., Schneider, R., Ferrara, A., and Gibson, B. K. 2006. The spatial distribution of the Galactic first stars. I. High-resolution N-body approach. ApJ, 653(Dec.), 285–299.Google Scholar
Searle, L. and Zinn, R. 1978. Compositions of halo clusters and the formation of the galactic halo. ApJ, 225(Oct.), 357–379.Google Scholar
Sellwood, J. A. and Binney, J. J. 2002. Radial mixing in galactic discs. MNRAS, 336(Nov.), 785–796.Google Scholar
Sommer-Larsen, J. Numerical simulation of galaxy formation shown in this chapter.
Soubiran, C., Bienaymé, O., Mishenina, T. V., and Kovtyukh, V. V. 2008. Vertical distribution of Galactic disk stars. IV. AMR and AVR from clump giants. A&A, 480(Mar.), 91–101.Google Scholar
Sparke, L. S. and Gallagher, J. S. III. 2007. Galaxies in the Universe: An Introduction. 2nd ed. Cambridge UK: Cambridge University Press.
Turon, C., Primas, F., Binney, J., Chiappini, C., Drew, J., Helmi, A., Robin, A. C., and Ryan, S. G. 2008. ESA-ESO Working Group on Galactic Populations, Chemistry and Dynamics. ESA-ESO Working Group reports (Sept.)
Valenti, J. A. and Fischer, D. A. 2005. Spectroscopic properties of cool ctars (SPOCS). I. 1040 F, G, and K Dwarfs from Keck, Lick, and AAT Planet Search Programs. ApJS, 159(July), 141–166.Google Scholar
VandenBerg, D. A., Bergbusch, P. A., and Dowler, P. D. 2006. The Victoria-Regina stellar models: evolutionary tracks and isochrones for a wide range in mass and metallicity that allow for empirically constrained amounts ofconvective core overshooting. ApJS, 162(Feb.), 375–387.Google Scholar
Veltz, L., and 18 colleagues 2008. Galactic kinematics with RAVE data. I. The distribution of stars towards the Galactic poles. A&A, 480(Mar.), 753–765.Google Scholar
Venn, K. A. and Hill, V. M. 2008. Chemical signatures in dwarf galaxies. The Messenger, 134(Dec.), 23–27.Google Scholar
Vlajić, M., Bland-Hawthorn, J., and Freeman, K. C. 2009. The abundance gradient in the extremely faint outer disk of NGC 300. ApJ, 697(May), 361–372.Google Scholar
Walcher, C. J., Böker, T., Charlot, S., Ho, L. C., Rix, H.-W., Rossa, J., Shields, J. C., and van der Marel, R. P. 2006. Stellar populations in the nuclei of late-type spiral galaxies. ApJ, 649(Oct.), 692–708.Google Scholar
Walker, I. R., Mihos, J. C., and Hernquist, L. 1996. Quantifying the fragility of galactic disks in minor mergers. ApJ, 460(Mar.), 121–135.Google Scholar
Wielen, R. 1977. The diffusion of stellar orbits derived from the observed age-dependence of the velocity dispersion. A&A, 60(Sept.), 263–275.Google Scholar
Williams, M. E. K., Freeman, K. C., Helmi, A., and RAVE Collaboration 2009. The Arcturus moving group: its place in the Galaxy. IAU Symposium, 254(Mar.), 139–144.Google Scholar
Worthey, G., España, A., MacArthur, L. A., and Courteau, S. 2005. M31's heavy-element distribution and outer disk. ApJ, 631 (Oct.), 820–831.Google Scholar
Wylie-de Boer, E., Freeman, K., and Williams, M. 2010. Evidence of tidal debris from ω Cen in the Kapteyn Group. AJ, 139(Feb.), 636–645.Google Scholar
Yoachim, P. and Dalcanton, J. J. 2006. Structural parameters of thin and thick disks in edge-on disk galaxies. AJ, 131(Jan.), 226–249.Google Scholar
Yoachim, P. and Dalcanton, J. J. 2008. The kinematics of thick disks in nine external galaxies. ApJ, 682(Aug.), 1004–1019.Google Scholar
Yong, D., Carney, B. W., and Teixera de Almeida, M. L. 2005. Elemental abundance ratios in stars of the Outer Galactic Disk. I. Open clusters. AJ, 130(Aug.), 597–625.Google Scholar
Zinn, R. 1985. The globular cluster system of the galaxy. IV. The halo and disk subsystems. ApJ, 293(June), 424–444.Google Scholar
Zoccali, M., and 9 colleagues. 2003. Age and metallicity distribution of the Galactic bulge from extensive optical and near-IR stellar photometry. A&A, 399(Mar.), 931–956.Google Scholar
Zoccali, M., Hill, V., Lecureur, A., Barbuy, B., Renzini, A., Minniti, D., Gómez, A., and Ortolani, S. 2008. The metal content of bulge field stars from FLAMES-GIRAFFE spectra. I. Stellar parameters and iron abundances. A&A, 486(July), 177–189.Google Scholar
Zwitter, T., Castelli, F., and Munari, U. 2004. An extensive library of synthetic spectra covering the far red, RAVE and GAIA wavelength ranges. A&A, 417(Apr.), 1055–1062.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×