Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-09T08:28:14.410Z Has data issue: false hasContentIssue false

APPLICATIONS OF NONSTANDARD ANALYSIS IN MATHEMATICAL PHYSICS

Published online by Cambridge University Press:  05 June 2012

Nigel Cutland
Affiliation:
University of York
Sergio Albeverio
Affiliation:
Fakultat fur Mathematik, Ruhr-Universitat, Bochum, W. Germany
Get access

Summary

Abstract. The aim of this article is to give a short introduction to applications of nonstandard analysis in mathematical physics. Two basic techniques, the hyperfinite and the hypercontinuous are presented, together with illustrations mainly from quantum mechanics, polymer physics and quantum field theory.

INTRODUCTION

Nonstandard analysis is a specific mathematical technique as well as a way of thinking: both aspects are also represented in the interaction between nonstandard analysis and mathematical physics, which is the subject of this paper. As in other domains of application of nonstandard analysis, mathematical physics (or the mathematical study of problems of physics) has particular aspects that make some of the nonstandard methods most natural to use. Often in mathematical physics one has to study systems with many interacting components, idealized as systems with infinitely many degrees of freedom. To look upon a fluid or a gas as a composed of infinitely many particles might seem at first sight to be a very rough abstraction, but is a useful one for mathematical purposes, being in some sense easier to handle than the more realistic case of finitely many particles. On the other hand, in quantum field theory, for example, the abstraction itself creates its own problems, like the famous ones connected with divergences, about which we will say a few more words below; sometimes also it is only in a limit, like that of infinitely many degrees of freedom, that one “sees” some specific phenomenon, raising challenging problems, like phase transitions in thermodynamic systems (only perceived in the so called ”infinite volume“ or “thermodynamic limit”),or exact invariance properties (under a continuous group of symmetries), in systems idealized as “continua” (as in field theories).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×