Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-30T19:19:24.149Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2016

Thomas K. Gaisser
Affiliation:
University of Delaware
Ralph Engel
Affiliation:
Karlsruhe Institute of Technology, Germany
Elisa Resconi
Affiliation:
Technische Universität München
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] M., Aguilar et al., AMS Collab., “First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–350 GeV,” Phys. Rev. Lett. 110 (2013) 141102.Google Scholar
[2] E. S., Seo, “Direct measurements of cosmic rays using balloon borne experiments,” Astropart. Phys. 39–40 (2012) 76–87.Google Scholar
[3] R., Hillier, Gamma ray astronomy. Oxford, Clarendon Pr., 1984.Google Scholar
[4] O., Adriani et al., “Time dependence of the proton flux measured by PAMELA during the July 2006 - December 2009 solar minimum,” Astrophys. J. 765 (2013) 91, arXiv:1301.4108 [astro-ph.HE].Google Scholar
[5] O., Adriani et al., “Observations of the December 13 and 14, 2006, Solar Particle Events in the 80 MeV/n - 3 GeV/n range from space with PAMELA detector,” Astrophys. J. 742 (2011) 102, arXiv:1107.4519 [astro-ph.SR].Google Scholar
[6] R., Abbasi et al., IceCube Collab., “Solar Energetic Particle Spectrum on 13 December 2006 Determined by IceTop,” Astrophys. J. 689 (2008) L65–L68, arXiv:0810.2034 [astro-ph].Google Scholar
[7] H., Moraal, “Cosmic-Ray Modulation Equations,” Space Sci. Rev. 176 (2013) 299–319.Google Scholar
[8] R. A., Mewaldt et al., “Long-term fluences of energetic particles in the heliosphere,” AIP Conf. Proc. 598 (2001) 165–170.Google Scholar
[9] T., Sanuki et al., “Precise measurement of cosmic-ray proton and helium spectra with the BESS spectrometer,” Astrophys. J. 545 (2000) 1135, astro-ph/0002481.Google Scholar
[10] K. A., Olive et al., Particle Data Group Collab., “Review of Particle Physics,” Chin. Phys. C38 (2014) 090001.Google Scholar
[11] O., Adriani et al., PAMELA Collab., “PAMELA Measurements of Cosmic-ray Proton and Helium Spectra,” Science 332 (2011) 69–72, arXiv:1103.4055 [astro-ph.HE].Google Scholar
[12] N. L., Grigorov, V. E., Nesterov, I. D., Rapoport, I. A., Savenko, and G. A., Skuridin, “Investigation of energy spectrum of primary cosmic particles with high and superhigh energies of space stations PROTON,” Yad. Fiz. 11 (1970) 1058–1069.Google Scholar
[13] M. J., Ryan, J. F., Ormes, and V. K., Balasubrahmanyan, “Cosmic ray proton and helium spectra above 50 GeV,” Phys. Rev. Lett. 28 (1972) 985–988.Google Scholar
[14] C. M. G., Lattes, H., Muirhead, G. P. S., Occhialini, and C. F., Powell, “Processes involving charged mesons,” Nature 159 (1947) 694–697.Google Scholar
[15] C. F., Powell, P. H., Fowler, and D. H., Perkins, The Study of Elementary Particles by the Photographic Method. Pergamon Pr., London, 1959.Google Scholar
[16] M. J., Christ et al., “Cosmic-ray proton and helium spectra: Results from the JACEE Experiment,” Astrophys. J. 502 (1998) 278.Google Scholar
[17] V. A., Derbina et al., RUNJOB Collab., “Cosmic-ray spectra and composition in the energy range of 10–TeV - 1000–TeV per particle obtained by the RUNJOB experiment,” Astrophys. J. 628 (2005) L41–L44.Google Scholar
[18] M., Ave et al., “The TRACER instrument: A balloon-borne cosmic-ray detector,” Nucl. Instrum. Meth. A654 (2011) 140–156.Google Scholar
[19] A. D., Panov et al., ATIC Collab., “Energy Spectra of Abundant Nuclei of Primary Cosmic Rays from the Data of ATIC-2 Experiment: Final Results,” Bull. Russ. Acad. Sci. Phys. 73 (2009) 564–567, arXiv:1101.3246 [astro-ph.HE].Google Scholar
[20] H. S., Ahn et al., “Energy spectra of cosmic-ray nuclei at high energies,” Astrophys. J. 707 (2009) 593–603, arXiv:0911.1889 [astro-ph.HE].Google Scholar
[21] H. S., Ahn et al., CREAM Collab., “Discrepant hardening observed in cosmicray elemental spectra,” Astrophys. J. 714 (2010) L89–L93, arXiv:1004.1123 [astro-ph.HE].Google Scholar
[22] W. V., Jones, “Scientific ballooning: Past, present and future,” AIP Conf. Proc. 1516 (2012) 229–233.Google Scholar
[23] T. K., Gaisser, “Spectrum of cosmic-ray nucleons, kaon production, and the atmospheric muon charge ratio,” Astropart. Phys. 35 (2012) 801–806.Google Scholar
[24] M., Aguilar, AMS Collab., “Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station,” Phys. Rev. Lett. 114 (2015) 171103.Google Scholar
[25] G. V., Kulikov and G. B., Khristiansen, “On the size spectrum of extensive air showers,” J. Exp. Theor. Phys. 35 (1958) 441–444.Google Scholar
[26] B., Peters, “Primary Cosmic Radiation and Extensive Air Showers,” Nuovo Cimento XXII (1961) 800–819.Google Scholar
[27] T., Antoni et al., KASCADE Collab., “KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems,” Astropart. Phys. 24 (2005) 1–25, astro-ph/0505413.Google Scholar
[28] T. K., Gaisser, T., Stanev, and S., Tilav, “Cosmic Ray Energy Spectrum from Measurements of Air Showers,” Front. Phys. China 8 (2013) 748–758, arXiv:1303.3565 [astro-ph.HE].Google Scholar
[29] A., Aab et al., Pierre Auger Collab., “The Pierre Auger Cosmic Ray Observatory,” Nucl. Instrum. Meth. A798 (2015) 172–213.Google Scholar
[30] H., Kawai et al., TA Collab., “Telescope Array experiment,” Nucl. Phys. Proc. Suppl. 175–176 (2008) 221–226.Google Scholar
[31] D. J., Bird et al., Fly's Eye Collab., “Evidence for correlated changes in the spectrum and composition of cosmic rays at extremely high-energies,” Phys. Rev. Lett. 71 (1993) 3401–3404.
[32] R. U., Abbasi et al., HiRes Collab., “First Observation of the Greisen-Zatsepin- Kuzmin Suppression,” Phys. Rev. Lett. 100 (2008) 101101, astro-ph/0703099.Google Scholar
[33] R., Engel, D., Heck, and T., Pierog, “Extensive air showers and hadronic interactions at high energy,” Ann. Rev. Nucl. Part. Sci. 61 (2011) 467–489.Google Scholar
[34] F., Halzen and A. D., Martin, Quarks and Leptons: An Introductory Course in Modern Particle Physics. Wiley, New York, 1984.Google Scholar
[35] D. H., Perkins, Introduction to high energy physics. Addison-Wesley, Reading, 1982.Google Scholar
[36] S., Weinberg, The quantum theory of fields. Vol. 1–3. Cambridge Univ. Press, Cambridge, 2000.Google Scholar
[37] C. D., Anderson, “The Positive Electron,” Phys. Rev. 43 (1933) 491–494.Google Scholar
[38] P. M. S., Blackett and G., Occhialini, “Some photographs of the tracks of penetrating radiation,” Proc. R. Soc. Lond. Ser. A 139 (1933) 699–726.Google Scholar
[39] S. H., Neddermeyer and C. D., Anderson, “Note on the Nature of Cosmic Ray Particles,” Phys. Rev. 51 (1937) 884–886.Google Scholar
[40] R., Armenteros et al., “Decay of V-particles,” Nature 167 (1951) 501–503.Google Scholar
[41] C. M., York, R. B., Leighton, and R. B., Bjonerud, “Direct experimental evidence for the existence of a heavy positive V particle,” Phys. Rev. 90 (1953) 167–168.Google Scholar
[42] K., Schmeiser and W., Bothe, “Die harten Ultrastrahlschauer,” Ann. Phys. 424 (1938) 161.Google Scholar
[43] W., KolhÖrster, I., Matthes, and E., Weber, “Gekoppelte HÖhenstrahlen,” Naturwiss. 26 (1938) 576.Google Scholar
[44] P., Auger, P., Ehrenfest, R., Maze, J., Daudin, Robley, , and A., Fréon, “Extensive Cosmic-Ray Showers,” Rev. Mod. Phys. 11 (1939) 288–291.Google Scholar
[45] D. H., Perkins, “Nuclear disintegration by meson capture,” Nature 159 (1947) 126–127.Google Scholar
[46] R., Brown et al., “Observations With Electron Sensitive Plates Exposed to Cosmic Radiation,” Nature 163 (1949) 82.Google Scholar
[47] M. G. K., Menon and C., O'Ceallaigh, “Observations on the decay of heavy mesons in photographic emulsions,” Proc. R. Soc. A 221 (1954) 295–318.Google Scholar
[48] Y., Eisenberg, “Interaction of Heavy Primary Cosmic Rays in Lead,” Phys. Rev. 96 (1954) 1378–1382.Google Scholar
[49] K., Niu, E., Mikumo, and Y., Maeda, “A Possible decay in flight of a new type particle,” Prog. Theor. Phys. 46 (1971) 1644–1646.Google Scholar
[50] R., Bjorklund, W. E., Crandall, B. J., Moyer, and H. F., York, “High Energy Photons from Proton-Nucleon Collisions,” Phys. Rev. 77 (1950) 213–218.Google Scholar
[51] O., Chamberlain, E., Segrè, C., Wiegand, and T., Ypsilantis, “Observation of Antiprotons,” Phys. Rev. 100 (1955) 947–950.Google Scholar
[52] C. L., Cowan, F., Reines, F. B., Harrison, H.W., Kruse, and A. D., McGuire, “Detection of the free neutrino: A Confirmation,” Science 124 (1956) 103–104.Google Scholar
[53] G., Danby et al., “Observation of High-Energy Neutrino Reactions and the Existence of Two Kinds of Neutrinos,” Phys. Rev. Lett. 9 (1962) 36–44.Google Scholar
[54] M., Gell-Mann, “A Schematic Model of Baryons and Mesons,” Phys. Lett. 8 (1964) 214–215.Google Scholar
[55] G., Zweig, “An SU(3) model for strong interaction symmetry and its breaking. Version 1,” preprint CERN-TH-401 (1964).
[56] E. D., Bloom et al., “High-Energy Inelastic e p Scattering at 6–Degrees and 10– Degrees,” Phys. Rev. Lett. 23 (1969) 930–934.Google Scholar
[57] M., Breidenbach et al., “Observed Behavior of Highly Inelastic electron-Proton Scattering,” Phys. Rev. Lett. 23 (1969) 935–939.Google Scholar
[58] W. C., Haxton, “The solar neutrino problem,” Ann. Rev. Astron. Astrophys. 33 (1995) 459–503, arXiv:hep-ph/9503430 [hep-ph].Google Scholar
[59] Y., Fukuda et al., Super-Kamiokande Collab., “Evidence for oscillation of atmospheric neutrinos,” Phys. Rev. Lett. 81 (1998) 1562–1567, hep-ex/9807003.Google Scholar
[60] S. L., Glashow, J., Iliopoulos, and L., Maiani, “Weak Interactions with Lepton-Hadron Symmetry,” Phys. Rev. D2 (1970) 1285–1292.Google Scholar
[61] H., Fritzsch, M., Gell-Mann, and H., Leutwyler, “Advantages of the Color Octet Gluon Picture,” Phys. Lett. B47 (1973) 365–368.Google Scholar
[62] P. W., Higgs, “Broken Symmetries and the Masses of Gauge Bosons,” Phys. Rev. Lett. 13 (1964) 508–509.Google Scholar
[63] C., Bouchiat, J., Iliopoulos, and P., Meyer, “An Anomaly Free Version of Weinberg's Model,” Phys. Lett. B38 (1972) 519–523.Google Scholar
[64] K. G., Wilson, “Confinement of Quarks,” Phys. Rev. D10 (1974) 2445–2459.Google Scholar
[65] N., Seiberg and E., Witten, “Electric - magnetic duality, monopole condensation, and confinement in N=2 supersymmetric Yang-Mills theory,” Nucl. Phys. B426 (1994) 19–52, arXiv:hep-th/9407087 [hep-th].Google Scholar
[66] D. J., Gross and F., Wilczek, “Ultraviolet Behavior of Nonabelian Gauge Theories,” Phys. Rev. Lett. 30 (1973) 1343–1346.Google Scholar
[67] H. D., Politzer, “Reliable Perturbative Results for Strong Interactions?,” Phys. Rev. Lett. 30 (1973) 1346–1349.Google Scholar
[68] N., Cabibbo, “Unitary Symmetry and Leptonic Decays,” Phys. Rev. Lett. 10 (1963) 531–533.Google Scholar
[69] M., Kobayashi and T., Maskawa, “CP Violation in the Renormalizable Theory of Weak Interaction,” Prog. Theor. Phys. 49 (1973) 652–657.Google Scholar
[70] B., Pontecorvo, “Mesonium and anti-mesonium,” Sov. Phys. JETP 6 (1957) 429.Google Scholar
[71] Z., Maki, M., Nakagawa, and S., Sakata, “Remarks on the unified model of elementary particles,” Prog. Theor. Phys. 28 (1962) 870–880.Google Scholar
[72] S. M., Bilenky and S. T., Petcov, “Massive Neutrinos and Neutrino Oscillations,” Rev. Mod. Phys. 59 (1987) 671. [Erratum: Rev. Mod. Phys.60, (1988) 575].Google Scholar
[73] R. N., Mohapatra et al., “Theory of neutrinos: A White paper,” Rept. Prog. Phys. 70 (2007) 1757–1867, arXiv:hep-ph/0510213 [hep-ph].Google Scholar
[74] M. C., Gonzalez-Garcia and M., Maltoni, “Phenomenology with Massive Neutrinos,” Phys. Rept. 460 (2008) 1–129, arXiv:0704.1800 [hep-ph].Google Scholar
[75] C. S., Wu, E., Ambler, R. W., Hayward, D. D., Hoppes, and R. P., Hudson, “Experimental Test of Parity Conservation in Beta Decay,” Phys. Rev. 105 (1957) 1413–1414.Google Scholar
[76] R. L., Garwin, L. M., Lederman, and M., Weinrich, “Observations of the Failure of Conservation of Parity and Charge Conjugation in Meson Decays: The Magnetic Moment of the Free Muon,” Phys. Rev. 105 (1957) 1415–1417.Google Scholar
[77] J. H., Christenson, J. W., Cronin, V. L., Fitch, and R., Turlay, “Evidence for the 2 π Decay of the Meson,” Phys. Rev. Lett. 13 (1964) 138–140.Google Scholar
[78] A. D., Sakharov, “Violation of CP Invariance, c Asymmetry, and Baryon Asymmetry of the Universe,” Pisma Zh. Eksp. Teor. Fiz. 5 (1967) 32–35.Google Scholar
[79] G. F., Chew and S. C., Frautschi, “Regge Trajectories and the Principle of Maximum Strength for Strong Interactions,” Phys. Rev. Lett. 8 (1962) 41–44.Google Scholar
[80] P. D. B., Collins, An Introduction to Regge Theory and High-Energy Physics. Cambridge Univ. Pr., 1977.Google Scholar
[81] C., Berger et al., PLUTO Collaboration Collab., “Evidence for Gluon Bremsstrahlung in e+ e- Annihilations at High-Energies,” Phys. Lett. B86 (1979) 418.Google Scholar
[82] D. P., Barber et al., “Discovery of Three Jet Events and a Test of Quantum Chromodynamics at PETRA Energies,” Phys. Rev. Lett. 43 (1979) 830.Google Scholar
[83] D., Buskulic et al., ALEPH Collab., “Update of electroweak parameters from Z decays,” Z. Phys. C60 (1993) 71–82.Google Scholar
[84] M. W., Grünewald, “Experimental precision tests for the electroweak standard model,” Landolt-Boernstein, New Series I 21A (2008) 6.Google Scholar
[85] S., Kretzer, “Fragmentation functions from flavor inclusive and flavor tagged e+ e- annihilations,” Phys. Rev. D62 (2000) 054001, arXiv:hep-ph/0003177 [hep-ph].Google Scholar
[86] N., Cabibbo, G., Corbo, and L., Maiani, “Lepton Spectrum in Semileptonic Charm Decay,” Nucl. Phys. B155 (1979) 93–103.Google Scholar
[87] R. P., Feynman, “The Behavior of Hadron Collisions at Extreme Energies,” Proc. of High Energy Collisions: Third International Conference at Stony Brook (1969) 237–249. NY. Gordon & Breach.Google Scholar
[88] J. D., Bjorken and E. A., Paschos, “Inelastic Electron Proton and gamma Proton Scattering, and the Structure of the Nucleon,” Phys. Rev. 185 (1969) 1975–1982.Google Scholar
[89] S. D., Drell and T.-M., Yan, “Partons and their Applications at High-Energies,” Annals Phys. 66 (1971) 578.Google Scholar
[90] V. N., Gribov and L. N., Lipatov, “Deep inelastic e p scattering in perturbation theory,” Sov. J. Nucl. Phys. 15 (1972) 438–450. [Yad. Fiz. 15, 781 (1972)].Google Scholar
[91] G., Altarelli and G., Parisi, “Asymptotic Freedom in Parton Language,” Nucl. Phys. B126 (1977) 298.Google Scholar
[92] Y. L., Dokshitzer, “Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e- Annihilation by Perturbation Theory in Quantum Chromodynamics.,” Sov. Phys. JETP 46 (1977) 641–653. [Zh. Eksp. Teor. Fiz. 73, 1216 (1977)].Google Scholar
[93] M. L., Mangano, “QCD and the physics of hadronic collisions,” Phys. Usp. 53 (2010) 109–132.Google Scholar
[94] J. R., Andersen et al., Small x Collab., “Small x phenomenology: Summary and status,” Eur. Phys. J. C35 (2004) 67–98, arXiv:hep-ph/0312333 [hep-ph].Google Scholar
[95] M., Glück, E., Reya, and A., Vogt, “Dynamical parton distributions revisited,” Eur. Phys. J. C5 (1998) 461–470, arXiv:hep-ph/9806404 [hep-ph].Google Scholar
[96] R., Gandhi, C., Quigg, M. H., Reno, and I., Sarcevic, “Ultrahigh-energy neutrino interactions,” Astropart. Phys. 5 (1996) 81–110, arXiv:hep-ph/9512364 [hep-ph].Google Scholar
[97] A., Cooper-Sarkar, P., Mertsch, and S., Sarkar, “The high energy neutrino crosssection in the Standard Model and its uncertainty,” JHEP 1108 (2011) 042, arXiv:1106.3723 [hep-ph].Google Scholar
[98] S. L., Glashow, “Resonant Scattering of Antineutrinos,” Phys. Rev. 118 (1960) 316–317.Google Scholar
[99] V. S., Berezinsky and A. Z., Gazizov, “Cosmic Neutrinos and Possibility to Search for W Bosons Having 30–GeV-100–GeV Masses in Underwater Experiments,” JETP Lett. 25 (1977) 254–256.Google Scholar
[100] A., Bhattacharya, R., Gandhi, W., Rodejohann, and A., Watanabe, “The Glashow resonance at IceCube: signatures, event rates and pp vs. pγ interactions,” JCAP 1110 (2011) 017, arXiv:1108.3163 [astro-ph.HE].Google Scholar
[101] L. V., Gribov, E. M., Levin, and M. G., Ryskin, “Semihard Processes in QCD,” Phys. Rept. 100 (1983) 1–150.Google Scholar
[102] F., Gelis, E., Iancu, J., Jalilian-Marian, and R., Venugopalan, “The Color Glass Condensate,” Ann. Rev. Nucl. Part. Sci. 60 (2010) 463–489, arXiv:1002.0333 [hep-ph].Google Scholar
[103] J., Gasser and H., Leutwyler, “Chiral Perturbation Theory to One Loop,” Annals Phys. 158 (1984) 142.Google Scholar
[104] T., Hatsuda and T., Kunihiro, “QCD phenomenology based on a chiral effective Lagrangian,” Phys. Rept. 247 (1994) 221–367, arXiv:hep-ph/9401310 [hep-ph].Google Scholar
[105] R., Alkofer and L., von Smekal, “The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states,” Phys. Rept. 353 (2001) 281, arXiv:hep-ph/0007355 [hep-ph].Google Scholar
[106] M. A., Shifman, A. I., Vainshtein, and V. I., Zakharov, “QCD and Resonance Physics. Theoretical Foundations,” Nucl. Phys. B147 (1979) 385–447.Google Scholar
[107] P. V., Landshoff and O., Nachtmann, “Vacuum Structure and Diffraction Scattering,” Z. Phys. C35 (1987) 405.Google Scholar
[108] J. B., Kogut, “A Review of the Lattice Gauge Theory Approach to Quantum Chromodynamics,” Rev. Mod. Phys. 55 (1983) 775.Google Scholar
[109] S., Aoki et al., “Review of lattice results concerning low-energy particle physics,” Eur. Phys. J. C74 (2014) 2890, arXiv:1310.8555 [hep-lat].Google Scholar
[110] E., Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2 (1998) 253–291, arXiv:hep-th/9802150 [hep-th].Google Scholar
[111] T., Sakai and S., Sugimoto, “Low energy hadron physics in holographic QCD,” Prog. Theor. Phys. 113 (2005) 843–882, arXiv:hep-th/0412141 [hep-th].Google Scholar
[112] S. J., Brodsky, G. F., de Teramond, H. G., Dosch, and J., Erlich, “Light-Front Holographic QCD and Emerging Confinement,” Phys. Rept. 584 (2015) 1–105, arXiv:1407.8131 [hep-ph].Google Scholar
[113] G., ‘t Hooft, “A planar diagram theory for strong interactions,” Nucl. Phys. B72 (1974) 461.Google Scholar
[114] G., Veneziano, “Large N Expansion in Dual Models,” Phys. Lett. B52 (1974) 220.Google Scholar
[115] E., Witten, “Baryons in the 1/n Expansion,” Nucl. Phys. B160 (1979) 57.Google Scholar
[116] V. A., Khoze and W., Ochs, “Perturbative QCD approach to multiparticle production,” Int. J. Mod. Phys. A12 (1997) 2949–3120, arXiv:hep-ph/9701421 [hep-ph].Google Scholar
[117] R., Hagedorn, “Statistical thermodynamics of strong interactions at high-energies,” Nuovo Cim. Suppl. 3 (1965) 147–186.Google Scholar
[118] F., Becattini and U. W., Heinz, “Thermal hadron production in p p and p anti-p collisions,” Z. Phys. C76 (1997) 269–286, arXiv:hep-ph/9702274 [hep-ph]. [Erratum: Z. Phys. C76, 578 (1997)].Google Scholar
[119] T., SjÖstrand, “Status of Fragmentation Models,” Int. J. Mod. Phys. A3 (1988) 751.Google Scholar
[120] B., Andersson, G., Gustafson, G., Ingelman, and T., Sjostrand, “Parton Fragmentation and String Dynamics,” Phys. Rept. 97 (1983) 31.Google Scholar
[121] W. J., Stirling private communication, 2015.
[122] O., Nachtmann, Elementary Particle Physics: Concepts and Phenomena. Berlin, Germany: Springer, 1990.Google Scholar
[123] M., Lamont, “Status of the LHC,” J. Phys. Conf. Ser. 455 (2013) 012001.Google Scholar
[124] J. R., Cudell, V., Ezhela, P., Gauron, K., Kang, Yu. V., Kuyanov, S., Lugovsky, B., Nicolescu, and N., Tkachenko, COMPETE Collab., “Hadronic scattering amplitudes: Medium-energy constraints on asymptotic behavior,” Phys. Rev. D65 (2002) 074024, arXiv:hep-ph/0107219 [hep-ph].Google Scholar
[125] V. A., Khoze, A. D., Martin, and M. G., Ryskin, “Elastic scattering and Diffractive dissociation in the light of LHC data,” Int. J. Mod. Phys. A30 (2015) 1542004, arXiv:1402.2778 [hep-ph].Google Scholar
[126] F. L., Pedrotti and L. S., Pedrotti, “Introduction to Optics, 2nd edition,” Prentice Hall, New Jersey (1987).Google Scholar
[127] V. N., Gribov, “A reggeon diagram technique,” Sov. Phys. JETP 26 (1968) 414–422. [Zh. Eksp. Teor. Fiz.53,654(1967)].Google Scholar
[128] V. N., Gribov and I. Y., Pomeranchuk, “Complex orbital momenta and the relation between the cross-sections of various processes at high-energies,” Sov. Phys. JETP 15 (1962) 788L. [Phys. Rev. Lett. 8, 343 (1962)].Google Scholar
[129] A., Donnachie and P. V., Landshoff, “Total cross-sections,” Phys. Lett. B296 (1992) 227–232, hep-ph/9209205.Google Scholar
[130] A. J., Buras and J. Dias de, Deus, “Scaling law for the elastic differential crosssection in p p scattering fromgeometric scaling,” Nucl. Phys. B71 (1974) 481–492.Google Scholar
[131] M., Froissart, “Asymptotic behavior and subtractions in the Mandelstam representation,” Phys. Rev. 123 (1961) 1053–1057.Google Scholar
[132] A., Martin, “An absolute upper bound on the pion-pion scattering amplitude.” Report SITP-134, 1964.
[133] A., Martin and S. M., Roy, “Froissart Bound on Inelastic Cross Section Without Unknown Constants,” Phys. Rev. D91 (2015) 076006, arXiv:1503.01261 [hep-ph].Google Scholar
[134] M. M., Block and F., Halzen, “New evidence for the saturation of the Froissart bound,” Phys. Rev. D72 (2005) 036006, arXiv:hep-ph/0506031.Google Scholar
[135] A., Dymarsky, “Can Froissart Bound Explain Hadron Cross-Sections at High Energies?,” JHEP 07 (2015) 106, arXiv:1412.8642 [hep-ph].Google Scholar
[136] S. J., Lindenbaum and R. M., Sternheimer, “Isobaric nucleon model for pion production in nucleon-nucleon collisions,” Phys. Rev. 105 (1957) 1874–1879.Google Scholar
[137] K., Hänßgen and J., Ranft, “The Monte Carlo Code HADRIN to Simulate Inelastic Hadron Nucleon Interactions at Laboratory Energies Below 5–GeV,” Comput. Phys. Commun. 39 (1986) 37–51.Google Scholar
[138] A., Mücke, R., Engel, J. P., Rachen, R. J., Protheroe, and T., Stanev, “Monte Carlo simulations of photohadronic processes in astrophysics,” Comput. Phys. Commun. 124 (2000) 290–314, astro-ph/9903478.Google Scholar
[139] D., Drechsel, S. S., Kamalov, and L., Tiator, “Unitary Isobar Model - MAID2007,” Eur. Phys. J. A34 (2007) 69–97, arXiv:0710.0306 [nucl-th].Google Scholar
[140] R. P., Feynman, “Very high-energy collisions of hadrons,” Phys. Rev. Lett. 23 (1969) 1415–1417.Google Scholar
[141] J., Benecke, T. T., Chou, C.-N., Yang, and E., Yen, “Hypothesis of Limiting Fragmentation in High-Energy Collisions,” Phys. Rev. 188 (1969) 2159–2169.Google Scholar
[142] Z., Koba, H. B., Nielsen, and P., Olesen, “Scaling of multiplicity distributions in highenergy hadron collisions,” Nucl. Phys. B40 (1972) 317–334.Google Scholar
[143] M. E., Peskin and D. V., Schroeder, An Introduction to Quantum Field Theory. Addison-Wesley, 1995.Google Scholar
[144] A., Capella, U., Sukhatme, C.-I., Tan, and J. Tran Thanh, Van, “Dual parton model,” Phys. Rept. 236 (1994) 225–329.Google Scholar
[145] A. B., Kaidalov, “High-energy hadronic interactions (20 years of the quark gluon strings model),” Phys. Atom. Nucl. 66 (2003) 1994–2016.Google Scholar
[146] K., Werner, F.-M., Liu, and T., Pierog, “Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron gold collisions at RHIC,” Phys. Rev. C74 (2006) 044902, hep-ph/0506232.Google Scholar
[147] A. B., Kaidalov, “Diffractive Production Mechanisms,” Phys. Rept. 50 (1979) 157–226.Google Scholar
[148] K., Goulianos, “Diffractive Interactions of Hadrons at High-Energies,” Phys. Rept. 101 (1983) 169.Google Scholar
[149] M., Antinucci, A., Bertin, P., Capiluppi, M., D'Agostino-Bruno, A. M., Rossi, G., Vannini, G., Giacomelli, and A., Bussiere, “Multiplicities of charged particles up to ISR energies,” Lett. Nuovo Cim. 6 (1973) 121–128.Google Scholar
[150] A. M., Rossi et al., “Experimental Study of the Energy Dependence in Proton Proton Inclusive Reactions,” Nucl. Phys. B84 (1975) 269.Google Scholar
[151] S., Roesler, R., Engel, and J., Ranft, “The Monte Carlo event generator DPMJET-III at cosmic ray energies,” Proc of 27th Int. Cosmic Ray Conf., Hamburg 2 (2001) 439.Google Scholar
[152] C., Alt et al., NA49 Collab., “Inclusive production of charged pions in p p collisions at 158–GeV/c beam momentum,” Eur. Phys. J. C45 (2006) 343–381, hep-ex/0510009.Google Scholar
[153] T., Anticic et al., NA49 Collab., “Inclusive production of protons, anti-protons and neutrons in p+p collisions at 158 GeV/c beam momentum,” Eur. Phys. J. C65 (2010) 6–93, arXiv:0904.2708 [hep-ex].Google Scholar
[154] T., Anticic et al., NA49 Collab., “Inclusive production of charged kaons in p+p collisions at 158 GeV/c beam momentum and a new evaluation of the energy dependence of kaon production up to collider energies,” Eur. Phys. J. C68 (2010) 1–73, arXiv:1004.1889 [hep-ex].Google Scholar
[155] F., Riehn, R., Engel, A., Fedynitch, T. K., Gaisser, and T., Stanev, “A new version of the event generator Sibyll,” PoS (ICRC2015) (2015) 558.Google Scholar
[156] L., Durand and H., Pi, “Semihard QCD and high-energy pp and pp scattering,” Phys. Rev. D40 (1989) 1436.Google Scholar
[157] L., Durand and H., Pi, “Meson - proton scattering at high-energies,” Phys. Rev. D43 (1991) 2125–2130.Google Scholar
[158] E.-J., Ahn, R., Engel, T. K., Gaisser, P., Lipari, and T., Stanev, “Cosmic ray interaction event generator SIBYLL 2.1,” Phys. Rev. D 80 (2009) 094003, arXiv:0906.4113 [hep-ph].Google Scholar
[159] B. L., Combridge, J., Kripfganz, and J., Ranft, “Hadron Production at Large Transverse Momentum and QCD,” Phys. Lett. B70 (1977) 234.Google Scholar
[160] B. L., Combridge, “Associated Production of Heavy Flavor States in p p and anti-p p Interactions: Some QCD Estimates,” Nucl. Phys. B151 (1979) 429.Google Scholar
[161] T., Pierog and K., Werner, “EPOS Model and Ultra High Energy Cosmic Rays,” Nucl. Phys. Proc. Suppl. 196 (2009) 102–105, arXiv:0905.1198 [hep-ph].Google Scholar
[162] S., Ostapchenko, “Non-linear screening effects in high energy hadronic interactions,” Phys. Rev. D74 (2006) 014026, hep-ph/0505259.Google Scholar
[163] S., Ostapchenko, “Monte Carlo treatment of hadronic interactions in enhanced Pomeron scheme: I. QGSJET-II model,” Phys. Rev. D83 (2011) 014018, arXiv:1010.1869 [hep-ph].Google Scholar
[164] J. H., Weis, “Regge Theory and High-Energy Hadron-Nucleus Scattering,” Acta Phys. Polon. B7 (1976) 851.Google Scholar
[165] F., Riehn, R., Engel, A., Fedynitch, T. K., Gaisser, and T., Stanev, “Charm production in SIBYLL,” EPJ Web Conf. 99 (2015) 12001, arXiv:1502.06353 [hep-ph].Google Scholar
[166] S., Roesler, R., Engel, and J., Ranft, “The Monte Carlo event generator DPMJET-III.” in Proc. of Int. Conf. on Advanced Monte Carlo for Radiation Physics, Particle Transport Simulation and Applications (MC 2000), Lisbon, Portugal, 23–26 Oct 2000, A., Kling, F., Barao, M., Nakagawa, L., Tavora, P., Vaz eds., Springer-VerlagBerlin, pp. 1033–1038 (2001), 2000.Google Scholar
[167] O., Adriani et al., LHCf Collab., “Measurements of longitudinal and transverse momentum distributions for neutral pions in the forward-rapidity region with the LHCf detector,” arXiv:1507.08764 [hep-ex].
[168] R. J., Glauber and G., Matthiae, “High-energy scattering of protons by nuclei,” Nucl. Phys. B21 (1970) 135–157.Google Scholar
[169] T. K., Gaisser, U., Sukhatme, and G. B., Yodh, “Hadron cross-sections at ultrahighenergies and unitarity bounds on diffraction,” Phys. Rev. D36 (1987) 1350.Google Scholar
[170] R., Engel, T. K., Gaisser, P., Lipari, and T., Stanev, “Proton proton cross section at s « 30 TeV,” Phys. Rev. D58 (1998) 014019, hep-ph/9802384.Google Scholar
[171] U., Dersch et al., SELEX Collab., “Total cross section measurements with pi-, Sigma- and protons on nuclei and nucleons around 600–GeV/c,” Nucl. Phys. B579 (2000) 277–312, arXiv:hep-ex/9910052.Google Scholar
[172] R. P. V., Murthy, C. A., Ayre, H. R., Gustafson, L. W., Jones, and M. J., Longo, “Neutron Total Cross-Sections on Nuclei at Fermilab Energies,” Nucl. Phys. B92 (1975) 269–308.Google Scholar
[173] V., Guzey and M., Strikman, “Proton nucleus scattering and cross section fluctuations at RHIC and LHC,” Phys. Lett. B633 (2006) 245–252, hep-ph/0505088.Google Scholar
[174] V. N., Gribov, “Glauber corrections and the interaction between high-energy hadrons and nuclei,” Sov. Phys. JETP 29 (1969) 483–487.Google Scholar
[175] N. N., Nikolaev, “Asymptotic behavior of the total cross-section of p-p scattering and the Akeno cosmic ray data,” Phys. Rev. D48 (1993) 1904–1906, hep-ph/9304283.Google Scholar
[176] S. P., Denisov et al., “Absorption cross-sections for pions, kaons, protons and antiprotons on complex nuclei in the 6–GeV/c to 60–GeV/c momentum range,” Nucl. Phys. B61 (1973) 62–76.Google Scholar
[177] G. D., Westfall, L. W., Wilson, P. J., Lindstrom, H. J., Crawford, D. E., Greiner, and H. H., Heckman, “Fragmentation of relativistic Fe-56,” Phys. Rev. C19 (1979) 1309–1323.Google Scholar
[178] B., Abelev et al., ALICE Collab., “Pseudorapidity density of charged particles in p + Pb collisions at sNN 5.02 TeV,” Phys. Rev. Lett. 110 (2013) 032301, arXiv:1210.3615 [nucl-ex].Google Scholar
[179] T. H., Bauer, R. D., Spital, D. R., Yennie, and F. M., Pipkin, “The Hadronic Properties of the Photon in High-Energy Interactions,” Rev. Mod. Phys. 50 (1978) 261. [Erratum: Rev. Mod. Phys. 51, 407 (1979)].Google Scholar
[180] J. J., Sakurai and D., Schildknecht, “Generalized vector dominance and inelastic electron-proton scattering,” Phys. Lett. B40 (1972) 121–126.Google Scholar
[181] R. P., Feynman, Photon-Hadron-Interaction. W. A. Benjamin Inc. Reading Mass., 1972.Google Scholar
[182] T. C., Rogers and M. I., Strikman, “Hadronic interactions of ultra-high energy photons with protons and light nuclei in the dipole picture,” J. Phys. G32 (2006) 2041–2063, hep-ph/0512311.Google Scholar
[183] A., Koning et al., “TALYS 1.0,” Proceedings of the International Conference on Nuclear Data for Science and Technology, EDP Sciences (2008) 211–214.Google Scholar
[184] I. A., Pshenichnov, J. P., Bondorf, I. N., Mishustin, A., Ventura, and S., Masetti, “Mutual heavy ion dissociation in peripheral collisions at ultrarelativistic energies,” Phys. Rev. C64 (2001) 024903, arXiv:nucl-th/0101035.Google Scholar
[185] R. A., Batista, D., Boncioli, A. di, Matteo, A. van, Vliet, and D., Walz, “Effects of uncertainties in simulations of extragalactic UHECR propagation, using CRPropa and SimProp,” arXiv:1508.01824 [astro-ph.HE].
[186] J., Alvarez-Muniz, R., Engel, T. K., Gaisser, J. A., Ortiz, and T., Stanev, “Hybrid simulations of extensive air showers,” Phys. Rev. D66 (2002) 033011, astro-ph/0205302.Google Scholar
[187] S. M., Troshin and N. E., Tyurin, “Beyond the black disk limit,” Phys. Lett. B316 (1993) 175.Google Scholar
[188] A., Fedynitch, R., Engel, T. K., Gaisser, F., Riehn, and T., Stanev, “MCEq - numerical code for inclusive lepton flux calculations,” PoS (ICRC2015) (2015) 1129. Proc. 34th Int. Cosmic Ray Conf. (The Hague).Google Scholar
[189] H., Bethe and W., Heitler, “On the Stopping of fast particles and on the creation of positive electrons,” Proc. Roy. Soc. Lond. A146 (1934) 83–112.Google Scholar
[190] J. D., Jackson, Classical electrodynamics. John Wiley & Sons, New York, 1963.Google Scholar
[191] S., Agostinelli et al., GEANT4 Collab., “GEANT4: A simulation toolkit,” Nucl. Instrum. Meth. A506 (2003) 250–303.Google Scholar
[192] W. R., Nelson et al., “The EGS4 Code System,” SLAC-265, Stanford Linear Accelerator Center (1985).Google Scholar
[193] F., Ballarini et al., “The FLUKA code: An overview,” J. Phys. Conf. Ser. 41 (2006) 151–160.Google Scholar
[194] B., Rossi and K., Greisen, “Cosmic-ray theory,” Rev. Mod. Phys. 13 (1941) 240–309.Google Scholar
[195] W., Heitler and Jánossy, , “On the Absorption of Meson-producing Nucleons,” Proc. Physical Soc. London A62 (1949) 374–385.Google Scholar
[196] W., Heitler and Jánossy, , “On the Size-Frequency Distribution of Penetrating Showers,” Proc. Physical Soc. London A62 (1949) 669–683.Google Scholar
[197] W. R., Frazer, C. H., Poon, D., Silverman, and H. J., Yesian, “Limiting fragmentation and the charge ratio of cosmic ray muons,” Phys. Rev. D5 (1972) 1653–1657.Google Scholar
[198] Z., Garraffo, A., Pignotti, and G., Zgrablich, “Hadronic scaling and ratios of cosmic ray components in the atmosphere,” Nucl. Phys. B53 (1973) 419–428.Google Scholar
[199] T., Sanuki, M., Honda, T., Kajita, K., Kasahara, and S., Midorikawa, “Study of cosmic ray interaction model based on atmospheric muons for the neutrino flux calculation,” Phys. Rev. D75 (2007) 043005, arXiv:astro-ph/0611201.Google Scholar
[200] T. K., Gaisser, Cosmic rays and particle physics. Cambridge Univ. Pr., 1990.Google Scholar
[201] National Aeronautics and Space Administration (NASA), “U.S. Standard Atmosphere 1976.” NASA-TM-X-74335, 1976.
[202] Y., Fukuda et al., Kamiokande Collab., “Atmospheric muon-neutrino / electronneutrino ratio in the multiGeV energy range,” Phys. Lett. B335 (1994) 237–245.Google Scholar
[203] T. J., Haines et al., “Calculation of Atmospheric Neutrino Induced Backgrounds in a Nucleon Decay Search,” Phys. Rev. Lett. 57 (1986) 1986–1989.Google Scholar
[204] S., SchÖnert, T. K., Gaisser, E., Resconi, and O., Schulz, “Vetoing atmospheric neutrinos in a high energy neutrino telescope,” Phys. Rev. D79 (2009) 043009, arXiv:0812.4308 [astro-ph].Google Scholar
[205] P., Lipari, “Lepton spectra in the earth's atmosphere,” Astropart. Phys. 1 (1993) 195–227.Google Scholar
[206] G. K., Ashley, J. W., Elbert, J. W., Keuffel, M. O., Larson, and J. L., Morrison, “Muon charge-ratio measurement and comparison with prediction from hadronic scaling,” Phys. Rev. Lett. 31 (1973) 1091–1094.Google Scholar
[207] P., Adamson et al., MINOS Collab., “Measurement of the atmospheric muon charge ratio at TeV energies with MINOS,” Phys. Rev. D76 (2007) 052003, arXiv:0705.3815 [hep-ex].Google Scholar
[208] N., Agafonova et al., “Measurement of the TeV atmospheric muon charge ratio with the complete OPERA data set,” Eur. Phys. J. C74 (2014) 2933.Google Scholar
[209] S. M., Barr, T. K., Gaisser, P., Lipari, and S., Tilav, “Ratio of in Atmospheric Neutrinos,” Phys. Lett. B214 (1988) 147.Google Scholar
[210] G., Barr, T. K., Gaisser, and T., Stanev, “Flux of Atmospheric Neutrinos,” Phys. Rev. D39 (1989) 3532–3534.Google Scholar
[211] T. K., Gaisser and S. R., Klein, “A new contribution to the conventional atmospheric neutrino flux,” Astropart. Phys. 64 (2014) 13–17, arXiv:1409.4924 [astro-ph.HE].Google Scholar
[212] M., Honda, T., Kajita, K., Kasahara, S., Midorikawa, and T., Sanuki, “Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data,” Phys. Rev. D75 (2007) 043006, arXiv:astro-ph/0611418.Google Scholar
[213] V., Agrawal, T. K., Gaisser, P., Lipari, and T., Stanev, “Atmospheric neutrino flux above 1 GeV,” Phys. Rev. D53 (1996) 1314–1323, arXiv:hep-ph/9509423 [hep-ph].Google Scholar
[214] P., Gondolo, G., Ingelman, and M., Thunman, “Charm production and high-energy atmospheric muon and neutrino fluxes,” Astropart. Phys. 5 (1996) 309–332, arXiv:hep-ph/9505417 [hep-ph].Google Scholar
[215] T. K., Gaisser, “Atmospheric leptons, the search for a prompt component,” EPJ Web of Conferences 52 (2013) 09004, arXiv:1303.1431 [hep-ph].Google Scholar
[216] P., Lipari, “The geometry of atmospheric neutrino production,” Astropart. Phys. 14 (2000) 153–170, arXiv:hep-ph/0002282.Google Scholar
[217] G. D., Barr, T. K., Gaisser, P., Lipari, S., Robbins, and T., Stanev, “A threedimensional calculation of atmospheric neutrinos,” Phys. Rev. D70 (2004) 023006, astro-ph/0403630.Google Scholar
[218] M., Honda, T., Kajita, K., Kasahara, and S., Midorikawa, “A new calculation of the atmospheric neutrino flux in a 3–dimensional scheme,” Phys. Rev. D70 (2004) 043008, astro-ph/0404457.Google Scholar
[219] M., Sajjad Athar, M., Honda, T., Kajita, K., Kasahara, and S., Midorikawa, “Atmospheric neutrino flux at INO, South Pole and Pyhásalmi,” Phys. Lett. B718 (2013) 1375–1380, arXiv:1210.5154 [hep-ph].Google Scholar
[220] T., Kajita, “The Measurement of Neutrino Properties with Atmospheric Neutrinos,” Ann. Rev. Nucl. Part. Sci. 64 (2014) 343–362.Google Scholar
[221] J. N., Bahcall, “Solar neutrinos. I: Theoretical,” Phys. Rev. Lett. 12 (1964) 300–302.Google Scholar
[222] R., Davis, “Solar neutrinos. II: Experimental,” Phys. Rev. Lett. 12 (1964) 303–305.Google Scholar
[223] J., Davis, Raymond, , D. S., Harmer, and K. C., Hoffman, “Search for neutrinos from the sun,” Phys. Rev. Lett. 20 (1968) 1205–1209.Google Scholar
[224] J. N., Bahcall, N. A., Bahcall, and G., Shaviv, “Present status of the theoretical predictions for the Cl-37 solar neutrino experiment,” Phys. Rev. Lett. 20 (1968) 1209–1212.Google Scholar
[225] B. T., Cleveland et al., “Measurement of the solar electron neutrino flux with the Homestake chlorine detector,” Astrophys. J. 496 (1998) 505–526.Google Scholar
[226] W., Hampel et al., GALLEX Collab., “GALLEX solar neutrino observations: Results for GALLEX IV,” Phys. Lett. B447 (1999) 127–133.Google Scholar
[227] M., Altmann et al., GNO Collab., “Complete results for five years of GNO solar neutrino observations,” Phys. Lett. B616 (2005) 174–190, arXiv:hep-ex/0504037 [hep-ex].Google Scholar
[228] J. N., Abdurashitov et al., “The SAGE and LNGS experiment:Measurement of solar neutrinos at LNGS using gallium from SAGE,” Astropart. Phys. 25 (2006) 349–354, arXiv:nucl-ex/0509031 [nucl-ex].Google Scholar
[229] J. N., Bahcall and M. H., Pinsonneault, “What do we (not) know theoretically about solar neutrino fluxes?,” Phys. Rev. Lett. 92 (2004) 121301, arXiv:astro-ph/0402114 [astro-ph].Google Scholar
[230] Y., Fukuda et al., Kamiokande Collab., “Solar neutrino data covering solar cycle 22,” Phys. Rev. Lett. 77 (1996) 1683–1686.Google Scholar
[231] K., Abe et al., Super-Kamiokande Collab., “Solar neutrino results in Super- Kamiokande-III,” Phys. Rev. D83 (2011) 052010, arXiv:1010.0118 [hep-ex].Google Scholar
[232] J., Boger et al., SNO Collab., “The Sudbury neutrino observatory,” Nucl. Instrum. Meth. A449 (2000) 172–207, arXiv:nucl-ex/9910016 [nucl-ex].Google Scholar
[233] Q. R., Ahmad et al., SNO Collab., “Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory,” Phys. Rev. Lett. 89 (2002) 011301, arXiv:nucl-ex/0204008 [nucl-ex].Google Scholar
[234] Q. R., Ahmad et al., SNO Collab., “Measurement of day and night neutrino energy spectra at SNO and constraints on neutrino mixing parameters,” Phys. Rev. Lett. 89 (2002) 011302, arXiv:nucl-ex/0204009 [nucl-ex].Google Scholar
[235] M., Gell-Mann, P., Ramond, and R., Slansky, “Complex spinors and unified theories,” Conf. Proc. C790927 (1979) 315–321.Google Scholar
[236] T., Yanagida, “Horizontal symmetry and masses of neutrinos,” Conf. Proc. C7902131 (1979) 95.Google Scholar
[237] R. N., Mohapatra and G., Senjanovic, “Neutrino Mass and Spontaneous Parity Violation,” Phys. Rev. Lett. 44 (1980) 912.Google Scholar
[238] G., Altarelli and F., Feruglio, “Theoretical models of neutrino masses and mixings,” Springer Tracts Mod. Phys. 190 (2003) 169–207, arXiv:hep-ph/0206077 [hep-ph].Google Scholar
[239] B., Kayser, “Neutrino Mass, Mixing and Flavor Change, in Review of Particle Physics,” Phys. Lett. B667 (2008) 163–171.Google Scholar
[240] M., Aartsen et al., IceCube Collab., “Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube Deep- Core data,” Phys. Rev. D91 (2015) 072004, arXiv:1410.7227 [hep-ex].Google Scholar
[241] L., Wolfenstein, “Neutrino Oscillations in Matter,” Phys. Rev. D17 (1978) 2369–2374.Google Scholar
[242] S. P., Mikheyev and A. Y., Smirnov, “Resonant neutrino oscillations in matter,” Prog. Part. Nucl. Phys. 23 (1989) 41–136.Google Scholar
[243] V. K., Ermilova, V. A., Tsarev, and V. A., Chechin, “Buildup of neutrino oscillations in the Earth,” JETP Lett. 43 (1986) 453–456.Google Scholar
[244] E. K., Akhmedov, “Neutrino oscillations in inhomogeneous matter. (In Russian),” Sov. J. Nucl. Phys. 47 (1988) 301–302.Google Scholar
[245] E. K., Akhmedov, “Parametric resonance of neutrino oscillations and passage of solar and atmospheric neutrinos through the earth,” Nucl. Phys. B538 (1999) 25–51, arXiv:hep-ph/9805272 [hep-ph].Google Scholar
[246] H., Athar, M., Jezabek, and O., Yasuda, “Effects of neutrino mixing on high-energy cosmic neutrino flux,” Phys. Rev. D62 (2000) 103007, arXiv:hep-ph/0005104 [hep-ph].Google Scholar
[247] F. P., An et al., DAYA-BAY Collab., “Observation of electron-antineutrino disappearance at Daya Bay,” Phys. Rev. Lett. 108 (2012) 171803, arXiv:1203.1669 [hep-ex].Google Scholar
[248] J. K., Ahn et al., RENO Collab., “Observation of Reactor Electron Antineutrino Disappearance in the RENO Experiment,” Phys. Rev. Lett. 108 (2012) 191802, arXiv:1204.0626 [hep-ex].Google Scholar
[249] S., Choubey and W., Rodejohann, “Flavor Composition of UHE Neutrinos at Source and at Neutrino Telescopes,” Phys. Rev. D80 (2009) 113006, arXiv:0909.1219 [hep-ph].Google Scholar
[250] P., Lipari, M., Lusignoli, and D., Meloni, “Flavor Composition and Energy Spectrum of Astrophysical Neutrinos,” Phys. Rev. D75 (2007) 123005, arXiv:0704.0718 [astro-ph].Google Scholar
[251] L., Fu, C. M., Ho, and T. J., Weiler, “Cosmic Neutrino Flavor Ratios with Broken Symmetry,” Phys. Lett. B718 (2012) 558–565, arXiv:1209.5382 [hep-ph].Google Scholar
[252] L. A., Anchordoqui, H., Goldberg, F., Halzen, and T. J., Weiler, “Galactic point sources of TeV antineutrinos,” Phys. Lett. B593 (2004) 42, arXiv:astro-ph/0311002 [astro-ph].Google Scholar
[253] L. A., Anchordoqui et al., “Cosmic Neutrino Pevatrons: A Brand New Pathway to Astronomy, Astrophysics, and Particle Physics,” arXiv:1312.6587 [astro-ph.HE].
[254] P., Barret et al., “Interpretation of Cosmic-Ray Measurements Far Underground,” Rev. Mod. Phys. 24 (1952) 133–178.Google Scholar
[255] B., Aharmim et al., SNO Collab., “Measurement of the Cosmic Ray and Neutrino- Induced Muon Flux at the Sudbury Neutrino Observatory,” Phys. Rev. D80 (2009) 012001, arXiv:0902.2776 [hep-ex].Google Scholar
[256] P., Lipari and T., Stanev, “Propagation of multi-TeV muons,” Phys. Rev. D44 (1991) 3543–3554.Google Scholar
[257] J. G., Learned and S., Pakvasa, “Detecting tau-neutrino oscillations at PeV energies,” Astropart. Phys. 3 (1995) 267–274, arXiv:hep-ph/9405296 [hep-ph].Google Scholar
[258] F., Reines et al., “Evidence for high-energy cosmic ray neutrino interactions,” Phys. Rev. Lett. 15 (1965) 429–433.Google Scholar
[259] C. Y., Achar et al., “Detection of muons produced by cosmic ray neutrinos deep underground,” Phys. Lett. 18 (1965) 196–199.Google Scholar
[260] A. M., Dziewonski and D. L., Anderson, “Preliminary reference earth model,” Phys. Earth Planet. Interiors 25 (1981) 297–356.Google Scholar
[261] F., Halzen and D., Saltzberg, “Tau-neutrino appearance with a 1000 megaparsec baseline,” Phys. Rev. Lett. 81 (1998) 4305–4308, arXiv:hep-ph/9804354 [hep-ph].Google Scholar
[262] T. K., Gaisser and T., Stanev, “Neutrino Induced Muon Flux Deep Underground and Search for Neutrino Oscillations,” Phys. Rev. D30 (1984) 985.Google Scholar
[263] T. K., Gaisser and A. F., Grillo, “Energy Spectra of Neutrino Induced Upward Muons in Underground Experiments,” Phys. Rev. D36 (1987) 2752–2756.Google Scholar
[264] T. K., Gaisser, “Atmospheric Lepton Fluxes,” EPJ Web Conf. 99 (2015) 05002, arXiv:1412.6424 [astro-ph.HE].Google Scholar
[265] T. K., Gaisser and T., Stanev, “Response of Deep Detectors to Extraterrestrial Neutrinos,” Phys. Rev. D31 (1985) 2770.Google Scholar
[266] J. I., Illana, P., Lipari, M., Masip, and D., Meloni, “Atmospheric lepton fluxes at very high energy,” Astropart. Phys. 34 (2011) 663–673, arXiv:1010.5084 [astro-ph.HE].Google Scholar
[267] B., Abelev et al., ALICE Collab., “Measurement of charm production at central rapidity in proton-proton collisions at = 2.76 TeV,” JHEP 1207 (2012) 191, arXiv:1205.4007 [hep-ex].Google Scholar
[268] M., Aglietta et al., LVD Collab., “Upper limit on the prompt muon flux derived from the LVD underground experiment,” Phys. Rev. D60 (1999) 112001, arXiv:hep-ex/9906021 [hep-ex].Google Scholar
[269] M., Cacciari, S., Frixione, and P., Nason, “The pT spectrum in heavy flavor photoproduction,” JHEP 03 (2001) 006, arXiv:hep-ph/0102134 [hep-ph].Google Scholar
[270] R. E., Ansorge et al., UA5 Collab., “Charged Particle Multiplicity Distributions at 200-GeV and 900-GeV Center-Of-Mass Energy,” Z. Phys. C43 (1989) 357.Google Scholar
[271] A. D., Martin, M. G., Ryskin, and A. M., Stasto, “Prompt neutrinos from atmospheric and production and the gluon at very small x,” Acta Phys. Polon. B34 (2003) 3273–3304, arXiv:hep-ph/0302140 [hep-ph].Google Scholar
[272] R., Enberg, M. H., Reno, and I., Sarcevic, “Prompt neutrino fluxes from atmospheric charm,” arXiv:0806.0418 [hep-ph].
[273] A., hattacharya, R., Enberg, M. H., Reno, I., Sarcevic, and A., Stasto, “Perturbative charm production and the prompt atmospheric neutrino flux in light of RHIC and LHC,” arXiv:1502.01076 [hep-ph].
[274] M. V., Garzelli, S., Moch, and G., Sigl, “Lepton fluxes from atmospheric charm revisited,” arXiv:1507.01570 [hep-ph].
[275] P., Adamson et al., MINOS Collab., “Observation of muon intensity variations by season with the MINOS far detector,” Phys. Rev. D81 (2010) 012001, arXiv:0909.4012 [hep-ex].Google Scholar
[276] M. G., Aartsen et al., IceCube Collab., “The IceCube Neutrino Observatory Part II: Atmospheric and Diffuse UHE Neutrino Searches of All Flavors,” Proc. 33rd ICRC, paper 0492 (2013), arXiv:1309.7003 [astro-ph.HE].Google Scholar
[277] P., Desiati and T. K., Gaisser, “Seasonal variation of atmospheric leptons as a probe of charm,” arXiv:1008.2211 [astro-ph.HE].
[278] B. T., Draine, Physics of the Interstellar and Intergalactic Medium. Princeton Univ. Pr., 2011.
[279] L., Spitzer Jr., Physical Processes in the Interstellar Medium. John Wiley & Sons, 1978.
[280] V., Ptuskin, “Propagation of galactic cosmic rays,” Astropart. Phys. 39-40 (2012) 44–51.Google Scholar
[281] F. C., Jones, A., Lukasiak, V., Ptuskin, and W., Webber, “The Modified Weighted Slab Technique: Models and Results,” Astrophys. J. 547 (2000) 264–271, arXiv:astro-ph/0007293.Google Scholar
[282] A., Korejwo, M., Giller, J., Wdowczyk, V. V., Perelygin, and A. V., Zarubin, “Measurement of isotopic cross sections of 12c beam fragmentation on hydrogen at 3.66 GeV/n,” Proc. 26th Int. Cosmic Ray Conf. 4 (1999) 267–270.Google Scholar
[283] I. V., Moskalenko and S. G., Mashnik, “Evaluation of Production Cross Sections of Li, Be, B in CR,” Proc. 28th Int. Cosmic Ray Conf. 4 (2003) 1969–1972, arXiv:astro-ph/0306367 [astro-ph].Google Scholar
[284] O., Adriani et al., PAMELA Collab., “Measurement of boron and carbon fluxes in cosmic rays with the PAMELA experiment,” Astrophys. J. 791 (2014) 93, arXiv:1407.1657 [astro-ph.HE].Google Scholar
[285] A., Oliva et al., AMS Collab., “Precision Measurement of the Boron to Carbon flux ration in Cosmic Rays from 2 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station,” Proc. 34th Int. Cosmic Ray Conf. (den Haag) (2015) 265.Google Scholar
[286] O., Adriani et al., “Measurement of the flux of primary cosmic ray antiprotons with energies of 60 MeV to 350 GeV in the PAMELA experiment,” JETP Lett. 96 (2013) 621–627.Google Scholar
[287] M., Aguilar et al., AMS Collab. Talks at the AMS Days at CERN and press release, 15-17 April 2015, 2015.
[288] T. K., Gaisser and R. H., Maurer, “Cosmic anti-p production in interstellar p p collisions,” Phys. Rev. Lett. 30 (1973) 1264–1267.Google Scholar
[289] L. J., Gleeson and W. I., Axford, “Solar Modulation of Galactic Cosmic Rays,” Astrophys. J. 154 (1968) 1011.Google Scholar
[290] J. W., Bieber et al., “Antiprotons at solar maximum,” Phys. Rev. Lett. 83 (1999) 674–677, astro-ph/9903163.Google Scholar
[291] T., Hams et al., “Measurement of the abundance of radioactive Be-10 and other light isotopes in cosmic radiation up to 2-GeV/nucleon with the balloon-borne instrument ISOMAX,” Astrophys. J. 611 (2004) 892–905.Google Scholar
[292] A., Molnar and M., Simon, “A new thought on the energy dependence of the 10Be/9Be ratio,” Proc. 28th Int. Cosmic Ray Conf. (Tokyo) 4 (2003) 1937–1940.Google Scholar
[293] V. L., Ginzburg, V. A., Dogiel, V. S., Berezinsky, S. V., Bulanov, and V. S., Ptuskin, Astrophysics of cosmic rays. North Holland, 1990.
[294] N. E., Yanasak et al., “Measurement of the secondary radionuclides and implications for the Galactic cosmic-ray age,” Astrophys. J. 563 (2001) 768–792.Google Scholar
[295] V. L., Ginzburg, Y. M., Khazan, and V. S., Ptuskin, “Origin of cosmic rays: Galactic models with halo,” Astrophys. Space Sci. 68 (1980) 295–314.Google Scholar
[296] A. E., Vladimirov, G., Jóhannesson, I. V., Moskalenko, and T. A., Porter, “Testing the Origin of High-Energy Cosmic Rays,” Astrophys. J. 752 (2012) 68, arXiv:1108.1023 [astro-ph.HE].Google Scholar
[297] G., Guillian et al., Super-Kamiokande Collab., “Observation of the anisotropy of 10 TeV primary cosmic ray nuclei flux with the Super-Kamiokande-I detector,” Phys. Rev. D75 (2007) 062003, astro-ph/0508468. 416 ReferencesGoogle Scholar
[298] R., Abbasi et al., IceCube Collab., “Measurement of the Anisotropy of Cosmic Ray Arrival Directions with IceCube,” Astrophys. J. 718 (2010) L194, arXiv:1005.2960 [astro-ph.HE].Google Scholar
[299] R., Abbasi et al., IceCube Collab., “Observation of an Anisotropy in the Galactic Cosmic Ray arrival direction at 400 TeV with IceCube,” Astrophys. J. 746 (2012) 33, arXiv:1109.1017 [hep-ex].Google Scholar
[300] M. G., Aartsen et al., IceCube Collab., “Observation of Cosmic Ray Anisotropy with the IceTop Air Shower Array,” Astrophys. J. 765 (2013) 55, arXiv:1210.5278 [astro-ph.HE].Google Scholar
[301] A. H., Compton and I. A., Getting, “An Apparent Effect of Galactic Rotation on the Intensity of Cosmic Rays,” Phys. Rev. 47 (1935) 817–821.Google Scholar
[302] C., Evoli, D., Gaggero, D., Grasso, and L., Maccione, “A common solution to the cosmic ray anisotropy and gradient problems,” Phys. Rev. Lett. 108 (2012) 211102, arXiv:1203.0570 [astro-ph.HE].Google Scholar
[303] R., Cowsik and L. W., Wilson, “Is the residence time of cosmic rays in the Galaxy energy dependent?,” Proc. 13th Int. Cosmic Ray Conf. (Denver) 1 (1973) 500.Google Scholar
[304] M., Meneguzzi, “Energy dependence of primary cosmic ray nuclei abundance ratios,” Nature 241 (1973) 100–101.Google Scholar
[305] B., Peters and N. J., Westergaard, “Cosmic ray propagation in a closed galaxy,” Astrophys. Sp. Sci. (1977) 21–46.Google Scholar
[306] K., Greisen, “End to the cosmic ray spectrum?,” Phys. Rev. Lett. 16 (1966) 748–750.Google Scholar
[307] G. T., Zatsepin and V. A., Kuzmin, “Upper Limit of the Spectrum of Cosmic Rays,” J. Exp. Theor. Phys. Lett. 4 (1966) 78.Google Scholar
[308] V., Berezinsky, A. Z., Gazizov, and S. I., Grigorieva, “On astrophysical solution to ultrahigh-energy cosmic rays,” Phys. Rev. D74 (2006) 043005, arXiv:hep-ph/0204357 [hep-ph].Google Scholar
[309] L., Maccione, A. M., Taylor, D. M., Mattingly, and S., Liberati, “Planck-scale Lorentz violation constrained by Ultra-High-Energy Cosmic Rays,” JCAP 0904 (2009) 022, arXiv:0902.1756 [astro-ph.HE].Google Scholar
[310] C. D., Dermer, “On Gamma Ray Burst and Blazar AGN Origins of the Ultra-High Energy Cosmic Rays in Light of First Results from Auger,” Proc of 30th Int. Cosmic Ray Conf., Merida (2007), arXiv:0711.2804 [astro-ph].Google Scholar
[311] D. R., Bergman et al., “Can experiments studying ultrahigh energy cosmic rays measure the evolution of the sources?,” astro-ph/0603797.
[312] V., Berezinsky, A. Z., Gazizov, and S. I., Grigorieva, “Dip in UHECR spectrum as signature of proton interaction with CMB,” Phys. Lett. B612 (2005) 147–153, astro-ph/0502550.Google Scholar
[313] M., Ahlers, L. A., Anchordoqui, and A. M., Taylor, “Ensemble Fluctuations of the Flux and Nuclear Composition of Ultra-High Energy Cosmic Ray Nuclei,” Phys. Rev. D87 (2013) 023004, arXiv:1209.5427 [astro-ph.HE].Google Scholar
[314] J. L., Puget, F. W., Stecker, and J. H., Bredekamp, “Photonuclear Interactions of Ultrahigh-Energy Cosmic Rays and their Astrophysical Consequences,” Astrophys. J. 205 (1976) 638–654.Google Scholar
[315] F. W., Stecker and M. H., Salamon, “Photodisintegration of ultrahigh energy cosmic rays: A new determination,” Astrophys. J. 512 (1999) 521–526, arXiv:astro-ph/9808110.Google Scholar
[316] K.-H., Kampert et al., “CRPropa 2.0 – a Public Framework for Propagating High Energy Nuclei, Secondary Gamma Rays and Neutrinos,” Astropart. Phys. 42 (2013) 41–51, arXiv:1206.3132 [astro-ph.IM].Google Scholar
[317] R. C., Gilmore, R. S., Somerville, J. R., Primack, and A., Dominguez, “Semi-analytic modeling of the EBL and consequences for extragalactic gamma-ray spectra,” Mon. Not. Roy. Astron. Soc. 422 (2012) 3189, arXiv:1104.0671 [astro-ph.CO].Google Scholar
[318] D., Hooper and A. M., Taylor, “On The Heavy Chemical Composition of the Ultra-High Energy Cosmic Rays,” Astropart. Phys. 33 (2010) 151–159, arXiv:0910.1842 [astro-ph.HE].Google Scholar
[319] R., Aloisio, V., Berezinsky, and P., Blasi, “Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition,” JCAP 1410 (2014) 020, arXiv:1312.7459 [astro-ph.HE].Google Scholar
[320] W., Winter, “Neutrinos from Cosmic Accelerators Including Magnetic Field and Flavor Effects,” Adv. High Energy Phys. 2012 (2012) 586413, arXiv:1201.5462 [astro-ph.HE].Google Scholar
[321] R., Engel, D., Seckel, and T., Stanev, “Neutrinos from propagation of ultra-high energy protons,” Phys. Rev. D64 (2001) 093010, astro-ph/0101216.Google Scholar
[322] R., Aloisio, D., Boncioli, A. di, Matteo, A. F., Grillo, S., Petrera, and F., Salamida, “Cosmogenic neutrinos and ultra-high energy cosmic ray models,” arXiv:1505.04020 [astro-ph.HE].
[323] R., Aloisio, D., Boncioli, A. F., Grillo, S., Petrera, and F., Salamida, “SimProp: a Simulation Code for Ultra High Energy Cosmic Ray Propagation,” JCAP 1210 (2012) 007, arXiv:1204.2970 [astro-ph.HE].Google Scholar
[324] M., Ahlers, “High-Energy Neutrinos in Light of Fermi-LAT,” 2014 Fermi Symposium proceedings – eConf C14102.1 (2015), arXiv:1503.00437 [astro-ph.HE].Google Scholar
[325] T., Abu-Zayyad et al., TA Collab., “The Cosmic Ray Energy Spectrum Observed with the Surface Detector of the Telescope Array Experiment,” Astrophys. J. 768 (2013) L1, arXiv:1205.5067 [astro-ph.HE].Google Scholar
[326] J., Abraham et al., Pierre Auger Collab., “Measurement of the energy spectrum of cosmic rays above 1018 eV using the Pierre Auger Observatory,” Phys. Lett. B685 (2010) 239–246, arXiv:1002.1975 [astro-ph.HE].Google Scholar
[327] M. G., Aartsen et al., IceCube Collab., “Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data,” Phys. Rev. Lett. 113 (2014) 101101, arXiv:1405.5303 [astro-ph.HE].Google Scholar
[328] M., Ahlers, L. A., Anchordoqui, M. C., Gonzalez-Garcia, F., Halzen, and S., Sarkar, “GZK Neutrinos after the Fermi-LAT Diffuse Photon Flux Measurement,” Astropart. Phys. 34 (2010) 106–115, arXiv:1005.2620 [astro-ph.HE].Google Scholar
[329] R., Jansson and G. R., Farrar, “A New Model of the Galactic Magnetic Field,” Astrophys. J. 757 (2012) 14, arXiv:1204.3662 [astro-ph.GA].Google Scholar
[330] T., Stanev, “Ultra high energy cosmic rays and the large scale structure of the galactic magnetic field,” Astrophys. J. 479 (1997) 290, astro-ph/9607086.Google Scholar
[331] H.-P., Bretz, M., Erdmann, P., Schiffer, D., Walz, and T., Winchen, “PARSEC: A Parametrized Simulation Engine for Ultra-High Energy Cosmic Ray Protons,” Astropart. Phys. 54 (2014) 110–117, arXiv:1302.3761 [astro-ph.HE].Google Scholar
[332] M. C., Beck, A. M., Beck, R., Beck, K., Dolag, A. W., Strong, and P., Nielaba, “A new prescription for the random magnetic field of the Milky Way,” arXiv:1409.5120 [astro-ph.GA].
[333] R., Durrer and A., Neronov, “Cosmological Magnetic Fields: Their Generation, Evolution and Observation,” Astron. Astrophys. Rev. 21 (2013) 62, arXiv:1303.7121 [astro-ph.CO].Google Scholar
[334] A., Achterberg, Y. A., Gallant, C. A., Norman, and D. B., Melrose, “Intergalactic propagation of UHE cosmic rays,” arXiv:astro-ph/9907060 [astro-ph].
[335] T., Stanev, R., Engel, A., Mücke, R. J., Protheroe, and J. P., Rachen, “Propagation of ultra-high energy protons in the nearby universe,” Phys. Rev. D62 (2000) 093005, astro-ph/0003484.Google Scholar
[336] V., Berezinsky and A. Z., Gazizov, “Diffusion of Cosmic Rays in the Expanding Universe. 2. Energy Spectra of Ultra-High Energy Cosmic Rays,” Astrophys. J. 669 (2007) 684–691, arXiv:astro-ph/0702102 [ASTRO-PH].Google Scholar
[337] S., Mollerach and E., Roulet, “Magnetic diffusion effects on the ultra-high energy cosmic ray spectrum and composition,” JCAP 1310 (2013) 013, arXiv:1305.6519 [astro-ph.HE].Google Scholar
[338] M., Kachelrieß, “Lecture notes on high energy cosmic rays,” arXiv:0801.4376 [astro-ph].
[339] R., Aloisio and V., Berezinsky, “Diffusive propagation of UHECR and the propagation theorem,” Astrophys. J. 612 (2004) 900–913, astro-ph/0403095.Google Scholar
[340] R. A., Batista and G., Sigl, “Diffusion of cosmic rays at EeV energies in inhomogeneous extragalactic magnetic fields,” JCAP 1411 no. 11, (2014) 031, arXiv:1407.6150 [astro-ph.HE].Google Scholar
[341] A. W., Strong, I. V., Moskalenko, and V. S., Ptuskin, “Cosmic-ray propagation and interactions in the Galaxy,” Ann. Rev. Nucl. Part. Sci. 57 (2007) 285–327, arXiv:astro-ph/0701517.Google Scholar
[342] A. W., Strong et al., “Global cosmic-ray related luminosity and energy budget of the Milky Way,” Astrophys. J. 722 (2010) L58–L63, arXiv:1008.4330 [astro-ph.HE].Google Scholar
[343] F. W., Stecker, “Cosmic Gamma Rays,” NASA Scientific and Technical Information Office NASA SP-249 (1971).Google Scholar
[344] T. K., Gaisser and E. H., Levy, “Astrophysical Implications of Cosmic Ray anti- Protons,” Phys. Rev. D10 (1974) 1731.Google Scholar
[345] C. E., Fichtel and D. A., Kniffen, “A study of the diffuse galactic gamma radiation,” Astron. Astrophys. 134 (1984) 13–23.Google Scholar
[346] M., Ackermann et al., Fermi LAT Collab., “Fermi-LAT Observations of the Diffuse γ-Ray Emission: Implications for Cosmic Rays and the Interstellar Medium,” Astrophys. J. 750 (2012) 3.Google Scholar
[347] F. W., Stecker, “Diffuse Fluxes of Cosmic High-Energy Neutrinos,” Astrophys. J. 228 (1979) 919–927.Google Scholar
[348] R., Cowsik, Y., Pal, S. N., Tandon, and R. P., Verma, “3 degree blackbody radiation and leakage lifetime of cosmic-ray electrons,” Phys. Rev. Lett. 17 (1966) 1298–1300.Google Scholar
[349] I. V., Moskalenko and A. W., Strong, “Production and propagation of cosmic-ray positrons and electrons,” Astrophys. J. 493 (1998) 694–707, arXiv:astro-ph/ 9710124.Google Scholar
[350] M., Aguilar et al., AMS Collab., “Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station,” Phys. Rev. Lett. 113 (2014) 121102.Google Scholar
[351] O., Adriani et al., PAMELA Collab., “An anomalous positron abundance in cosmic rays with energies 1.5.100 GeV,” Nature 458 (2009) 607–609, arXiv:0810. 4995 [astro-ph].Google Scholar
[352] M., Ackermann et al., Fermi LAT Collab., “Measurement of separate cosmic-ray electron and positron spectra with the Fermi Large Area Telescope,” Phys. Rev. Lett. 108 (2012) 011103, arXiv:1109.0521 [astro-ph.HE].Google Scholar
[353] P. D., Serpico, “Astrophysical models for the origin of the positron ‘excess’,” Astropart. Phys. 39-40 (2012) 2–11, arXiv:1108.4827 [astro-ph.HE].Google Scholar
[354] R., Cowsik and B., Burch, “Positron fraction in cosmic rays and models of cosmicray propagation,” Phys. Rev. D82 (2010) 023009.Google Scholar
[355] K., Blum, B., Katz, and E., Waxman, “AMS-02 Results Support the Secondary Origin of Cosmic Ray Positrons,” Phys. Rev. Lett. 111 (2013) 211101, arXiv:1305.1324 [astro-ph.HE].Google Scholar
[356] M., Ackermann et al., Fermi LAT Collab., “GeV Observations of Star-forming Galaxies with Fermi LAT,” Astrophys. J. 755 (2012) 164, arXiv:1206.1346 [astro-ph.HE].Google Scholar
[357] E. L., Chupp, “High-energy neutral radiations from the Sun,” Ann. Rev. Astron. Astrophys. 22 (1984) 359–387.Google Scholar
[358] G. P., Zank and T. K., Gaisser, “Proceedings, Workshop on Particle Acceleration in Cosmic Plasmas,” AIP Conf. Proc. 264 (1992) 1–498.Google Scholar
[359] V. L., Ginzburg and S. I., Syrovatskii, The Origin of Cosmic Rays. Pergamon Press, Oxford, 1964.Google Scholar
[360] L. O'C., Drury, “An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas,” Rept. Prog. Phys. 46 (1983) 973–1027.Google Scholar
[361] R., Blandford and D., Eichler, “Particle Acceleration at Astrophysical Shocks: A Theory of Cosmic Ray Origin,” Phys. Rept. 154 (1987) 1–75.Google Scholar
[362] M. A., Malkov and L. O., Drury, “Nonlinear theory of diffusive acceleration of particles by shock waves,” Rep. Prog. Phys. 64 (Apr., 2001) 429–481.Google Scholar
[363] A. R., Bell, “The Acceleration of cosmic rays in shock fronts. I,” Mon. Not. Roy. Astron. Soc. 182 (1978) 147–156.Google Scholar
[364] A. R., Bell, “The acceleration of cosmic rays in shock fronts. II,” Mon. Not. Roy. Astron. Soc. 182 (1978) 443–455.Google Scholar
[365] E., Fermi, “On the Origin of the Cosmic Radiation,” Phys. Rev. 75 (1949) 1169–1174.Google Scholar
[366] L., Davis Jr., “Modified Fermi Mechanism for the Acceleration of Cosmic Rays,” Phys. Rev. 101 (1956) 351–358.Google Scholar
[367] L. D., Landau and E. M., Lifshitz, Fluid Mechanics. Pergamon Press, Oxford, 1982.Google Scholar
[368] P. O., Lagage and C. J., Cesarsky, “The maximum energy of cosmic rays accelerated by supernova shocks,” Astron. Astrophys. 125 (1983) 249–257.Google Scholar
[369] M. S., Longair, High-Energy Astrophysics. Cambridge Univ. Pr., 1981.Google Scholar
[370] D., Caprioli, P., Blasi, and E., Amato, “On the escape of particles from cosmic ray modified shocks,” Mon. Not. Roy. Astron. Soc. 396 (2009) 2065–2073, arXiv:0807.4259 [astro-ph].Google Scholar
[371] D., Caprioli, H., Kang, A., Vladimirov, and T. W., Jones, “Comparison of Different Methods for Nonlinear Diffusive Shock Acceleration,” Mon. Not. Roy. Astron. Soc. 407 (2010) 1773, arXiv:1005.2127 [astro-ph.HE].Google Scholar
[372] D., Caprioli, E., Amato, and P., Blasi, “Non-linear diffusive shock acceleration with free escape boundary,” Astropart. Phys. 33 (2010) 307–311, arXiv:0912.2714 [astro-ph.HE].Google Scholar
[373] D., Caprioli, “Cosmic-ray acceleration in supernova remnants: non-linear theory revised,” JCAP 1207 (2012) 038, arXiv:1206.1360 [astro-ph.HE].Google Scholar
[374] P., Blasi and E., Amato, “Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. I: spectrum and chemical composition,” JCAP 1201 (2012) 010, arXiv:1105.4521 [astro-ph.HE].Google Scholar
[375] P., Blasi and E., Amato, “Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy,” JCAP 1201 (2012) 011, arXiv:1105.4529 [astro-ph.HE].Google Scholar
[376] A. R., Bell, “Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays,” Mon. Not. R. Astron. Soc. 353 (2004) 550–558.Google Scholar
[377] S. M., Ressler et al., “Magnetic-Field Amplification in the Thin X-ray Rims of SN 1006,” Astrophys. J. 790 (2014) 85, arXiv:1406.3630 [astro-ph.HE].Google Scholar
[378] G., Giacinti, M., Kachelrieß, and D. V., Semikoz, “Escape model for Galactic cosmic rays and an early extragalactic transition,” arXiv:1502.01608 [astro-ph.HE].
[379] A. M., Hillas, “The Origin of Ultrahigh-Energy Cosmic Rays,” Ann. Rev. Astron. Astrophys. 22 (1984) 425–444.Google Scholar
[380] M. C., Begelman and D. F., Cioffi, “Overpressured cocoons in extragalactic radio sources,” Astrophys. J. Lett. 345 (1989) L21–L24.Google Scholar
[381] E. G., Berezhko, “Cosmic rays from active galactic nuclei,” Astrophys. J. 684 (2008) L69–L71, arXiv:0809.0734 [astro-ph].Google Scholar
[382] P. J., Barnes et al., “The Galactic Census of High- and Medium-mass Protostars (CHaMP) – I. Catalogues and First Results from Mopra HCO+ Maps,” Astrophys. J. Suppl. 196 (2011) 12.Google Scholar
[383] A. C., Robin, C., Reylé, and D. J., Marshall, “The Galactic warp as seen from 2MASS survey,” Astronomische Nachrichten 329 (2008) 1012.Google Scholar
[384] J. H., Jeans, “The Stability of a Spherical Nebula,” Philosophical Transactions of the Royal Society of London. Series A 199 (1902) 153.Google Scholar
[385] R. A., Gutermuth et al., “A Spitzer Survey of Young Stellar Clusters within One Kiloparsec of the Sun: Cluster Core Extraction and Basic Structural Analysis,” Astrophys. J. Suppl. 184 (2009) 18–83, arXiv:0906.0201 [astro-ph.SR].Google Scholar
[386] C. F., McKee and E. C., Ostriker, “Theory of Star Formation,” Ann. Rev. Astron. Astrophys. 45 (2007) 565–687, arXiv:0707.3514 [astro-ph].Google Scholar
[387] R., Schodel et al., “A star in a 15.2-year orbit around the super-massive black-hole at the centre of the Milky Way,” Nature 419 (2002) 694–696, arXiv:astro-ph/0210426 [astro-ph].Google Scholar
[388] A., Bosma, The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. PhD thesis, PhD Thesis, Groningen Univ., (1978), 1978.
[389] A., Bosma and P. C. van der, Kruit, “The local mass-to-light ratio in spiral galaxies,” Astron. Astrophys. 79 (1979) 281–286.Google Scholar
[390] V. C., Rubin, W. K. J., Ford, and N., Thonnard, “Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/,” Astrophys. J. 238 (1980) 471–487.Google Scholar
[391] F., Donato, G., Gentile, P., Salucci, C., Frigerio Martins, M. I., Wilkinson, G., Gilmore, E. K., Grebel, A., Koch, and R., Wyse, “A constant dark matter halo surface density in galaxies,” Mon. Not. Roy. Astron. Soc. 397 (2009) 1169–1176, arXiv:0904.4054 [astro-ph.CO].Google Scholar
[392] A., Burkert, “The Structure of dark matter halos in dwarf galaxies,” IAU Symp. 171 (1996) 175, arXiv:astro-ph/9504041 [astro-ph]. [Astrophys. J.447,L25 (1995)].Google Scholar
[393] J. F., Navarro, C. S., Frenk, and S. D. M., White, “The Structure of Cold Dark Matter Halos,” Astrophys. J. 462 (1996) 563, astro-ph/9508025.Google Scholar
[394] F., Hoyle and W. A., Fowler, “Nucleosynthesis in Supernovae,” Astrophys. J. 132 (1960) 565.Google Scholar
[395] R., Minkowski, “Spectra of Supernovae,” Publ. Astron. Soc. Pacific 53 (1941) 224.Google Scholar
[396] http://graspa.oapd.inaf.it/cgi-bin/sncat.php.
[397] S., Woosley and T., Janka, “The physics of core-collapse supernovae,” Nature Physics (2006), arXiv:astro-ph/0601261 [astro-ph].Google Scholar
[398] W., Baade and F., Zwicky, “Remarks on Super-Novae and Cosmic Rays,” Phys. Rev. 46 (1934) 76–77.Google Scholar
[399] H.-T., Janka, “Explosion Mechanisms of Core-Collapse Supernovae,” Ann. Rev. Nucl. Part. Sci. 62 (2012) 407–451, arXiv:1206.2503 [astro-ph.SR].Google Scholar
[400] G., Gamow and M., Schoenberg, “Neutrino Theory of Stellar Collapse,” Phys. Rev. 59 (1941) 539–547.Google Scholar
[401] K., Hirata, “Observation of a neutrino burst from the supernova SN1987A,” Phys. Rev. Lett. 58 (1987) 1490–1493.Google Scholar
[402] K. S., Hirata, “Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A,” Phys. Rev. D 38 (1988) 448–458.Google Scholar
[403] R. M., Bionta et al., “Observation of a Neutrino Burst in Coincidence with Supernova SN 1987a in the Large Magellanic Cloud,” Phys. Rev. Lett. 58 (1987) 1494.Google Scholar
[404] C. B., Bratton et al., IMB Collab., “Angular Distribution of Events From Sn1987a,” Phys. Rev. D37 (1988) 3361.Google Scholar
[405] E. N., Alekseev, L. N., Alekseeva, V. I., Volchenko, and I. V., Krivosheina, “Possible Detection of a Neutrino Signal on 23 February 1987 at the Baksan Underground Scintillation Telescope of the Institute of Nuclear Research,” JETP Lett. 45 (1987) 589–592.Google Scholar
[406] E. N., Alekseev, L. N., Alekseeva, I. V., Krivosheina, and V. I., Volchenko, “Detection of the neutrino signal from SN1987A using the INR Baksan underground scintillation telescope,” Proc. of Int. Cosmic Ray Conf (Moscow) 9 (1987) 959–967.Google Scholar
[407] V. L., Dadykin et al., “On the event observed in the Mont Blanc Underground Neutrino Observatory during the supernova SN1987A explosion.
[408] M., Aglietta et al., “On the event observed in the Mont Blanc Underground Neutrino observatory during the occurrence of Supernova 1987a,” Europhys. Lett. 3 (1987) 1315–1320.Google Scholar
[409] S., Chandrasekhar, “The maximum mass of ideal white dwarfs,” Astrophys. J. 74 (1931) 81–82.Google Scholar
[410] M. M., Phillips, “The absolute magnitudes of Type IA supernovae,” Astrophys. J. 413 (1993) L105–L108.Google Scholar
[411] A. G., Riess et al., Supernova Search Team Collab., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astron. J. 116 (1998) 1009–1038, arXiv:astro-ph/9805201 [astro-ph].Google Scholar
[412] S., Perlmutter et al., Supernova Cosmology Project Collab., “Measurements of Omega and Lambda from 42 high redshift supernovae,” Astrophys. J. 517 (1999) 565–586, arXiv:astro-ph/9812133 [astro-ph].Google Scholar
[413] L. D., Landau, “On the theory of stars,” Phys. Z. Sowjetunion 1 (1932) 285.Google Scholar
[414] P., Haensel, A. Y., Potekhin, and D. G., Yakovlev, Neutron Stars 1, vol. 326 of Astrophysics and Space Science Library. Springer, 2007.
[415] A., Hewish, S. J., Bell, J. D. H., Pilkington, P. F., Scott, and R. A., Collins, “Observation of a rapidly pulsating radio source,” Nature 217 (1968) 709–713.Google Scholar
[416] J. M., Comella, H. D., Craft, R. V. E., Lovelace, and J. M., Sutton, “Crab Nebula Pulsar NP 0532,” Nature 221 (1969) 453–454.Google Scholar
[417] J. R., Oppenheimer, “On Continued Gravitational Contraction,” Phys. Rev. 56 (1939) 455–459.Google Scholar
[418] C. T., Bolton, “Identification of Cygnus X-1 with HDE 226868,” Nature 235 (1972) 271–273.Google Scholar
[419] R. A., Chevalier, “The interaction of supernovae with the interstellar medium,” Ann. Rev. Astron. Astrophys. 15 (1977) 175–196.Google Scholar
[420] O., Petruk, “On the Transition of the Adiabatic Supernova Remnant to the Radiative Stage in a Nonuniform Interstellar Medium,” Journal of Physical Studies 9 (2005) 364–373.Google Scholar
[421] Y. B., Zeldovich and Y. P., Raizer, Elements of gas dynamics and the classical theory of shock waves. New York: Academic Press, edited by Hayes, W. D.; Probstein, Ronald F., 1966.Google Scholar
[422] J. P., Ostriker and C. F., McKee, “Astrophysical blastwaves,” Rev. Mod. Phys. 60 (1988) 1–68.Google Scholar
[423] R., Bandiera and O., Petruk, “Analytic solutions for the evolution of radiative supernova remnants,” Astron. Astrophys. 419 (2004) 419–423, astro-ph/ 0402598.Google Scholar
[424] S., Vaupré, P., Hily-Blant, C., Ceccarelli, G., Dubus, S., Gabici, and T., Montmerle, “Cosmic ray induced ionisation of a molecular cloud shocked by the W28 supernova remnant,” Astron. Astrophys. 568 (2014) A50, arXiv:1407.0205 [astro-ph.GA].Google Scholar
[425] T., Montmerle, “On gamma-ray sources, supernova remnants, OB associations, and the origin of cosmic rays,” Astrophys. J. 231 (1979) 95–110.Google Scholar
[426] S., Gabici and F. A., Aharonian, “Searching for Galactic Cosmic-Ray Pevatrons with Multi-TeV Gamma Rays and Neutrinos,” Astrophys. J. L 665 (2007) L131–L134, arXiv:0705.3011.Google Scholar
[427] J., Arons, “Pair creation above pulsar polar caps - Steady flow in the surface acceleration zone and polar CAP X-ray emission,” Astrophys. J. 248 (1981) 1099–1116.Google Scholar
[428] S. P., Reynolds and R. A., Chevalier, “Evolution of pulsar-driven supernova remnants,” Astrophys. J. 278 (1984) 630–648.Google Scholar
[429] J. M., Blondin, R. A., Chevalier, and D. M., Frierson, “Pulsar Wind Nebulae in Evolved Supernova Remnants,” Astrophys. J. 563 (2001) 806–815, astro-ph/0107076.Google Scholar
[430] D. A., Green, “A catalogue of 294 Galactic supernova remnants,” Bull. Astron. Soc. India 42 (2014) 47, arXiv:1409.0637 [astro-ph.HE].Google Scholar
[431] K., France et al., “Observing Supernova 1987A with the Refurbished Hubble Space Telescope,” Science 329 (2010) 1624–, arXiv:1009.0518 [astro-ph.CO].Google Scholar
[432] O., Krause, M., Tanaka, T., Usuda, T., Hattori, M., Goto, S., irkmann, and K., Nomoto, “Tycho Brahe's 1572 supernova as a standard type Ia as revealed by its light-echo spectrum,” Nature 456 (2008) 617–619, arXiv:0810.5106.Google Scholar
[433] R., Kothes, K., Fedotov, T. J., Foster, and B., Uyanıker, “A catalogue of Galactic supernova remnants from the Canadian Galactic plane survey. I. Flux densities, spectra, and polarization characteristics,” Astron. Astrophys. 457 (2006) 1081–1093.Google Scholar
[434] V. A., Acciari et al., “Discovery of TeV Gamma-ray Emission from Tycho's Supernova Remnant,” Astrophys. J. L 730 (2011) L20, arXiv:1102.3871 [astro-ph.HE].Google Scholar
[435] G., Morlino and D., Caprioli, “Acceleration of cosmic rays in Tycho's SNR.,” Mem. S. A. It. 82 (2011) 731.Google Scholar
[436] I. S., Shklovskii, “On the origin of cosmic rays,” Dokl. Akad. Nauk. SSSR 91 (1953) 475–478.Google Scholar
[437] M., Ackermann et al., Fermi-LAT Collab., “Detection of the Characteristic Pion-Decay Signature in Supernova Remnants,” Science 339 (2013) 807, arXiv:1302.3307 [astro-ph.HE].Google Scholar
[438] M., Cardillo, M., Tavani, A., Giuliani, S., Yoshiike, H., Sano, T., Fukuda, Y., Fukui, G., Castelletti, and G., Dubner, “The Supernova Remnant W44: confirmations and challenges for cosmic-ray acceleration,” Astron. Astrophys. 565 (2014) A74, arXiv:1403.1250 [astro-ph.HE].Google Scholar
[439] A., Giuliani et al., AGILE Collab., “Neutral pion emission from accelerated protons in the supernova remnant W44,” Astrophys. J. 742 (2011) L30, arXiv:1111.4868 [astro-ph.HE].Google Scholar
[440] T. K., Gaisser, R. J., Protheroe, and T., Stanev, “Gamma-ray production in supernova remnants,” Astrophys. J. 492 (1998) 219, arXiv:astro-ph/9609044 [astro-ph].Google Scholar
[441] J. A., Esposito and S. D., Hunter and G., Kanbach, and P., Sreekumar, “EGRET Observations of Radio-bright Supernova Remnants,” Astrophys. J. 461 (1996) 820.Google Scholar
[442] I. S., Shklovskii, “On the Nature of the Optical Emission from the Crab Nebula.,” Soviet Astron. 1 (1957) 690.Google Scholar
[443] G. B., Rybicki and A. P., Lightman, “Radiative Processes in Astrophysics,” Wiley- VCH (1986).Google Scholar
[444] M., Fouka and S., Ouichaoui, “Analytical Fits to the Synchrotron Functions,” Res. Astron. Astrophys. 13 (2013) 680, arXiv:1301.6908 [astro-ph.HE].Google Scholar
[445] M. S., Longair, High Energy Astrophysics. Cambridge Univ. Pr., 2011.
[446] W., Heitler, Quantum Theory of Radiation. Oxford, Clarendon Pr., 1944. 3nd edition.
[447] C. M., Urry and P., Padovani, “Unified schemes for radio-loud active galactic nuclei,” Publ. Astron. Soc. Pac. 107 (1995) 803, arXiv:astro-ph/9506063 [astro-ph].Google Scholar
[448] R., Antonucci, “Unified models for active galactic nuclei and quasars,” Ann. Rev. Astron. Astrophys. 31 (1993) 473–521.Google Scholar
[449] C., Zier and P. L., Biermann, “Binary black holes and tori in AGN. 2. Can stellar winds constitute a dusty torus?,” Astron. Astrophys. 396 (2002) 91–108, arXiv:astro-ph/0203359 [astro-ph].Google Scholar
[450] J. K., Becker, “High-energy neutrinos in the context of multimessenger physics,” Phys. Rept. 458 (2008) 173–246, arXiv:0710.1557 [astro-ph].Google Scholar
[451] M., Böttcher, D., Harris, and H., Krawczynski, Relativistic Jets of Active Galactic Nuclei. Wiley-VCH, 2012.Google Scholar
[452] J. R. P., Angel and H. S., Stockman, “Optical and infrared polarization of active extragalactic objects,” Ann. Rev. Astron. Astrophys. 18 (1980) 321–361.Google Scholar
[453] E., Massaro, A., Maselli, C., Leto, P., Marchegiani, M., Perri, P., Giommi, and S., Piranomonte, “The 5th edition of the Roma-BZCAT. A short presentation,” Astrophys. Space Sci. 357 (2015) 75, arXiv:1502.07755 [astro-ph.HE].Google Scholar
[454] P., Giommi, P., Padovani, G., Polenta, S., Turriziani, V., D'Elia, and S., Piranomonte, “A simplified view of blazars: clearing the fog around long-standing selection effects,” Mon. Not. Roy. Astron. Soc. 420 (2012) 2899, arXiv:1110.4706 [astro-ph.CO].Google Scholar
[455] G., Ghisellini, A., Celotti, G., Fossati, L., Maraschi, and A., Comastri, “A Theoretical unifying scheme for gamma-ray bright blazars,” Mon. Not. Roy. Astron. Soc. 301 (1998) 451, arXiv:astro-ph/9807317 [astro-ph].Google Scholar
[456] J. T., Stocke, S. L., Morris, I. M., Gioia, T., Maccacaro, R., Schild, A., Wolter, T. A., Fleming, and J. P., Henry, “The Einstein Observatory Extended Medium - Sensitivity Survey. 2. The Optical identifications,” Astrophys. J. Suppl. 76 (1991) 813.Google Scholar
[457] S., Dimitrakoudis, A., Mastichiadis, R. J., Protheroe, and A., Reimer, “The timedependent one-zone hadronic model - First principles,” Astron. Astrophys. 546 (2012) A120, arXiv:1209.0413 [astro-ph.HE].Google Scholar
[458] C., Diltz, M., Boettcher, and G., Fossati, “Time Dependent HadronicModeling of Flat Spectrum Radio Quasars,” Astrophys. J. 802 (2015) 133, arXiv:1502.03950 [astro-ph.HE].Google Scholar
[459] G., Ghisellini, L., Maraschi, and L., Dondi, “Diagnostics of Inverse-Compton models for the -ray emission of 3C 279 and MKN 421,” Astronomy and Astrophysics Supplement, 120 (1996) 503–506.Google Scholar
[460] A., Mastichiadis and J. G., Kirk, “Variability in the synchrotron selfcompton model of blazar emission,” Astron. Astrophys. 320 (1997) 19, arXiv:astro-ph/9610058 [astro-ph].Google Scholar
[461] C. D., Dermer and R., Schlickeiser, “Model for the high-energy emission from blazars,” Astrophys. J. 416 (1993) 458.Google Scholar
[462] K., Mannheim, “The Proton blazar,” Astron. Astrophys. 269 (1993) 67, arXiv:astro-ph/9302006 [astro-ph].Google Scholar
[463] F. A., Aharonian, “Proton synchrotron radiation of large-scale jets in active galactic nuclei,” Mon. Not. Roy. Astron. Soc. 332 (2002) 215, arXiv:astro-ph/0106037 [astro-ph].Google Scholar
[464] A. A., Abdo et al., Fermi-LAT Collab., “Suzaku Observations of Luminous Quasars: Revealing the Nature of High-Energy Blazar Emission in low-level activity states,” Astrophys. J. 716 (2010) 835–849, arXiv:1004.2857 [astro-ph.HE].Google Scholar
[465] L., Maraschi, G., Ghisellini, and A., Celotti, “A jet model for the gamma-ray emitting blazar 3C 279,” Astrophys. J. 397 (1992) L5–L9.Google Scholar
[466] E., Aliu et al., MAGIC Collab., “Very-High-Energy Gamma Rays from a Distant Quasar: How Transparent Is the Universe?,” Science 320 (2008) 1752, arXiv:0807.2822 [astro-ph].Google Scholar
[467] M., Boettcher, A., Reimer, and A. P., Marscher, “Implications of the VHE Gamma- Ray Detection of the Quasar 3C279,” AIP Conf. Proc. 1085 (2009) 427–430, arXiv:0810.4864 [astro-ph].Google Scholar
[468] A. A., Abdo et al., LAT, MAGIC Collab., “Fermi large area telescope observations of Markarian 421: The missing piece of its spectral energy distribution,” Astrophys. J. 736 (2011) 131, arXiv:1106.1348 [astro-ph.HE].Google Scholar
[469] J. D., Finke, S., Razzaque, and C. D., Dermer, “Modeling the Extragalactic Background Light from Stars and Dust,” Astropyhs. J. 712 (2010) 238–249.Google Scholar
[470] A., Mücke, R. J., Protheroe, R., Engel, J. P., Rachen, and T., Stanev, “BL Lac objects in the synchrotron proton blazar model,” Astropart. Phys. 18 (2003) 593–613, astro-ph/0206164.Google Scholar
[471] Y. C., Lin et al., “Detection of high-energy gamma-ray emission from the BL Lacertae object Markarian 421 by the EGRET telescope on the Compton Observatory,” Astrophys. J. 401 (1992) L61–L64.Google Scholar
[472] M., Punch et al., “Detection of TeV photons from the active galaxy Markarian 421,” Nature 358 (1992) 477–478.Google Scholar
[473] M., Petropoulou, S., Dimitrakoudis, P., Padovani, A., Mastichiadis, and E., Resconi, “Photohadronic origin of γ-ray BL Lac emission: implications for IceCube neutrinos,” Mon. Not. Roy. Astron. Soc. 448 (2015) 2412–2429, arXiv:1501.07115 [astro-ph.HE].Google Scholar
[474] R. W., Klebesadel, I. B., Strong, and R. A., Olson, “Observations of Gamma-Ray Bursts of Cosmic Origin,” Astrophys. J. 182 (1973) L85–L88.Google Scholar
[475] C. A., Meegan et al., “Spatial distribution of gamma-ray bursts observed by BATSE,” Nature 355 (1992) 143–145.Google Scholar
[476] C., Kouveliotou, R. A. M. J., Wijers, and S., Woosley, Gamma-Ray Bursts. Cambridge Univ. Pr., 2012.Google Scholar
[477] O., Bromberg, E., Nakar, T., Piran, and R., Sari, “Short vs Long and Collapsars vs. non-Collapsar: a quantitative classification of GRBs,” Astrophys. J. 764 (2013) 179.Google Scholar
[478] S. R., Kulkarni et al., “Radio emission from the unusual supernova 1998bw and its association with the rgammas-ray burst of 25 April 1998,” Nature 395 (1998) 663–669.Google Scholar
[479] D., Eichler, M., Livio, T., Piran, and D. N., Schramm, “Nucleosynthesis, Neutrino Bursts and Gamma-Rays from Coalescing Neutron Stars,” Nature 340 (1989) 126–128.Google Scholar
[480] R., Narayan, B., Paczynski, and T., Piran, “Gamma-ray bursts as the death throes of massive binary stars,” Astrophys. J. 395 (1992) L83–L86, arXiv:astro-ph/9204001 [astro-ph].Google Scholar
[481] E., Costa et al., “Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997,” Nature 387 (1997) 783–785.Google Scholar
[482] S. E., Woosley, “Gamma-ray bursts from stellar mass accretion disks around black holes,” Astrophys. J. 405 (1993) 273.Google Scholar
[483] J., Hjorth et al., “A very energetic supernova associated with the gamma-ray burst of 29 March 2003,” Nature 423 (2003) 847–850, arXiv:astro-ph/0306347 [astro-ph].Google Scholar
[484] J., Greiner et al., “Evolution of the polarization of the optical afterglow of the rgammas-ray burst GRB030329,” Nature 426 (2003) 157–159.Google Scholar
[485] B., Zhang, “Gamma-Ray Burst Prompt Emission,” Int. J. Mod. Phys. D 23 (2014) 30002.Google Scholar
[486] D., Band et al., “BATSE observations of gamma-ray burst spectra. 1. Spectral diversity.,” Astrophys. J. 413 (1993) 281–292.Google Scholar
[487] S., Kobayashi, T., Piran, and R., Sari, “Can internal shocks produce the variability in GRBs?,” Astrophys. J. 490 (1997) 92–98, arXiv:astro-ph/9705013 [astro-ph].Google Scholar
[488] E., Waxman, “Cosmological gamma-ray bursts and the highest energy cosmic rays,” Phys. Rev. Lett. 75 (1995) 386–389, astro-ph/9505082.Google Scholar
[489] M., Vietri, “On the acceleration of ultrahigh-energy cosmic rays in gamma-ray bursts,” Astrophys. J. 453 (1995) 883–889, astro-ph/9506081.Google Scholar
[490] F., Halzen and D., Hooper, “High-energy neutrino astronomy: The cosmic ray connection,” Rept. Prog. Phys. 65 (2002) 1025–1078, astro-ph/0204527.Google Scholar
[491] M., Bustamante, P., Baerwald, K., Murase, and W., Winter, “Neutrino and cosmic-ray emission from multiple internal shocks in gamma-ray bursts,” arXiv:1409.2874 [astro-ph.HE].
[492] E., Waxman and J. N., Bahcall, “High energy neutrinos from cosmological gammaray burst fireballs,” Phys. Rev. Lett. 78 (1997) 2292–2295, astro-ph/9701231.Google Scholar
[493] S., Razzaque, P., Mészáros, and E., Waxman, “Neutrino tomography of gammaray bursts and massive stellar collapses,” Phys. Rev. D68 (2003) 083001, arXiv:astro-ph/0303505 [astro-ph].Google Scholar
[494] S., Razzaque, P., Mészáros, and E., Waxman, “TeV neutrinos from core collapse supernovae and hypernovae,” Phys. Rev. Lett. 93 (2004) 181101, arXiv:astroph/ 0407064 [astro-ph]. [Erratum: Phys. Rev. Lett.94,109903(2005)].Google Scholar
[495] E., Waxman and J. N., Bahcall, “Neutrino afterglow from gamma-ray bursts: Similar to 1018 eV,” Astrophys. J. 541 (2000) 707–711, arXiv:hep-ph/9909286 [hep-ph].Google Scholar
[496] D., Guetta, D., Hooper, J., Alvarez-Muniz, F., Halzen, and E., Reuveni, “Neutrinos from individual gamma-ray bursts in the BATSE catalog,” Astropart. Phys. 20 (2004) 429–455, arXiv:astro-ph/0302524 [astro-ph].Google Scholar
[497] N., Globus, D., Allard, R., Mochkovitch, and E., Parizot, “UHECR acceleration at GRB internal shocks,” Mon. Not. Roy. Astron. Soc. 451 (2015) 751–790 arXiv:1409.1271 [astro-ph.HE].Google Scholar
[498] B., Rossi, High Energy Particles. Prentice Hall, New York, 1952.Google Scholar
[499] K., Greisen, “The Extensive Air Showers,” Prog. Cosmic Ray Physics 3 (1956) 1–141.Google Scholar
[500] J., Nishimura, “Theory of Cascade Showers,” Handbuch der Physik XLVI/2 (1967) 1–114.Google Scholar
[501] K., Kamata and J., NishimuraProg. Theor. Phys. (Kyoto) 6 (Suppl.) (1958) 93.
[502] A. M., Hillas and J., Lapikens, “Electron-photon cascades in the atmosphere and in detectors,” Proc. 15th Int. Cosmic Ray Conf. 8 (1977) 460–465.Google Scholar
[503] E. J., Fenyves, S. N., Balog, N. R., Davis, D. J., Suson, and T., Stanev, “Electromagnetic Component of 1014 − 1016 eV Air Showers,” Phys. Rev. D37 (1988) 649–656.Google Scholar
[504] S., Lafebre, R., Engel, H., Falcke, J., Hörandel, T., Huege, J., Kuijpers, and R., Ulrich, “Universality of electron-positron distributions in extensive air showers,” Astropart. Phys. 31 (2009) 243–254, arXiv:0902.0548 [astro-ph.HE].Google Scholar
[505] H.-J., Drescher and G. R., Farrar, “Dominant contributions to lateral distribution functions in ultra-high energy cosmic ray air showers,” Astropart. Phys. 19 (2003) 235–244, hep-ph/0206112.Google Scholar
[506] C., Meurer, J., Blümer, R., Engel, A., Haungs, and M., Roth, “Muon production in extensive air showers and its relation to hadronic interactions,” Czech. J. Phys. 56 (2006) A211, astro-ph/0512536.Google Scholar
[507] H.-J., Drescher, M., Bleicher, S., Soff, and H., Stoecker, “Model dependence of lateral distribution functions of high energy cosmic ray air showers,” Astropart. Phys. 21 (2004) 87–94, astro-ph/0307453.Google Scholar
[508] I. C., Mariş et al., “Influence of Low Energy Hadronic Interactions on Air-shower Simulations,” Nucl. Phys. Proc. Suppl. 196 (2009) 86–89, arXiv:0907.0409 [astro-ph.CO].Google Scholar
[509] R., Ulrich, R., Engel, and M., Unger, “Hadronic Multiparticle Production at Ultra- High Energies and Extensive Air Showers,” Phys. Rev. D83 (2011) 054026, arXiv:1010.4310 [hep-ph].Google Scholar
[510] J., Matthews, “A Heitler model of extensive air showers,” Astropart. Phys. 22 (2005) 387–397.Google Scholar
[511] L. G., Dedenko, “A new method of solving the nuclear cascade equation,” Proc. of 9th Int. Cosmic Ray Conf., London 1 (1965) 662.Google Scholar
[512] G., Bossard et al., “Cosmic ray air shower characteristics in the framework of the parton-based Gribov-Regge model NEXUS,” Phys. Rev. D63 (2001) 054030, hep-ph/0009119.Google Scholar
[513] H.-J., Drescher and G. R., Farrar, “Air shower simulations in a hybrid approach using cascade equations,” Phys. Rev. D67 (2003) 116001, astro-ph/0212018.Google Scholar
[514] T., Bergmann et al., “One-dimensional hybrid approach to extensive air shower simulation,” Astropart. Phys. 26 (2007) 420–432, astro-ph/0606564.Google Scholar
[515] J.W., Elbert, “Multiple Muons Produced by Cosmic Ray Interactions,” Proceedings DUMAND Summer Workshop 2 (1978) pp.101–121.Google Scholar
[516] T. K., Gaisser and T., Stanev, “Muon bundles in underground detectors,” Nucl. Instrum. Meth. A235 (1985) 183–192.Google Scholar
[517] C., Forti et al., “Simulation of atmospheric cascades and deep-underground muons,” Phys. Rev. D42 (1990) 3668.Google Scholar
[518] T. K., Gaisser, K., Jero, A., Karle, and J. van, Santen, “Generalized self-veto probability for atmospheric neutrinos,” Phys. Rev. D90 (2014) 023009, arXiv:1405. 0525 [astro-ph.HE].Google Scholar
[519] M., Nagano et al., “Energy spectrum of primary cosmic rays between 1014. 5 eV and 1018 eV,” J. Phys. G10 (1984) 1295.Google Scholar
[520] J., Engel, T. K., Gaisser, T., Stanev, and P., Lipari, “Nucleus-nucleus collisions and interpretation of cosmic ray cascades,” Phys. Rev. D46 (1992) 5013–5025.Google Scholar
[521] G., Battistoni, C., Forti, J., Ranft, and S., Roesler, “Deviations from the superposition model in a dual parton model applied to cosmic ray interactions with formation zone cascade in both projectile and target nuclei,” Astropart. Phys. 7 (1997) 49–49, arXiv:hep-ph/9606485.Google Scholar
[522] N. N., Kalmykov and S. S., Ostapchenko, “Comparison of characteristics of the nucleus nucleus interaction in the model of quark-gluon strings and in the superposition model,” Sov. J. Nucl. Phys. 50 (50198) 315–315.Google Scholar
[523] T. K, Gaisser, T., Stanev, P., Freier, and C. J., Waddington, “Nucleus-nucleus Collisions and Interpretation of Cosmic Ray Cascades Above 100 TeV,” Phys. Rev. D25 (1982) 2341–2341.Google Scholar
[524] A., Bialas, M., Bleszynski, and W., Czyz, “Multiplicity Distributions in Nucleus- Nucleus Collisions at High-Energies,” Nucl. Phys. B111 (1976) 461.Google Scholar
[525] J., Linsley, “Structure of large showers at depth 834 g cm−2, applications.” in Proceedings of the 15th Int. Cosmic Ray Conf., Plovdiv, Bulgaria, vol. 12, p. 89, 1977.Google Scholar
[526] J., Linsley and A. A., Watson, “Validity of scaling to 1020 eV and high-energy cosmic ray composition,” Phys. Rev. Lett. 46 (1981) 459–459.Google Scholar
[527] A. M., Hillas, “Angular and energy distributions of charged particles in electron photon cascades in air,” J. Phys. G8 (1982) 1461–1461.Google Scholar
[528] M., Giller, A., Kacperczyk, J., Malinowski, W., Tkaczyk, and G., Wieczorek, “Similarity of extensive air showers with respect to the shower age,” J. Phys. G31 (2005) 947–947.Google Scholar
[529] F., Schmidt, M., Ave, L., Cazon, and A. S., Chou, “A Model-Independent Method of Determining Energy Scale and Muon Number in Cosmic Ray Surface Detectors,” Astropart. Phys. 29 (2008) 355–355, arXiv:0712.3750 [astro-ph].Google Scholar
[530] P., Lipari, “The Concepts of ‘Age’ and ‘Universality’ in Cosmic Ray Showers,” Phys. Rev. 79 (2008) 063001, arXiv:0809.0190 [astro-ph].Google Scholar
[531] M., Giller, A., Śmiałkowski, and G., Wieczorek, “An extended universality of electron distributions in cosmic ray showers of high energies and its application,” Astropart. Phys. 60 (2014) 92–92, arXiv:1405.0819 [astro-ph.HE].Google Scholar
[532] F., Nerling, J., Blümer, R., Engel, and M., Risse, “Universality of electron distributions in high-energy air showers: Description of Cherenkov light production,” Astropart. Phys. 24 (2006) 421–421, astro-ph/0506729.Google Scholar
[533] M., Ave, R., Engel, J., Gonzalez, D., Heck, T., Pierog, and M., Roth, “extensive air shower universality of ground particle distributions,” proc. of 31st int. cosmic ray conf., beijing 2 (2011) 178–178.Google Scholar
[534] R. M., Ulrich et al., Pierre Auger Collab., “Extension of the measurement of the proton-air cross section with the Pierre Auger Observatory,” PoS (ICRC2015) (2015) 401. Proc. 34th Int. Cosmic Ray Conf. (The Hague).Google Scholar
[535] R., Ulrich, J., Blümer, R., Engel, F., Schüssler, and M., Unger, “On the measurement of the proton-air cross section using air shower data,” New J. Phys. 11 (2009) 065018, arXiv:0903.0404 [astro-ph.HE].Google Scholar
[536] T., Antoni et al., KASCADE Collab., “The Cosmic ray experiment KASCADE,” Nucl. Instrum. Meth. A513 (2003) 490–490.
[537] M., Amenomori et al., “Development and a performance test of a prototype air shower array for search for gamma-ray point sources in the very high-energy region,” Nucl. Instrum. Meth. A288 (1990) 619.Google Scholar
[538] K., Greisen, “Cosmic ray showers,” Ann. Rev. Nucl. Part. Sci. 10 (1960) 63–63.Google Scholar
[539] M., Nagano et al., “The lateral distribution of electrons of extensive air shower observed at Akeno (920-g/cm2),” J. Phys. Soc. Jap. 53 (1984) 1667–1667.Google Scholar
[540] A., Haungs, H., Rebel, and M., Roth, “Energy spectrum and mass composition of high-energy cosmic rays,” Rept. Prog. Phys. 66 (2003) 1145–1145.Google Scholar
[541] D., Newton, J., Knapp, and A. A., Watson, “The optimum distance at which to determine the size of a giant air shower,” Astropart. Phys. 26 (2007) 414–414, astro-ph/0608118.Google Scholar
[542] A. M., Hillaset al. Proc. 12th Int. Cosmic Ray Conf. (Hobart) 3 (1971) 1001, 1007.
[543] H. Y., Dai, K., Kasahara, Y., Matsubara, M., Nagano, and M., Teshima, “On the energy estimation of ultrahigh-energy cosmic rays observed with the surface detector array,” J. Phys.G14 (1988) 793–793.Google Scholar
[544] J. R., Hörandel, “Cosmic rays from the knee to the second knee: 1014 eV to 1018 eV,” Mod. Phys. Lett. A22 (2007) 1533–1533, arXiv:astro-ph/0611387.Google Scholar
[545] R., Walker and A. A., Watson, “Measurement of the fluctuations in the depth of maximum of showers produced by primary particles of energy greater than 1.5 × 1017 eV,” J. Phys. G8 (1982) 1131–1131.Google Scholar
[546] M., Ave, J., Knapp, M., Marchesini, M., Roth, and A. A., Watson, “Time structure of the shower front as measured at Haverah Park above 1019 eV,” Proc. of 28th Int. Cosmic Ray Conf., Tsukuba (2003) 349.Google Scholar
[547] J., Abraham et al., Pierre Auger Collab., “Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory,” Proc of 31st Int. Cosmic Ray Conf., Łódź (2009), arXiv:0906.2319 [astro-ph].Google Scholar
[548] M., Ave et al., “Mass composition of cosmic rays in the range 2 × 1017-3 × 1018 eV measured with the Haverah Park Array,” Astropart. Phys. 19 (2003) 61–61, astro-ph/0203150.Google Scholar
[549] M. T., Dova, M. E., Mancenido, A. G., Mariazzi, T. P., McCauley, and A. A., Watson, “The mass composition of cosmic rays near 1018 eV as deduced from measurements made at Volcano Ranch,” Astropart. Phys. 21 (2004) 597–597.Google Scholar
[550] M. T., Dova et al., “Time asymmetries in extensive air showers: a novel method to identify UHECR species,” Astropart. Phys. 31 (2009) 312–312, arXiv:0903.1755 [astro-ph.IM].Google Scholar
[551] J., Linsley, “Evidence for a primary cosmic-ray particle with energy 1020 eV,” Phys. Rev. Lett. 10 (1963) 146–146.Google Scholar
[552] C. J., Bell, “A recalculation of the upper end of the cosmic ray energy spectrum,” J.Phys. G Nucl. Phys. 2 (1976) 867–867.Google Scholar
[553] D. M., Edge, A. C., Evans, and H. J., Garmston, “The cosmic ray spectrum at energies above 1017 eV,” J. Phys. A 6 (1973) 1612–1612.Google Scholar
[554] A. V., Glushkov, O. S., Diminshtein, N. N., Efimov, L. I., Kaganov, and M. I., Pravdin, “Measurements of Energy Spectrum of Primary Cosmic Rays in the Energy Range Above 1017 eV,” Izv. Akad. Nauk Ser. Fiz. 40 (1976) 1023–1023.Google Scholar
[555] N., Chiba et al., AGASA Collab., “Akeno giant air shower array (AGASA) covering 100 km2 area,” Nucl. Instrum. Meth. A311 (1992) 338–338.Google Scholar
[556] M. A. K., Glasmacher et al., CASA-MIA Collab., “The cosmic ray composition between 1014 eV and 1016 eV,” Astropart. Phys. 12 (1999) 1–1.Google Scholar
[557] M., Aglietta et al., EAS-TOP Collab., “The cosmic ray primary composition in the ’knee’ region through the EAS electromagnetic and muon measurements at EASTOP,” Astropart. Phys. 21 (2004) 583–583.Google Scholar
[558] H., Tanaka et al., GRAPES-3 Collab., “Study on nuclear composition of cosmic rays around the knee utilizing muon multiplicity with GRAPES-3 experiment at Ooty,” Nucl. Phys. Proc. Suppl. 175-176 (2008) 280–280.
[559] M., Aglietta et al., The MACRO Collab., “The primary cosmic ray composition between 1015 eV and 1016 eV from extensive air showers electromagnetic and TeV muon data,” Astropart. Phys. 20 (2004) 641–641, astro-ph/0305325.Google Scholar
[560] R., Abbasi et al., IceCube Collab., “Cosmic Ray Composition and Energy Spectrum from 1-30 PeV Using the 40-String Configuration of IceTop and IceCube,” arXiv:1207.3455 [astro-ph.HE].
[561] A., Borione et al., CASA-MIA Collab., “A Large air shower array to search for astrophysical sources emitting gamma-rays with energies ě 1014 eV,” Nucl. Instrum. Meth. A346 (1994) 329–329.Google Scholar
[562] R. A., Ong et al., CASA-MIA Collab., “100 TeV Observations of the Cygnus Region by CASA-MIA,” Proc. of 30th Int. Cosmic Ray Conf. (Merida) 2 (2007) 771–771.Google Scholar
[563] G., Aielli et al., Argo-YBJ Collab., “Layout and performance of RPCs used in the Argo-YBJ experiment,” Nucl. Instrum. Meth. A562 (2006) 92–92.Google Scholar
[564] R., Atkins et al., Milagro Collab., “TeV gamma-ray survey of the Northern hemisphere sky using the Milagro Observatory,” Astrophys. J. 608 (2004) 680–680, astro-ph/0403097.Google Scholar
[565] A. U., Abeysekara et al., HAWC Collab., “The HAWC Gamma-Ray Observatory: Design, Calibration, and Operation,” arXiv:1310.0074 [astro-ph.IM].
[566] F., Aharonian, J., Buckley, T., Kifune, and G., Sinnis, “High energy astrophysics with ground-based gamma ray detectors,” Rept. Prog. Phys. 71 (2008) 096901.Google Scholar
[567] J. A., Hinton and W., Hofmann, “Teraelectronvolt astronomy,” Ann. Rev. Astron. Astrophys. 47 (2009) 523–523.Google Scholar
[568] N. M., Budnev et al., “The Cosmic Ray Mass Composition in the Energy Range 1015-1018 eV measured with the Tunka Array: Results and Perspectives,” arXiv:0902.3156 [astro-ph.HE].
[569] A. A., Ivanov, S. P., Knurenko, and I. Y., Sleptsov,Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: The energy spectrum of cosmic rays,” New J. Phys. 11 (2009) 065008, arXiv:0902.1016 [astro-ph.HE].Google Scholar
[570] D. B., Kieda, S. P., Swordy, and S. P., Wakely, “A high resolution method for measuring cosmic ray composition beyond 10-TeV,” Astropart. Phys. 15 (2001) 287–287, arXiv:astro-ph/0010554.Google Scholar
[571] F., Aharonian et al., HESS Collab., “First ground based measurement of atmospheric Cherenkov light from cosmic rays,” Phys. Rev. D75 (2007) 042004, arXiv:astro-ph/0701766.Google Scholar
[572] E., Korosteleva, L., Kuzmichev, and V., Prosin, EAS-TOP Collab., “Lateral distribution function of EAS Cherenkov light: Experiment QUEST and CORSIKA simulation,” Proc of 28th Int. Cosmic Ray Conf., Tsukuba (2003) 89–89.Google Scholar
[573] A. M., Hillas, “The sensitivity of Cherenkov radiation pulses to the longitudinal development of cosmic ray showers,” J. Phys. G8 (1982) 1475–1475.Google Scholar
[574] J. W., Fowler et al., “A Measurement of the cosmic ray spectrum and composition at the knee,” Astropart. Phys. 15 (2001) 49–49, arXiv:astro-ph/0003190 [astro-ph].Google Scholar
[575] K., Bernlöhr, “Impact of atmospheric parameters on the atmospheric Cherenkov technique,” Astropart. Phys. 12 (2000) 255–255, astro-ph/9908093.Google Scholar
[576] A., Karle et al., “Design and performance of the angle integrating Cherenkov array AIROBICC,” Astropart. Phys. 3 (1995) 321–321.Google Scholar
[577] M., Aglietta et al., EAS-TOP and MACRO Collab., “The cosmic ray proton, helium and CNO fluxes in the 100-TeV energy region from TeV muons and EAS atmospheric Cherenkov light observations of MACRO and EAS-TOP,” Astropart. Phys. 21 (2004) 223–223.Google Scholar
[578] A. M., Hillas, “Differences between gamma-ray and hadronic showers,” Space Science Rev. 75 (1996).Google Scholar
[579] G., Mohanty et al., “Measurement of TeV gamma-ray spectra with the Cherenkov imaging technique,” Astropart. Phys. 9 (1998) 15–15.Google Scholar
[580] K., Bernlöhr et al., HESS Collab., “The optical system of the HESS imaging atmospheric Cherenkov telescopes, Part 1: Layout and components of the system,” Astropart. Phys. 20 (2003) 111–111, arXiv:astro-ph/0308246 [astro-ph].Google Scholar
[581] R., Cornils et al., HESS Collab., “The optical system of the HESS imaging atmospheric Cherenkov telescopes, Part 2: Mirror alignment and point spread function,” Astropart. Phys. 20 (2003) 129–129, arXiv:astro-ph/0308247 [astro-ph].Google Scholar
[582] D., Ferenc, MAGIC Collab., “The MAGIC gamma-ray observatory,” Nucl. Instrum. Meth. A553 (2005) 274–274.Google Scholar
[583] D., Borla Tridon, T., Schweizer, F., Goebel, R., Mirzoyan, and M., Teshima, MAGIC Collab., “The MAGIC-II gamma-ray stereoscopic telescope system,” Nucl. Instrum. Meth. A623 (2010) 437–437.Google Scholar
[584] T. C., Weekes, H., Badran, S. D., Biller, I., Bond, S., Bradbury, et al., VERITAS Collab., “VERITAS: The Very energetic radiation imaging telescope array system,” Astropart. Phys. 17 (2002) 221–221, arXiv:astro-ph/0108478 [astro-ph].Google Scholar
[585] T. C., Weekes et al., VERITAS Collab., “VERITAS: Status Summary 2009,” Int. J. Mod. Phys. D19 (2010) 1003–1003.Google Scholar
[586] W., Hofmann and M., Martinez, CTA Collab., “Design Concepts for the Cherenkov Telescope Array,” arXiv:1008.3703 [astro-ph.IM].
[587] B., Keilhauer, J., Blümer, R., Engel, and H. O., Klages, “Impact of varying atmospheric profiles on extensive air shower observation: Fluorescence light emission and energy reconstruction,” Astropart. Phys. 25 (2006) 259–259, astro-ph/0511153.Google Scholar
[588] F., Arqueros, J. R., Hörandel, and B., Keilhauer, “Air Fluorescence Relevant for Cosmic-Ray Detection - Summary of the 5th Fluorescence Workshop, El Escorial 2007,” Nucl. Instrum. Meth. A597 (2008) 1–1, arXiv:0807.3760 [astro-ph].Google Scholar
[589] R. M., Baltrusaitis et al., Fly's Eye Collab., “The Utah Fly's Eye Detector,” Nucl. Instrum. Meth. A240 (1985) 410–410.Google Scholar
[590] D., Kuempel, K. H., Kampert, and M., Risse, “Geometry reconstruction of fluorescence detectors revisited,” Astropart. Phys. 30 (2008) 167–167, arXiv:0806.4523 [astro-ph].Google Scholar
[591] R. U., Abbasi et al., HiRes Collab., “Search for Point-Like Sources of Cosmic Rays with Energies above 1018.5 eV in the HiRes-I Monocular Data-Set,” Astropart. Phys. 27 (2007) 512–512, arXiv:astro-ph/0507663.Google Scholar
[592] C., Bonifazi et al., Pierre Auger Collab., “Angular resolution of the Pierre Auger Observatory,” Proc. of 29th Int. Cosmic Ray Conf., Pune (2005) 17.Google Scholar
[593] M., Aglietta et al., Pierre Auger Collab., “Anisotropy studies around the galactic centre at EeV energies with the Auger observatory,” Astropart. Phys. 27 (2007) 244–244, astro-ph/0607382.Google Scholar
[594] J., Blümer, Pierre Auger Collab., “Cosmic rays at the highest energies and the Pierre Auger Observatory,” J. Phys. G29 (2003) 867–867.Google Scholar
[595] M., Unger, B. R., Dawson, R., Engel, F., Schüssler, and R., Ulrich, “Reconstruction of Longitudinal Profiles of Ultra-High Energy Cosmic Ray Showers from Fluorescence and Cherenkov Light Measurements,” Nucl. Instrum. Meth. A588 (2008) 433–433, arXiv:0801.4309 [astro-ph].Google Scholar
[596] H. M. J., Barbosa, F., Catalani, J. A., Chinellato, and C., Dobrigkeit, “Determination of the calorimetric energy in extensive air showers,” Astropart. Phys. 22 (2004) 159–159, astro-ph/0310234.Google Scholar
[597] T., Pierog et al., “Dependence of the longitudinal shower profile on the characteristics of hadronic multiparticle production,” Proc. 29th Int. Cosmic Ray Conf., Pune 7 (2005) 103.Google Scholar
[598] T. K., Gaisser and A. M., Hillas, “Reliability of the method of constant intensity cuts for reconstructing the average development of vertical showers,” Proc. of 15th Int. Cosmic Ray Conf., Plovdiv 8 (1977) 353–353.Google Scholar
[599] J., Abraham et al., Pierre Auger Collab., “The Fluorescence Detector of the Pierre Auger Observatory,” Nucl. Instrum. Meth. A620 (2010) 227–227, arXiv:0907.4282 [astro-ph.IM].Google Scholar
[600] R. U., Abbasi et al., HiRes Collab., “Techniques for measuring atmospheric aerosols at the High Resolution Fly's Eye experiment,” Astropart. Phys. 25 (2006) 74–74, astro-ph/0512423.Google Scholar
[601] J., Abraham et al., Pierre Auger Collab., “A Study of the Effect of Molecular and Aerosol Conditions in the Atmosphere on Air Fluorescence Measurements at the Pierre Auger Observatory,” Astropart. Phys. 33 (2010) 108–108, arXiv:1002.0366 [astro-ph.IM].Google Scholar
[602] B., Keilhauer, J., Blümer, R., Engel, H. O., Klages, and M., Risse, “Impact of varying atmospheric profiles on extensive air shower observation: Atmospheric density and primary mass reconstruction,” Astropart. Phys. 22 (2004) 249–249, astro-ph/0405048.Google Scholar
[603] H. E., Bergeson et al., “Measurement of light emission from remote cosmic ray showers,” Phys. Rev. Lett. 39 (1977) 847–847.Google Scholar
[604] D. J., Bird et al., Fly's Eye Collab., “Detection of a cosmic ray with measured energy well beyond the expected spectral cutoff due to cosmic microwave radiation,” Astrophys. J. 441 (1995) 144–144.Google Scholar
[605] T., Abu-Zayyad et al., HiRes Collab., “The prototype high-resolution Fly's Eye cosmic ray detector,” Nucl. Instrum. Meth. A450 (2000) 253–253.Google Scholar
[606] J. H., Boyer, B. C., Knapp, E. J., Mannel, and M., Seman, “FADC-based DAQ for HiRes Fly's Eye,” Nucl. Instrum. Meth. A482 (2002) 457–457.Google Scholar
[607] H., Tokuno et al., TA Collab., “The Telescope Array experiment: Status and prospects,” AIP Conf. Proc. 1238 (2010) 365–365.Google Scholar
[608] Y., Tameda, A., Taketa, J. D., Smith, M., Tanaka, M., Fukushima, et al., “Trigger electronics of the new fluorescence detectors of the Telescope Array experiment,” Nucl. Instrum. Meth. A609 (2009) 227–227.Google Scholar
[609] J., Jelley et al., “Radio Pulses from Extensive Cosmic-Ray Air Showers,” Nature 1965 (205) 327–327.Google Scholar
[610] H. R., Allan, “Radio emission from extensive air showers,” Prog. Element. Part. Cos. Ray Phys. 10 (1971) 171.Google Scholar
[611] T., Huege, “The renaissance of radio detection of cosmic rays,” Braz. J. Phys. 44 (2014) 520–520, arXiv:1310.6927 [astro-ph.IM].Google Scholar
[612] W. D., Apel et al., LOPES Collab., “Lateral Distribution of the Radio Signal in Extensive Air Showers Measured with LOPES,” Astropart. Phys. 32 (2010) 294–294, arXiv:0910.4866 [astro-ph.HE].Google Scholar
[613] F. D., Kahn and I., Lerche, “Radiation from Cosmic Ray Air Showers,” Proc. Roy. Soc. Lond. A 289 (1966) 206–206.Google Scholar
[614] G. A., Askaryan, “Excess negative charge of an electron shower and its coherent radio emission,” J. Exp. Theor. Phys. 14 (1961) 441–441.Google Scholar
[615] G. A., Askaryan, “Coherent radio emission from cosmic showers in air and in dense media,” J. Exp. Theor. Phys. 48 (1965) 658–658.Google Scholar
[616] B., Revenu and V., Marin, “Coherent radio emission from the cosmic ray air shower sudden death,” arXiv:1307.5673 [astro-ph.HE].
[617] A., Aab et al., Pierre Auger Collab., “Probing the radio emission from air showers with polarization measurements,” Phys. Rev. D 89 (2014) 052002, arXiv:1402.3677 [astro-ph.HE].Google Scholar
[618] A., Bellétoile, R., Dallier, A., Lecacheux, V., Marin, L., Martin, B., Revenu, and D., Torres, “Evidence for the charge-excess contribution in air shower radio emission observed by the CODALEMA experiment,” Astropart. Phys. 69 (2015) 50–50.Google Scholar
[619] K. D., de Vries, A. M. v. d., Berg, O., Scholten, and K., Werner, “Coherent Cherenkov Radiation from Cosmic-Ray-Induced Air Showers,” Phys. Rev. Lett. 107 (2011) 061101, arXiv:1107.0665 [astro-ph.HE].Google Scholar
[620] K., Werner and O., Scholten, “Macroscopic Treatment of Radio Emission from Cosmic Ray Air Showers based on Shower Simulations,” Astropart. Phys. 29 (2008) 393–393, arXiv:0712.2517 [astro-ph].Google Scholar
[621] J., Chauvin, C., Riviere, F., Montanet, D., Lebrun, and B., Revenu, “Radio emission in a toy model with point-charge-like air showers,” Astropart. Phys. 33 (2010) 341–341.Google Scholar
[622] K. D., de Vries, O., Scholten, and K., Werner, “Macroscopic Geo-Magnetic Radiation Model: Polarization effects and finite volume calculations,” arXiv:1010.5364 [astro-ph.HE].
[623] N. N., Kalmykov, A. A., Konstantinov, and R., Engel, “Radio Emission from Extensive Air Showers as a Method for Cosmic-Ray Detection,” Phys. Atom. Nucl. 73 (2009) 1191–1191.Google Scholar
[624] J., Alvarez-Muniz, W. R., Carvalho Jr., and E. Zas, “Monte Carlo simulations of radio pulses in atmospheric showers using ZHAireS,” Astropart. Phys. 35 (2012) 325–325, arXiv:1107.1189 [astro-ph.HE].Google Scholar
[625] T., Huege, M., Ludwig, and C. W., James, “Simulating radio emission from air showers with CoREAS,” AIP Conf. Proc. 1535 (2013) 128, arXiv:1301.2132 [astro-ph.HE].Google Scholar
[626] K. D., de Vries, O., Scholten, and K., Werner, “The air shower maximum probed by Cherenkov effects from radio emission,” Astropart. Phys. 45 (2013) 23–23, arXiv:1304.1321 [astro-ph.HE].Google Scholar
[627] W. D., Apel et al., LOPES Collab., “Reconstruction of the energy and depth of maximum of cosmic-ray air-showers from LOPES radio measurements,” Phys. Rev. D90 (2014) 062001, arXiv:1408.2346 [astro-ph.IM].Google Scholar
[628] S., Buitink et al., “Method for high precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles,” Phys. Rev. D90 (2014) 082003, arXiv:1408.7001 [astro-ph.IM].Google Scholar
[629] A., Nelles et al., “A new way of air shower detection: measuring the properties of cosmic rays with LOFAR,” J. Phys. Conf. Ser. 632 (2015) 012018.Google Scholar
[630] H., Falcke et al., LOPES Collab., “Detection and imaging of atmospheric radio flashes from cosmic ray air showers,” Nature 435 (2005) 313–313, astro-ph/ 0505383.Google Scholar
[631] D., Ardouin et al., CODALEMA Collab., “Radio-detection signature of high-energy cosmic rays by the CODALEMA experiment,” Nucl. Instrum. Meth. A555 (2005) 148–148.
[632] P., Schellart et al., “Detecting cosmic rays with the LOFAR radio telescope,” Astron. Astrophys. 560 (2013) A98, arXiv:1311.1399 [astro-ph.IM].Google Scholar
[633] D., Ardouin et al., “First detection of extensive air showers by the TREND self-triggering radio experiment,” Astropart. Phys. 34 (2011) 717–717, arXiv:1007.4359 [astro-ph.IM].Google Scholar
[634] R., Dallier, Pierre Auger Collab., “Measuring cosmic ray radio signals at the Pierre Auger Observatory,” Nucl. Instrum. Meth. A630 (2011) 218–218.Google Scholar
[635] A., Aab et al., Pierre Auger Collab., “Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory,” Submitted to: Phys. Rev. D (2015), arXiv:1508.04267 [astro-ph.HE].Google Scholar
[636] R., Šmída et al., CROME Collab., “First Experimental Characterization of Microwave Emission from Cosmic Ray Air Showers,” Phys. Rev. Lett. 113 (2014) 221101, arXiv:1410.8291 [astro-ph.IM].Google Scholar
[637] J. R., Jokipii and G., Morfill, “Ultra-high-energy cosmic rays in a galactic wind and its termination shock,” Astrophys. J. 312 (1987) 170–170.Google Scholar
[638] T., Wibig and A. W., Wolfendale, “At what particle energy do extragalactic cosmic rays start to predominate?,” J. Phys. G31 (2005) 255–255, arXiv:astro-ph/ 0410624 [astro-ph].Google Scholar
[639] A. M., Hillas, “Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?,” J. Phys. G31 (2005) R95–R131.Google Scholar
[640] D., Heck, J., Knapp, J. N., Capdevielle, G., Schatz, and T., Thouw, “CORSIKA: A Monte Carlo code to simulate extensive air showers,” Wissenschaftliche Berichte, Forschungszentrum Karlsruhe FZKA 6019 (1998).Google Scholar
[641] J., Engler et al., “A warm-liquid calorimeter for cosmic-ray hadrons,” Nucl. Instrum. Meth. A427 (1999) 528–528.Google Scholar
[642] H., Bozdog et al., “The detector system for measurement of multiple cosmic muons in the central detector of KASCADE,” Nucl. Instrum. Meth. A465 (2001) 455–455.Google Scholar
[643] T., Antoni et al., “A large area limited streamer tube detector for the air shower experiment KASCADE-Grande,” Nucl. Instrum. Meth. A533 (2004) 387–387.Google Scholar
[644] P., Doll et al., “Muon tracking detector for the air shower experiment KASCADE,” Nucl. Instrum. Meth. A488 (2002) 517–517.Google Scholar
[645] W. D., Apel et al., KASCADE-Grande Collab., “The KASCADE-Grande experiment,” Nucl. Instrum. Meth. A620 (2010) 202–202.Google Scholar
[646] T., Antoni et al., KASCADE Collab., “Preparation of enriched cosmic ray mass groups with KASCADE,” Astropart. Phys. 19 (2003) 715–715, astro-ph/0303070.Google Scholar
[647] T., Antoni et al., KASCADE Collab., “Test of high-energy interaction models using the hadronic core of EAS,” J. Phys. G: Nucl. Part. Phys. 25 (1999) 2161, astro-ph/9904287.Google Scholar
[648] T., Antoni et al., KASCADE Collab., “Test of hadronic interaction models in the forward region with KASCADE event rates,” J. Phys. G27 (2001) 1785–1785, astro-ph/0106494.Google Scholar
[649] W. D., Apel et al., KASCADE Collab., “Comparison of measured and simulated lateral distributions for electrons and muons with KASCADE,” Astropart. Phys. 24 (2006) 467–467, astro-ph/0510810.Google Scholar
[650] W. D., Apel et al., KASCADE Collab., “Test of interaction models up to 40 PeV by studying hadronic cores of EAS,” J. Phys. G34 (2007) 2581–2581.
[651] A., Haungs, “Cosmic Rays from the Knee to the Ankle,” Phys. Procedia 61 (2015) 425–425, arXiv:1504.01859 [astro-ph.HE].Google Scholar
[652] W. D., Apel et al., KASCADE-Grande Collab., “The spectrum of high-energy cosmic rays measured with KASCADE-Grande,” Astropart. Phys. 36 (2012) 183–183, arXiv:1206.3834 [astro-ph.HE].Google Scholar
[653] V. V., Prosin et al., Tunka Collab., “Tunka-133: Results of 3 year operation,” Nucl. Instrum. Meth. A756 (2014) 94–94.Google Scholar
[654] R., Abbasi et al., IceCube Collab., “IceTop: The surface component of Ice- Cube,” Nucl. Instrum. Meth. A700 (2013) 188–188, arXiv:1207.6326 [astro-ph.IM].Google Scholar
[655] M. G., Aartsen et al., IceCube Collab., “Measurement of the cosmic ray energy spectrum with IceTop-73,” Phys. Rev. D 88 (2013) 042004, arXiv:1307.3795 [astro-ph.HE].Google Scholar
[656] T., Abu-Zayyad et al., HiRes-MIA Collab., “Measurement of the cosmic ray energy spectrum and composition from 1017 eV to 1018.3 eV using a hybrid fluorescence technique,” Astrophys. J. 557 (2001) 686–686, astro-ph/0010652.Google Scholar
[657] D. R., Bergman and J. W., Belz, “Cosmic rays: The second knee and beyond,” J. Phys. G Nucl. Part. Phys. 34 (2007) R359–R400, arXiv:0704.3721 [astro-ph].Google Scholar
[658] W. D., Apel et al., KASCADE-Grande Collab., “Ankle-like Feature in the Energy Spectrum of Light Elements of Cosmic Rays Observed with KASCADE-Grande,” Phys. Rev. D87 (2013) 081101, arXiv:1304.7114 [astro-ph.HE].Google Scholar
[659] W. D., Apel et al., KASCADE-Grande Collab., “Kneelike structure in the spectrum of the heavy component of cosmic rays observed with KASCADE-Grande,” Phys. Rev. Lett. 107 (2011) 171104, arXiv:1107.5885 [astro-ph.HE].Google Scholar
[660] K.-H., Kampert and M., Unger, “Measurements of the Cosmic Ray Composition with Air Shower Experiments,” Astropart. Phys. 35 (2012) 660–660, arXiv:1201.0018 [astro-ph.HE].Google Scholar
[661] B. A., Antokhonov et al., TUNKA Collab., “The new Tunka-133 EAS Cherenkov array: Status of 2009,” Nucl. Instrum. Meth. A628 (2011) 124–124.Google Scholar
[662] S. P., Knurenko and A., Sabourov, “Study of cosmic rays at the Yakutsk EAS array: Energy spectrum and mass composition,” Nucl. Phys. Proc. Suppl. 212-213 (2011) 241–241.
[663] K.-H., Kampert and A. A., Watson, “Extensive Air Showers and Ultra High- Energy Cosmic Rays: A Historical Review,” Eur. Phys. J. H37 (2012) 359–359, arXiv:1207.4827 [physics.hist-ph].
[664] J., Abraham et al., Pierre Auger Collab., “Observation of the suppression of the flux of cosmic rays above 4 × 1019eV,” Phys. Rev. Lett. 101 (2008) 061101, arXiv:0806.4302 [astro-ph].Google Scholar
[665] A., Aab et al., Pierre Auger Collab., “Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications,” Phys. Rev. D90 (2014) 122006, arXiv:1409.5083 [astro-ph.HE].Google Scholar
[666] T. K., Gaisser et al., “Cosmic ray composition around 1018eV,” Phys. Rev. D47 (1993) 1919–1919.Google Scholar
[667] R. U., Abbasi et al., TA Collab., “Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode,” Astropart. Phys. 64 (2014) 49–49, arXiv:1408.1726 [astro-ph.HE].Google Scholar
[668] R., Abbasi et al., Pierre Auger and TA Collab., “Report of the Working Group on the Composition of Ultra High Energy Cosmic Rays,” arXiv:1503.07540 [astro-ph.HE]. Proceedings of the UHECR workshop, Springdale USA, 2014.
[669] E., Zas, “Neutrino detection with inclined air showers,” New J. Phys. 7 (2005) 130, arXiv:astro-ph/0504610.Google Scholar
[670] S. Y., BenZvi et al., “The lidar system of the Pierre Auger Observatory,” Nucl. Instrum. Meth. A574 (2007) 171–171, arXiv:astro-ph/0609063.Google Scholar
[671] B., Fick et al., “The central laser facility at the Pierre Auger Observatory,” JINST 1 (2006) P11003.Google Scholar
[672] J., Abraham et al., Pierre Auger Collab., “Trigger and aperture of the surface detector array of the Pierre Auger Observatory,” Nucl. Instrum. Meth. A613 (2010) 29–29.Google Scholar
[673] M. C., Medina et al., “Enhancing the Pierre Auger Observatory to the 1017 eV-1018.5 eV range: Capabilities of an infill surface array,” Nucl. Instrum. Meth. A566 (2006) 302–302, astro-ph/0607115.Google Scholar
[674] T., Abu-Zayyad et al., TA Collab., “The surface detector array of the Telescope Array experiment,” Nucl. Instrum. Meth. A689 (2012) 87–87, arXiv:1201.4964 [astro-ph.IM].Google Scholar
[675] H., Tokuno et al., TA Collab., “New air fluorescence detectors employed in the Telescope Array experiment,” Nucl. Instrum. Meth. A676 (2012) 54–54, arXiv:1201.0002 [astro-ph.IM].Google Scholar
[676] T., Shibata et al., TA Collab., “Absolute energy calibration of FD by an electron linear accelerator for Telescope Array,” AIP Conf. Proc. 1367 (2011) 44–44.Google Scholar
[677] T., Abu-Zayyad, TA Collab., “Cerenkov Events Seen by The TALE Air Fluorescence Detector,” arXiv:1310.0069 [astro-ph.IM].
[678] G. B., Thomson, P., Sokolsky, and C. C. H., Jui, “The Telescope Array Low Energy Extension (TALE),” Proc. 32nd Int. Cosmic Ray Conf. (Beijing) 3 (2011) 338.Google Scholar
[679] A., Loeb and E., Waxman, “The Cumulative background of high energy neutrinos from starburst galaxies,”JCAP 0605 (2006) 003, arXiv:astro-ph/0601695 [astro-ph].
[680] V. S., Berezinsky, P., Blasi, and V. S., Ptuskin, “Clusters of Galaxies as a Storage Room for Cosmic Rays,” Astrophys. J. 487 (1997) 529–529, arXiv:astroph/ 9609048 [astro-ph].Google Scholar
[681] P. L., Biermann and P. A., Strittmatter, “Synchrotron emission from shock waves in active galactic nuclei,” Astrophys. J. 322 (1987) 643–643.Google Scholar
[682] K., Fang, K., Kotera, K., Murase, and A. V., Olinto, “Testing the Newborn Pulsar Origin of Ultrahigh Energy Cosmic Rays with EeV Neutrinos,” Phys. Rev. D90 (2014) 103005, arXiv:1311.2044 [astro-ph.HE].Google Scholar
[683] M., Unger, G. R., Farrar, and L. A., Anchordoqui, “Origin of the ankle in the ultrahigh energy cosmic ray spectrum, and of the extragalactic protons below it,” Phys. Rev. D92 no. 12, (2015) 123001, arXiv:1505.02153 [astro-ph.HE].Google Scholar
[684] N., Globus, D., Allard, and E., Parizot, “A complete model of the cosmic ray spectrum and composition across the Galactic to extragalactic transition,” Phys. Rev. D92 no. 2, (2015) 021302, arXiv:1505.01377 [astro-ph.HE].Google Scholar
[685] A., Aab et al., Pierre Auger Collab., “Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 1017.8 eV,” Phys. Rev. D90 (2014) 122005, arXiv:1409.4809 [astro-ph.HE].Google Scholar
[686] H., Falcke and P., Gorham, “Detecting radio emission from cosmic ray air showers and neutrinos with a digital radio telescope,” Astropart. Phys. 19 (2003) 477–477, arXiv:astro-ph/0207226 [astro-ph].Google Scholar
[687] S., Hoover et al., ANITA Collab., “Observation of Ultra-high-energy Cosmic Rays with the ANITA Balloon-borne Radio Interferometer,” Phys. Rev. Lett. 105 (2010) 151101, arXiv:1005.0035 [astro-ph.HE].Google Scholar
[688] P. W., Gorham et al., “Observations of Microwave Continuum Emission from Air Shower Plasmas,” Phys. Rev. D78 (2008) 032007, arXiv:0705.2589 [astro-ph].Google Scholar
[689] P. W., Gorham, “On the possibility of radar echo detection of ultra-high energy cosmic ray and neutrino induced extensive air showers,” Astropart. Phys. 15 (2001) 177–177, arXiv:hep-ex/0001041.Google Scholar
[690] E., Conti, G., Sartori, and G., Viola, “Measurement of the near-infrared fluorescence of the air for the detection of ultra-high-energy cosmic rays,” Astropart. Phys. 34 (2011) 333–333, arXiv:1008.0329 [astro-ph.IM].Google Scholar
[691] A., Santangelo and A., Petrolini, “Observing ultra-high-energy cosmic particles from space: S-EUSO, the super-extreme universe space observatory mission,” New J. Phys. 11 (2009) 065010.Google Scholar
[692] P., Gorodetzky, JEM-EUSO Collab., “Status of the JEM EUSO telescope on international space station,” Nucl. Instrum. Meth. A626-627 (2011) S40–S43.Google Scholar
[693] F., Reines, “Neutrino interactions,” Ann. Rev. Nucl. Part. Sci. 10 (1960) 1–1.Google Scholar
[694] M. A., Markov, “On high energy neutrino physics,” Proc. Int. Conference on High Energy Physics at Rochester (1960) 578–578.
[695] N., Jelley, A. B., McDonald, and R. G. H., Robertson, “The Sudbury Neutrino Observatory,” Ann. Rev. Nucl. Part. Sci. 59 (2009) 431–431.Google Scholar
[696] V. J., Stenger, “DUMAND 80. Proceedings, 1980 International DUMAND Symposium, Honolulu, USA, July 24 - August 2, 1980,”.
[697] J., Babson et al., DUMAND Collab., “Cosmic RayMuons in the Deep Ocean,” Phys. Rev. D42 (1990) 3613–3613.Google Scholar
[698] P., Padovani and E., Resconi, “Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events?,” Mon. Not. Roy. Astron. Soc. 443 (2014) 474–474, arXiv:1406.0376 [astro-ph.HE].Google Scholar
[699] T. K., Gaisser, “Neutrino astronomy: Physics goals, detector parameters,” Proc. of OECD Megascience Forum Workshop, Taormina, Sicily (1997), arXiv:astro-ph/9707283 [astro-ph].Google Scholar
[700] E., Waxman and J. N., Bahcall, “High energy neutrinos from astrophysical sources: An upper bound,” Phys. Rev. D59 (1999) 023002, hep-ph/9807282.Google Scholar
[701] K., Mannheim, R. J., Protheroe, and J. P., Rachen, “On the cosmic ray bound for models of extragalactic neutrino production,” Phys. Rev. D63 (2001) 023003, astro-ph/9812398.Google Scholar
[702] J. N., Bahcall and E., Waxman, “High energy astrophysical neutrinos: The upper bound is robust,” Phys. Rev. D64 (2001) 023002, hep-ph/9902383.Google Scholar
[703] C., Spiering, “Towards High-Energy Neutrino Astronomy. A Historical Review,” Eur. Phys. J. H37 (2012) 515–515, arXiv:1207.4952 [astro-ph.IM].Google Scholar
[704] V., Ayutdinov et al., The BAIKAL Collab., “Results from the BAIKAL neutrino telescope,” astro-ph/0305302.
[705] M., Ageron et al., ANTARES Collab., “ANTARES: the first undersea neutrino telescope,” Nucl. Instrum. Meth. A656 (2011) 11–11, arXiv:1104.1607 [astro-ph.IM].Google Scholar
[706] F., Halzen and J. G., Learned, “High-energy neutrino detection in deep polar ice,” Proc. 5th Int. Symp. on Very High Energy Cosmic-Ray Interactions, Lodz, Poland (1988).
[707] F., Halzen, J., Learned, and T., Stanev, “Neutrino Astronomy,” AIP Conf. Proc. 198 (1990) 39–39.Google Scholar
[708] A., Karle, “The Path from AMANDA to IceCube,” Proc. IAU Symposium 288, Astrophysics from Antarctica (2012).
[709] R., Abbasi et al., IceCube Collab., “Search for Point Sources of High Energy Neutrinos with Final Data from AMANDA-II,” Phys. Rev. D79 (2009) 062001, arXiv:0809.1646 [astro-ph].Google Scholar
[710] M., Ackermann et al., AMANDA Collab., “The IceCube prototype string in AMANDA,” Nucl. Instrum. Meth. A556 (2006) 169–169, arXiv:astro-ph/ 0601397 [astro-ph].Google Scholar
[711] T. K., Gaisser and F., Halzen, “IceCube,” Ann. Rev. Nucl. Part. Sci. 64 (2014) 101–101.Google Scholar
[712] R., Abbasi et al., IceCube Collab., “The IceCube Data Acquisition System: Signal Capture, Digitization, and Timestamping,” Nucl. Instrum. Meth. A601 (2009) 294–294, arXiv:0810.4930 [physics.ins-det].Google Scholar
[713] M. G., Aartsen et al., IceCube Collab., “Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector,” Science 342 (2013) 1242856, arXiv:1311.5238 [astro-ph.HE].Google Scholar
[714] U. F., Katz, KM3NeT Collab., “News from KM3NeT,” AIP Conf. Proc. 1630 (2014) 38–38.Google Scholar
[715] S., Adrian-Martinez et al., KM3NeT Collab., “Deep sea tests of a prototype of the KM3NeT digital optical module,” Eur. Phys. J. C74 (2014) 3056, arXiv:1405.0839 [astro-ph.IM].Google Scholar
[716] M. G., Aartsen et al., IceCube-Gen2 Collab., “IceCube-Gen2: A Vision for the Future of Neutrino Astronomy in Antarctica,” arXiv:1412.5106 [astro-ph.HE].
[717] L., Pasquali and M. H., Reno, “Tau-neutrino fluxes from atmospheric charm,” Phys. Rev. D59 (1999) 093003, arXiv:hep-ph/9811268 [hep-ph].Google Scholar
[718] M. G., Aartsen et al., IceCube Collab., “Searches for Extended and Point-like Neutrino Sources with Four Years of IceCube Data,” Astrophys. J. 796 (2014) 109, arXiv:1406.6757 [astro-ph.HE].Google Scholar
[719] J., Braun, M., Baker, J., Dumm, C., Finley, A., Karle, and T., Montaruli, “Time- Dependent Point Source Search Methods in High Energy Neutrino Astronomy,” Astropart. Phys. 33 (2010) 175–175, arXiv:0912.1572 [astro-ph.IM].Google Scholar
[720] S., Adrian-Martinez et al., ANTARES Collab., “Search for Cosmic Neutrino Point Sources with Four Year Data of the ANTARES Telescope,” Astrophys. J. 760 (2012) 53, arXiv:1207.3105 [hep-ex].Google Scholar
[721] G. J., Feldman and R. D., Cousins, “A Unified Approach to the Classical Statistical Analysis of Small Signals,” Phys. Rev. D57 (1998) 3873–3873, arXiv:physics/9711021.Google Scholar
[722] J., Ahrens et al., IceCube Collab., “Sensitivity of the IceCube detector to astrophysical sources of high energy muon neutrinos,” Astropart. Phys. 20 (2004) 507–507, astro-ph/0305196.Google Scholar
[723] M. G., Aartsen et al., IceCube Collab., “Searches for Time Dependent Neutrino Sources with IceCube Data from 2008 to 2012,” Astrophys. J. 807 (2015) 46, arXiv:1503.00598 [astro-ph.HE].Google Scholar
[724] M. G., Aartsen et al., IceCube Collab., “Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube,” Astrophys. J. 805 (2015) L5, arXiv:1412.6510 [astro-ph.HE].Google Scholar
[725] M. G., Aartsen et al., IceCube Collab., “First observation of PeV-energy neutrinos with IceCube,” Phys. Rev. Lett. 111 (2013) 021103, arXiv:1304.5356 [astro-ph.HE].Google Scholar
[726] V., Barger et al., “Glashow resonance as a window into cosmic neutrino sources,” Phys. Rev. D90 (2014) 121301, arXiv:1407.3255 [astro-ph.HE].Google Scholar
[727] M. G., Aartsen et al., IceCube Collab., “Atmospheric and Astrophysical Neutrinos above 1 TeV Interacting in IceCube,” Phys. Rev. D91 (2015) 022001, arXiv:1410.1749 [astro-ph.HE].Google Scholar
[728] M. G., Aartsen et al., IceCube Collab., “Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube,” Phys. Rev. Lett. 115 no. 8, (2015) 081102, arXiv:1507.04005 [astro-ph.HE].Google Scholar
[729] M. G., Aartsen et al., IceCube Collab., “Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube,” Phys. Rev. Lett. 114 no. 17, (2015) 171102, arXiv:1502.03376 [astro-ph.HE].Google Scholar
[730] M. G., Aartsen et al., IceCube Collab., “A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube,” Astrophys. J. 809 no. 1, (2015) 98, arXiv:1507.03991 [astro-ph.HE].Google Scholar
[731] P., Lipari, “Proton and Neutrino Extragalactic Astronomy,” Phys. Rev. D78 (2008) 083011, arXiv:0808.0344 [astro-ph].Google Scholar
[732] M., Ahlers and F., Halzen, “Pinpointing Extragalactic Neutrino Sources in Light of Recent IceCube Observations,” Phys. Rev. D90 (2014) 043005, arXiv:1406.2160 [astro-ph.HE].Google Scholar
[733] M., Kowalski, “Status of High-Energy Neutrino Astronomy,” J. Phys. Conf. Ser. 632 no. 1, (2015) 012039, arXiv:1411.4385 [astro-ph.HE].Google Scholar
[734] M., Ahlers, M. C., Gonzalez-Garcia, and F., Halzen, “GRBs on probation: testing the UHE CR paradigm with IceCube,” Astropart. Phys. 35 (2011) 87–87, arXiv:1103.3421 [astro-ph.HE].Google Scholar
[735] V. A., Acciari et al., “A connection between star formation activity and cosmic rays in the starburst galaxy M 82,” Nature 462 (2009) 770–770, arXiv:0911.0873 [astro-ph.CO].Google Scholar
[736] F., Acero et al., HESS Collab., “Detection of Gamma Rays From a Starburst Galaxy,” Science 326 (2009) 1080, arXiv:0909.4651 [astro-ph.HE].Google Scholar
[737] A., Abramowski et al., HESS Collab., “Spectral analysis and interpretation of the γ-ray emission from the Starburst galaxy NGC 253,” Astrophys. J. 757 (2012) 158, arXiv:1205.5485 [astro-ph.HE].Google Scholar
[738] K., Murase, M., Ahlers, and B. C., Lacki, “Testing the Hadronuclear Origin of PeV Neutrinos Observed with IceCube,” Phys. Rev. D88 (2013) 121301, arXiv:1306.3417 [astro-ph.HE].Google Scholar
[739] N., Senno, P., Mészáros, K., Murase, P., Baerwald, and M. J., Rees, “Extragalactic star-forming galaxies with hypernovae and supernovae as high-energy neutrino and gamma-ray sources: the case of the 10 TeV neutrino data,” Astrophys. J. 806 (2015) 24, arXiv:1501.04934 [astro-ph.HE].Google Scholar
[740] M., Ackermann et al., Fermi-LAT Collab., “The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV,” Astrophys. J. 799 (2015) 86, arXiv:1410.3696 [astro-ph.HE].Google Scholar
[741] W. D., Apel et al., KASCADE-Grande Collab., “KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays,” Astropart. Phys. 47 (2013) 54–54, arXiv:1306.6283 [astro-ph.HE].Google Scholar
[742] A. D., Panov et al., ATIC Collab., “The results of ATIC-2 experiment for elemental spectra of cosmic rays,” Bull. Russ. Acad. Sci. Phys. 71 (2007) 494, arXiv:astro-ph/0612377.Google Scholar
[743] M., Amenomori et al., Tibet ASγ Collab., “The all-particle spectrum of primary cosmic rays in the wide energy range from 1014 eV to 1017 eV observed with the Tibet- III air-shower array,” Astrophys. J. 678 (2008) 1165–1165, arXiv:0801.1803 [hep-ex].Google Scholar
[744] M., Nagano et al., “Energy spectrum of primary cosmic rays above 1017 eV determined from the extensive air shower experiment at Akeno,” J. Phys. G18 (1992) 423–423.Google Scholar
[745] A., Aab et al., Pierre Auger Collab., “The Pierre Auger Observatory: Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013),” Proc of 33rd Int. Cosmic Ray Conf., Rio de Janeiro (2013), arXiv:1307.5059 [astro-ph.HE].Google Scholar
[746] T., Maeno et al., BESS Collab., “Successive measurements of cosmic-ray antiproton spectrum in a positive phase of the solar cycle,” Astropart. Phys. 16 (2001) 121–121, arXiv:astro-ph/0010381.Google Scholar
[747] Y., Shikaze et al., BESS Collab., “Measurements of 0.2-GeV/n to 20-GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer,” Astropart. Phys. 28 (2007) 154–154, arXiv:astro-ph/ 0611388.Google Scholar
[748] M., Aguilar et al., AMS Collab., “The Alpha Magnetic Spectrometer (AMS) on the International Space Station. I: Results from the test flight on the space shuttle,” Phys. Rept. 366 (2002) 331–331.Google Scholar
[749] M., Aguilar, AMS Collab., “Precision Measurement of the Helium Flux in Primary Cosmic Rays of Rigidities 1.9 GV to 3 TV with the Alpha Magnetic Spectrometer on the International Space Station,” Phys. Rev. Lett. 115 no. 21, (2015) 211101.Google Scholar
[750] S., Orito et al., BESS Collab., “Precision measurement of cosmic-ray antiproton spectrum,” Phys. Rev. Lett. 84 (2000) 1078–1078, astro-ph/9906426.Google Scholar
[751] O., Adriani et al., PAMELA Collab., “PAMELA results on the cosmic-ray antiproton flux from 60 MeV to 180 GeV in kinetic energy,” Phys. Rev. Lett. 105 (2010) 121101, arXiv:1007.0821 [astro-ph.HE].Google Scholar
[752] O., Adriani et al., PAMELA Collab., “The cosmic-ray electron flux measured by the PAMELA experiment between 1 and 625 GeV,” Phys. Rev. Lett. 106 (2011) 201101, arXiv:1103.2880 [astro-ph.HE].Google Scholar
[753] O., Adriani et al., PAMELA Collab., “Cosmic-Ray Positron Energy Spectrum Measured by PAMELA,” Phys. Rev. Lett. 111 (2013) 081102, arXiv:1308.0133 [astro-ph.HE].Google Scholar
[754] J., Chang et al., ATIC Collab., “An excess of cosmic ray electrons at energies of 300-800 GeV,” Nature 456 (2008) 362–362.Google Scholar
[755] M., Aguilar et al., AMS-01 Collab., “Cosmic-ray positron fraction measurement from 1-GeV to 30- GeV with AMS-01,” Phys. Lett. B646 (2007) 145–145, arXiv:astro-ph/0703154.
[756] L., Accardo et al., AMS Collab., “High Statistics Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5–500 GeV with the Alpha Magnetic Spectrometer on the International Space Station,” Phys. Rev. Lett. 113 (2014) 121101.Google Scholar
[757] M., Aguilar et al., AMS Collab., “Precision Measurement of the (e+ + e-) Flux in Primary Cosmic Rays from 0.5 GeV to 1 TeV with the Alpha Magnetic Spectrometer on the International Space Station,” Phys. Rev. Lett. 113 (2014) 221102.Google Scholar
[758] C. D., Dermer and G., Menon, High energy radiation from black holes. Princeton Univ. Pr., 2009.
[759] R. J., Glauber, “Cross-sections in deuterium at high-energies,” Phys. Rev. 100 (1955) 242–242.Google Scholar
[760] W., Czyz and L. C., Maximon, “High-energy, small angle elastic scattering of strongly interacting composite particles,” Annals Phys. 52 (1969) 59–59.Google Scholar
[761] M. M., Block and R. N., Cahn, “High-Energy p anti-p and p p Forward Elastic Scattering and Total Cross-Sections,” Rev. Mod. Phys. 57 (1985) 563.Google Scholar
[762] R. C., Barret and D. F., Jackson, Nuclear size and structure. Clarendon, Oxford, 1977.Google Scholar
[763] S. Y., Shmakov, V. V., Uzhinskii, and A. M., Zadoroshny, “DIAGEN – Generator of inelastic nucleus-nucleus interaction diagrams,” Comp. Phys. Commun. 54 (1989) 125. JINR-E2-88-732.Google Scholar
[764] W., Broniowski, M., Rybczynski, and P., Bozek, “GLISSANDO: GLauber Initial- State Simulation AND mOre.,” Comput. Phys. Commun. 180 (2009) 69–69, arXiv:0710.5731 [nucl-th].Google Scholar
[765] M. L., Miller, K., Reygers, S. J., Sanders, and P., Steinberg, “Glauber modeling in high energy nuclear collisions,” Ann. Rev. Nucl. Part. Sci. 57 (2007) 205–205, arXiv:nucl-ex/0701025.Google Scholar
[766] H. J., Drescher,M., Hladik, S., Ostapchenko, T., Pierog, and K., Werner, “Parton-based Gribov-Regge theory,” Phys. Rept. 350 (2001) 93–93, hep-ph/0007198.Google Scholar
[767] S., Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York, 1972.Google Scholar
[768] P. J. E., Peebles, Principles of physical cosmology. Princeton Univ. Pr., 1994.Google Scholar
[769] D. W., Hogg, “Distance measures in cosmology,” arXiv:astro-ph/9905116 [astro-ph].
[770] A. M., Hillas, “Two interesting techniques for Monte-Carlo simulations of very high energy hadron cascades,” Proc. 17th Int. Cosmic Ray Conf. (Paris) 8 (2003) 193–193.Google Scholar
[771] P., Mészáros, “Gamma-Ray Bursts,” Rep. Prog. Phys. 69 (2006) 2259–2259, astro-ph/0605208.Google Scholar
[772] T., Pierog and K., Werner, “Muon Production in Extended Air Shower simulations,” Phys. Rev. Lett. 101 (2008) 171101, astro-ph/0611311.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Thomas K. Gaisser, University of Delaware, Ralph Engel, Karlsruhe Institute of Technology, Germany, Elisa Resconi, Technische Universität München
  • Book: Cosmic Rays and Particle Physics
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139192194.022
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Thomas K. Gaisser, University of Delaware, Ralph Engel, Karlsruhe Institute of Technology, Germany, Elisa Resconi, Technische Universität München
  • Book: Cosmic Rays and Particle Physics
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139192194.022
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Thomas K. Gaisser, University of Delaware, Ralph Engel, Karlsruhe Institute of Technology, Germany, Elisa Resconi, Technische Universität München
  • Book: Cosmic Rays and Particle Physics
  • Online publication: 05 June 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781139192194.022
Available formats
×