Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-05T12:36:22.863Z Has data issue: false hasContentIssue false

Chapter 11 - Artifacts and pitfalls in perfusion MR imaging

from Section 1 - Physiological MR techniques

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Introduction

As described in Chs. 7 and 8, MRI provides two alternative approaches to measure perfusion: using a bolus of an exogenous paramagnetic contrast agent (dynamic susceptibility contrast MRI [DSC-MRI]; see Ch. 7 for details) or by means of magnetically labeled blood as an endogenous tracer (arterial spin labeling [ASL]; see Ch. 8 for details). Both techniques have been extensively used since the early 1990s, and important improvements have made them more accurate and robust. However, some significant issues must be considered whenever implementing, using, and (especially) interpreting the images generated by either technique. This is because both methods rely on certain assumptions that cannot always be satisfied, and they can be prone to artifacts. This chapter discusses the most important caveats relating to absolute quantification of perfusion MRI, with particular emphasis on the potential implications for absolute cerebral blood flow (CBF) measurements in clinical use.

Artifacts and limitations

Dynamic susceptibility contrast MRI

Although DSC-MRI can provide, in principle, absolute measurements of CBF, cerebral blood volume (CBV), and mean transit time (MTT), there are a number of issues that can affect the accuracy of these measurements. The most common potential sources of error are described below.

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 137 - 155
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Rosen, BR, Belliveau, JW, Vevea, JM, Brady, TJ.Perfusion imaging with NMR contrast agents. Magn Reson Med 1990; 14: 249–265.CrossRefGoogle ScholarPubMed
Weisskoff, RM, Zuo, CS, Boxerman, JL, Rosen, BR.Microscopic susceptibility variation and transverse relaxation. Theory and experiment. Magn Reson Med 1994; 31: 601–610.CrossRefGoogle ScholarPubMed
Kiselev, VG. On the theoretical basis of perfusion measurements by dynamic susceptibility contrast MRI. Magn Reson Med 2001; 46: 1113–1122.CrossRefGoogle ScholarPubMed
van Osch, MJP, Vonken, EPA, Viergever, MA, van der Grond, J, Bakker, CJG. Measuring the arterial input function with gradient echo sequences. Magn Reson Med 2003; 49: 1067–1076.CrossRefGoogle ScholarPubMed
Kjolby, BF, Østergaard, L, Kiselev, VG. Theoretical model of intravascular paramagnetic tracers effect on tissue relaxation. Magn Reson Med 2006; 56, 187–197.CrossRefGoogle ScholarPubMed
Akbudak, E, Conturo, TE.Arterial input functions from MR phase imaging. Magn Reson Med 1996; 36: 809–815.CrossRefGoogle ScholarPubMed
Calamante, F, Connelly, A, van Osch, MJP.Non-linear ΔR2* effects in perfusion quantification using bolus-tracking MRI. Magn Reson Med 2009; 61: 486–492.CrossRefGoogle Scholar
Rempp, KA, Brix, G, Wenz, F, et al. Quantification of regional cerebral blood flow and volume with dynamic susceptibility contrast-enhanced MR imaging. Radiology 1994; 193: 637–641.CrossRefGoogle ScholarPubMed
Schreiber, WG, Gückel, F, Stritzke, P, et al. Cerebral blood flow and cerebrovascular reserve capacity: estimation by dynamic magnetic resonance imaging. J Cereb Blood Flow Metab 1998; 18: 1143–1156.CrossRefGoogle ScholarPubMed
Vonken, EPA, van Osch, MJP, Baker, CJG, Viergever, MA. Measurement of cerebral perfusion with dual-echo multi-slice quantitative dynamic susceptibility contrast MRI. J Magn Reson Imaging 1999; 10: 109–117.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Smith, AM, Grandin, CB, Duprez, T, Mataigne, F, Cosnar, G. Whole brain quantitative CBF and CBV measurements using MRI bolus tracking: comparison of methodologies. Magn Reson Med 2000; 43: 559–654.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Grandin, CB, Duprez, TP, Smith, AM, et al. Usefulness of magnetic resonance-derived quantitative measurements of cerebral blood flow and volume in prediction of infarct growth in hyperacute stroke. Stroke 32: 1147–1153.CrossRef
Johnson, KM, Tao, JZT, Kennan, RP, Gore, JC.Intravascular susceptibility agent effects on tissue transverse relaxation rates in vivo. Magn Reson Med 2001; 44: 909–914.3.0.CO;2-U>CrossRefGoogle Scholar
Hedehus, M, Steensgaard, , Rostrup, E, Larsson, EBW. Investigation of the linear relation between R2* and gadolinium concentration in vivo. In Proceedings of the 5th International Society for Magnetic Resonance in Medicine, Vancouver, 1997, p. 1792.Google Scholar
Calamante, F, Thomas, DL, Pell, GS, Wiersma, J, Turner, R.Measuring cerebral blood flow using magnetic resonance techniques. J Cereb Blood Flow Metab 1999; 19: 701–735.CrossRefGoogle Scholar
Loufti, I, Frackowiak, RS, Myers, MJ, Lavender, JP. Regional brain hematocrit in stroke by single photon emission computer tomography imaging. Am J Physiol Imaging 1987; 2: 10–16.Google Scholar
Yamamuchi, H, Fukuyama, H, Nagahama, Y, Katsumi, Y, Okazawa, H.Cerebral hematocrit decreases with hemodynamic compromise in carotid artery occlusion: a PET study. Stroke 1998; 29: 98–103.CrossRefGoogle Scholar
Calamante, F, Gadian, DG, Connelly, A.Quantification of perfusion using bolus tracking MRI in stroke. Assumptions, limitations, and potential implications for clinical use. Stroke 2002; 33: 1146–1151.CrossRefGoogle ScholarPubMed
Østergaard, L, Johannsen, P, Poulsen, PH, et al. Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with [O-15] H2O positron emission tomography in humans. J Cereb Blood Flow Metab 1998; 18: 935–940.CrossRefGoogle Scholar
Østergaard, L, Smith, DF, Vestergaard-Poulsen, P, et al. Absolute cerebral blood flow and blood volume measured by magnetic resonance imaging bolus tracking: comparison with positron emission tomography values. J Cereb Blood Flow Metab 1998; 18: 425–432.CrossRefGoogle ScholarPubMed
Lin, W, Celik, A, Derdeyn, C, et al. Østergaard L, Powers WJ. Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 2001; 14: 659–667.CrossRefGoogle ScholarPubMed
Mukherjee, P, Kang, HC, Videen, TO, et al. Measurement of cerebral blood flow in chronic carotid occlusive disease: comparison of dynamic susceptibility contrast perfusion MR imaging with positron emission tomography. AJNR Am J Neuroradiol 2003; 24: 862–871.Google ScholarPubMed
Grandin, C, Bol, A, Smith, A, Michel, C, Cosnard, G. Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatability and comparison with PET in humans. Neuroimage 2005; 26: 525–535.Google ScholarPubMed
Shin, W, Horowitz, S, Ragin, A, et al. Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 2007; 58: 1232–1241.CrossRefGoogle ScholarPubMed
Calamante, F, Gadian, DG, Connelly, A.Delay and dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn Reson Med 2000; 44: 466–473.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Neumann-Haefelin, T, Wittsack, H-J, Fink, GR, et al. Diffusion- and perfusion-weighted MRI. Influence of severe carotid artery stenosis on the DWI/PWI mismatch in acute stroke. Stroke 2000; 31: 1311–1317.CrossRefGoogle ScholarPubMed
Calamante, F, Ganesan, V, Kirkham, FJ, et al. MR perfusion imaging in moyamoya syndrome. Potential implications for clinical evaluation of occlusive cerebrovascular disease. Stroke 2001; 32: 2810–2816.CrossRefGoogle ScholarPubMed
Calamante, F, Willats, L, Gadian, DG, Connelly, A.Bolus delay and dispersion in perfusion MRI: implications for tissue predictor models in stroke. Magn Reson Med 2006; 55: 1180–1185.CrossRefGoogle ScholarPubMed
Wu, O, Østergaard, L, Weisskoff, RM, et al. Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 2003; 50: 164–174.CrossRefGoogle ScholarPubMed
Smith, MR, Lu, H, Trochet, S, Frayne, R.Removing the effect of SVD algorithmic artifacts present in quantitative MR perfusion studies. Magn Reson Med 2004; 51: 631–634.CrossRefGoogle ScholarPubMed
Østergaard, L, Chesler, DA, Weisskoff, RM, Sorensen, AG, Rosen, BR.Modeling cerebral blood flow and flow heterogeneity from magnetic resonance residue data. J Cereb Blood Flow Metab 1999; 19: 690–699.CrossRefGoogle ScholarPubMed
Calamante, F, Yim, PJ, Cebral, JR.Estimation of bolus dispersion effects in perfusion MRI using image-based computational fluid dynamics. Neuroimage 2003; 19: 341–353.CrossRefGoogle ScholarPubMed
Alsop, DC, Wedmid, A, Schlaug, G.Defining a local input function for perfusion quantification with bolus contrast MRI. In Proceedings of the 10th Annual Meeting of the International Society of Magnetic Resonance in Medicine, Honolulu, 2002, p. 659.Google Scholar
Calamante, F, Mørup, M, Hansen, LK.Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 2004; 52: 789–797.CrossRefGoogle ScholarPubMed
Grüner, R, Bjørnarå, B, Moen, G, Taxt, T.Magnetic resonance brain perfusion imaging with voxel-specific arterial input functions. Magn Reson Med 2006; 23: 273–284.Google ScholarPubMed
Lorenz, C, Benner, T, Lopez, CJ, et al. Effect of using local arterial input functions on cerebral blood flow estimation. J Magn Reson Imaging 2006; 24: 57–65.CrossRefGoogle ScholarPubMed
Calamante, F.Measuring cerebral perfusion using magnetic resonance imaging. In Vascular Hemodynamics: Bioengineering and Clinical Perspectives, ed. Yim, PJ. Chichester, UK: John Wiley, 2008, pp. 245–271.Google Scholar
Wirestam, R, Ryding, E, Lindgren, A, et al. Absolute cerebral blood flow measured by dynamic susceptibility contrast MRI: a direct comparison with Xe-133 SPECT. MAGMA 2000; 11: 96–103.CrossRefGoogle ScholarPubMed
van Osch, MJP, Vonken, EPA, Bakker, CJG, Viergever, MA. Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI. Magn Reson Med 2001; 45: 477–485.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Boxerman, JL, Hamberg, LM, Rosen, BR, Weisskoff, RM.MR contrast due to intravascular magnetic-susceptibility perturbations. Magn Reson Med 1995; 34: 555–566.CrossRefGoogle ScholarPubMed
van Osch, MJP, van der Grond, J, Bakker, CJG. Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 2005; 22: 704–709.CrossRefGoogle ScholarPubMed
Ellinger, R, Kremser, C, Schocke, MFH, et al. The impact of peak saturation of the arterial input function on quantitative evaluation of dynamic susceptibility contrast enhanced MR studies. J Comput Assist Tomogr 2000; 24: 942–948.CrossRefGoogle ScholarPubMed
Newbould, RD, Skare, ST, Jochimsen, TH, et al. Perfusion mapping with multiecho multishot parallel imaging EPI. Magn Reson Med 2007; 58: 70–81.CrossRefGoogle ScholarPubMed
Zierler, KL.Equations for measuring blood flow by external monitoring of radioisotopes. Circ Res 1965; 16: 309–321.CrossRefGoogle ScholarPubMed
Thompson, HK, Starmer, F, Whalen, RE, McIntosh, HD.Indicator transit time considered as a gamma variate. Circ Res 1964; 14: 502–515.CrossRefGoogle ScholarPubMed
Levin, JM, Kaufman, MJ, Ross, MJ, et al. Sequential dynamic susceptibility contrast MR experiments in human brain: residual contrast agent effect, steady state, and hemodynamic perturbation. Magn Reson Med 1995; 34: 655–663.CrossRefGoogle ScholarPubMed
Kassner, A, Annesley, DJ, Zhu, XP, et al. Abnormalities of the contrast re-circulation phase in cerebral tumors demonstrated using dynamic susceptibility contrast-enhanced imaging: a possible marker of vascular tortuosity. J Magn Reson Imaging 2000; 11: 103–113.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Boxerman, JL, Rosen, BR, Weisskoff, RM. Signal-to-noise analysis of cerebral blood volume maps from dynamic NMR imaging studies. J Magn Reson Imaging 1997; 7: 528–537.CrossRefGoogle ScholarPubMed
Levin, JM, Wald, LL, Kaufman, MJ, et al. T1 effects in sequential dynamic susceptibility contrast experiments. J Magn Reson 1998; 130: 292–295.CrossRefGoogle ScholarPubMed
Sorensen, AG, Reimer, P.Cerebral MR Perfusion Imaging. Principles and Current Applications. Stuttgart: Thieme, 2000.Google Scholar
Vonken, EPA, van Osch, MJP, Baker, CJG, Viergever, MA.Simultaneous qualitative cerebral perfusion and Gd-DTPA extravasation measurements with dual-echo dynamic susceptibility contrast MRI. Magn Reson Med 2000; 43: 820–827.3.0.CO;2-F>CrossRefGoogle Scholar
Quarles, CC, Ward, BD, Schmainda, KM. Improving the reliability of obtaining tumor hemodynamic parameters in the presence of contrast agent extravasation. Magn Reson Med 2005; 53: 1307–1316.CrossRefGoogle ScholarPubMed
Weisskoff, RM, Boxerman, JL, Sorensen, AG, et al. Simultaneous blood volume and permeability mapping using a single Gd-based contrast injection. In Proceedings of the 2nd Annual Meeting of the International Society for Magnetic Resonance in Medicine, San Francisco, 1994, p. 279.Google Scholar
Donahue, KM, Krouwer, HGJ, Rand, SD, et al. Utility of simultaneously acquired gradient-echo and spin-echo cerebral blood volume and morphology maps in brain tumor patients. Magn Reson Med 2000; 43: 845–853.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Johnson, G, Wetzel, SG, Cha, S, Babb, J, Tofts, PS.Measuring blood volume and vascular transfer constant from dynamic, T2*-weighted contrast-enhanced MRI. Magn Reson Med 2004; 51: 961–968.CrossRefGoogle Scholar
Calamante, F, Vonken, EPA, van Osch, MJP. Contrast agent measurements affecting quantification of bolus-tracking perfusion MRI. Magn Reson Med 2007; 58: 544–553.CrossRefGoogle ScholarPubMed
Flacke, S, Urbach, H, Folkers, PJ, et al. Ultra-fast three-dimensional MR perfusion imaging of the entire brain in acute stroke assessment. J Magn Reson Imaging 2000; 11: 250–259.3.0.CO;2-O>CrossRefGoogle ScholarPubMed
Fischer, H, Ladebeck, R.Echo-planar imaging image artifacts. In Echo-planar Imaging. Theory, Technique and Application, eds. Schmitt, F, Stehling, MK, Turner, R. Berlin: Springer, 1998, pp. 179–200.CrossRefGoogle Scholar
Hou, L, Yang, Y, Mattay, VS, Frank, JA, Duyn, JH. Optimization of fast acquisition methods for whole-brain relative cerebral blood volume (rCBV) mapping with susceptibility contrast agents. J Magn Reson Imaging 1999; 9: 233–239.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Weisskoff, RM, Chesler, D, Boxerman, JL, Rosen, BR. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: which mean transit-time?Magn Reson Med 1993; 29: 553–559.CrossRefGoogle ScholarPubMed
Perthen, JE, Calamante, F, Gadian, DG, Connelly, A. Is quantification of bolus tracking MRI reliable without deconvolution?Magn Reson Med 2002; 47: 61–67.CrossRefGoogle ScholarPubMed
Kosior, RK, Kosior, JC, Frayne, R. Improved dynamic susceptibility contrast (DSC)-MR perfusion estimates by motion correction. J Magn Reson Imaging 2007; 26: 1167–1172.CrossRefGoogle ScholarPubMed
Wong, EC, Buxton, RB, Frank, LR. Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997; 10: 237–249.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Yang, Y, Engelien, W, Xu, S, et al. Transit time, trailing time, and cerebral blood flow during brain activation: measurement using multislice, pulsed spin-labeling perfusion imaging. Magn Reson Med 2000; 44: 680–685.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Alsop, DC, Detre, JA. Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 1996; 16: 1236–1249.CrossRefGoogle ScholarPubMed
Buxton, RB, Frank, LR, Wong, EC, et al. A general kinetic model for quantitative perfusion imaging with arterial spin labeling. Magn Reson Med 1998; 40: 383–396.CrossRefGoogle ScholarPubMed
Pell, GS, Thomas, DL, Lythgoe, MF, et al. The implementation of quantitative FAIR perfusion imaging with a short repetition time in time-course studies. Magn Reson Med 1999; 41: 829–840.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Hendrikse, J, Petersen, ET, van Laar, PJ, Golay, X. Cerebral border zones between distal end branches of intracranial arteries: MR imaging. Radiology 2008; 246: 572–580.CrossRefGoogle ScholarPubMed
van Gelderen, P, de Zwart, JA, Duyn, JH. Pitfalls of MRI measurement of white matter perfusion based on arterial spin labeling. Magn Reson Med 2008; 59: 788–795.CrossRefGoogle Scholar
Detre, JA, Alsop, DC, Vives, LR, et al. Noninvasive MRI evaluation of cerebral blood flow in cerebrovascular disease. Neurology 1998; 50: 633–641.CrossRefGoogle ScholarPubMed
Kwong, KK, Chesler, DA, Weisskoff, RM, et al. MR perfusion studies with T1-weighted echo-planar imaging. Magn Reson Med 1995; 34: 878–887.CrossRefGoogle ScholarPubMed
Kim, SG. Quantification of relative cerebral blood flow change by flow-sensitive alternating inversion recovery (FAIR) technique: application to functional mapping. Magn Reson Med 1995; 34: 293–301.CrossRefGoogle ScholarPubMed
Yen, YF, Field, AS, Martin, EM, et al. Test–retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med 2002; 47: 921–928.CrossRefGoogle ScholarPubMed
Yang, Y, Frank, JA, Hou, L, et al. Multi-slice imaging of quantitative cerebral perfusion with pulsed arterial spin labeling. Magn Reson Med 1998; 39: 825–832.CrossRefGoogle Scholar
Figueiredo, PM, Clare, S, Jezzard, P. Quantitative perfusion measurements using pulsed arterial spin labeling: effects of large region-of-interest analysis. J Magn Reson Imaging 2005; 21: 676–682.CrossRefGoogle ScholarPubMed
Hrabe, J, Lewis, DP. Two analytical solutions for a model of pulsed arterial spin labeling with randomized blood arrival times. J Magn Reson 2004; 167: 49–55.CrossRefGoogle ScholarPubMed
Wong, EC, Buxton, RB, Frank, LR.Quantitative imaging of perfusion using a single subtraction (QUIPSS and QUIPSS II). Magn Reson Med 1998; 39: 702–708.CrossRefGoogle Scholar
Chalela, JA, Alsop, DC, Gonzalez-Atavales, JB, et al. Magnetic resonance perfusion imaging in acute ischemic stroke using continuous arterial spin labeling. Stroke 2000; 31: 680–687.CrossRefGoogle ScholarPubMed
Yongbi, MN, Branch, CA, Helpern, JA.Perfusion imaging using FOCI RF pulses. Magn Reson Med 1998; 40: 938–943.CrossRefGoogle ScholarPubMed
Sidaros, K, Andersen, IK, Gesmar, H, Rostrup, E, Larsson, HB. Improved perfusion quantification in FAIR imaging by offset correction. Magn Reson Med 2001; 46: 193–197.CrossRefGoogle ScholarPubMed
Gonzalez-At, JB, Alsop, DC, Detre, JA.Cerebral perfusion and transit time changes during task activation determined with continuous arterial spin labelling. Magn Reson Med 2000; 43: 739–746.3.0.CO;2-2>CrossRefGoogle Scholar
Günther, M, Bock, M, Schad, LR.Arterial spin labeling in combination with a look–locker sampling strategy: inflow turbo-sampling EPI-FAIR (ITS-FAIR). Magn Reson Med 2001; 46: 974–984.CrossRefGoogle Scholar
Francis, ST, Bowtell, R, Gowland, PA. Modeling and optimization of look–locker spin labeling for measuring perfusion and transit time changes in activation studies taking into account arterial blood volume. Magn Reson Med 2008; 59: 316–325.CrossRefGoogle ScholarPubMed
Wang, J, Alsop, DC, Song, HK, et al. Arterial transit time imaging with flow encoding arterial spin tagging (FEAST). Magn Reson Med 2003; 50: 599–607.CrossRefGoogle Scholar
Edelman, RR, Siewert, B, Darby, DG, et al. Qualitative mapping of cerebral blood-flow and functional localization with echo-planar MR-imaging and signal targeting with alternating radio-frequency. Radiology 1004; 192: 513–520.CrossRefGoogle Scholar
Calamante, F, Williams, SR, van Bruggen, N, Kwong, KK, Turner, R. A model for quantification of perfusion in pulsed labelling techniques. NMR Biomed 1996; 8: 79–83.3.0.CO;2-4>CrossRefGoogle Scholar
Ye, FQ, Mattay, VS, Jezzard, P, et al. Correction for vascular artifacts in cerebral blood flow values measured by using arterial spin tagging techniques. Magn Reson Med 1997; 37: 226–235.CrossRefGoogle ScholarPubMed
Frank, LR, Wong, EC, Buxton, RB.Slice profile effects in adiabatic inversion: application to multi-slice perfusion imaging. Magn Reson Med 1997; 38: 558–564.CrossRefGoogle Scholar
Utting, JF, Thomas, DL, Gadian, DG, Ordidge, RJ. Velocity-driven adiabatic fast passage for arterial spin labeling: results from a computer model. Magn Reson Med 2003; 49: 398–401.CrossRefGoogle ScholarPubMed
Alsop, DC, Detre, JA.Multisection cerebral blood flow MR imaging with continuous arterial spin labeling. Radiology 1998; 208: 410–416.CrossRefGoogle ScholarPubMed
Zhang, W, Williams, DS, Koretsky, AP. Measurement of rat brain perfusion by NMR using spin labeling of arterial water: in vivo determination of the degree of spin labeling. Magn Reson Med 1993; 29: 416–421.CrossRefGoogle ScholarPubMed
Garcia, DM, de Bazelaire, C, Alsop, D. Pseudo-continuous flow driven adiabatic inversion for arterial spin labeling. In Proceedings of the 13th Annual Meeting of the International Society of Magnetic Resonance in Medicine, Miami, 2005, p. 37.Google Scholar
Wu, WC, Fernandez-Seara, M, Detre, JA, Wehrli, FW, Wang, J. A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 2007; 58: 1020–1027.CrossRefGoogle ScholarPubMed
Pekar, J, Jezzard, P, Roberts, DA, et al. Perfusion imaging with compensation for asymmetric magnetization transfer effects. Magn Reson Med 1996; 35: 70–79.CrossRefGoogle ScholarPubMed
Mclaughlin, AC, Ye, FQ, Pekar, JJ, Santha, AKS, Frank, JA. Effect of magnetization transfer on the measurement of cerebral blood flow using steady-state arterial spin tagging approaches: a theoretical investigation. Magn Reson Med 1997; 37: 501–510.CrossRefGoogle ScholarPubMed
Detre, JA, Leigh, JS, Williams, DS, Koretsky, AP.Perfusion imaging. Magn Reson Med 1992; 23: 37–45.CrossRefGoogle ScholarPubMed
Williams, DS, Detre, JA, Leigh, JS, Koretsky, AP. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc Natl Acad Sci USA 1992; 89: 212–216.CrossRefGoogle ScholarPubMed
Barbier, EL, Lamalle, L, Décorps, M. Methodology of brain perfusion imaging. J Magn Reson Imaging 2001; 13: 496–520.CrossRefGoogle ScholarPubMed
Petersen, ET, Zimine, I, Ho, YCL, Golay, X. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 2006; 9: 688–701.CrossRefGoogle Scholar
Silva, AC, Zhang, WG, Williams, DS, Koretsky, AP. Estimation of water extraction fractions in rat brain using magnetic resonance measurement of perfusion with arterial spin labeling. Magn Reson Med 1997; 37: 58–68.CrossRefGoogle ScholarPubMed
St. Lawrence, KS, Frank, JA, Mclaughlin, AC. Effect of restricted water exchange on cerebral blood flow values calculated with arterial spin tagging: a theoretical investigation. Magn Reson Med 2000; 44: 440–449.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Zhou, J, Wilson, DA, Ulatowski, JA, Traystman, RJ, van Zijl, PC. Two-compartment exchange model for perfusion quantification using arterial spin tagging. J Cereb Blood Flow Metab 2001; 21: 440–455.CrossRefGoogle ScholarPubMed
Parkes, LM, Tofts, PS. Improved accuracy of human cerebral blood perfusion measurements using arterial spin labeling: accounting for capillary water permeability. Magn Reson Med 2002; 48: 27–41.CrossRefGoogle ScholarPubMed
Carr, JP, Buckley, DL, Tessier, J, Parker, GJM. What levels of precision are achievable for quantification of perfusion and capillary permeability surface area product using ASL?Magn Reson Med 2007; 58: 281–289.CrossRefGoogle ScholarPubMed
Yongbi, MN, Tan, CX, Frank, JA, Duyn, JH. A protocol for assessing subtraction errors of arterial spin-tagging perfusion techniques in human brain. Magn Reson Med 2000; 43: 896–900.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Günther, M, Oshio, K, Feinberg, DA.Single-shot 3D imaging techniques improve arterial spin labeling perfusion measurements. Magn Reson Med 2005; 54: 491–498.CrossRefGoogle ScholarPubMed
Fernandez-Seara, MA, Edlow, BL, Hoang, A, et al. Minimizing acquisition time of arterial spin labeling at 3 T. Magn Reson Med 2008; 59: 1467–1471.CrossRefGoogle Scholar
Silvennoinen, MJ, Kettunen, MI, Kauppinen, RA. Effects of hematocrit and oxygen saturation level on blood spin-lattice relaxation. Magn Reson Med 2003; 49: 568–571.CrossRefGoogle ScholarPubMed
Thomas, DL, Lythgoe, MF, Gadian, DG, Ordidge, RJ. In vivo measurement of the longitudinal relaxation time of arterial blood (T1a) in the mouse using a pulsed arterial spin labeling approach. Magn Reson Med 2006; 55: 943–947.CrossRefGoogle ScholarPubMed
Varela, M, Hajnal, JV, Petersen, ET, Golay, X, Larkman, DJ. Rapid blood T1 calibration for arterial spin labelling. In Proceedings of the 16th Annual Meeting of the International Society for Magnetic Resonance in Medicine, Toronto, 2008, p. 189.Google Scholar
Roberts, DA, Rizi, R, Lenkinski, RE, Leigh, JS. Magnetic resonance imaging of the brain: blood partition coefficient for water: application to spin-tagging measurement of perfusion. J Magn Reson Imaging 1996; 6: 363–366.CrossRefGoogle ScholarPubMed
Buxton, RB.Quantifying CBF with arterial spin labeling. J Magn Reson Imaging 2005; 22: 723–726.CrossRefGoogle ScholarPubMed
Paiva, FF, Tannús, A, Silva, AC. Measurement of cerebral perfusion territories using arterial spin labelling. NMR Biomed 2007; 20: 633–642.CrossRefGoogle ScholarPubMed
van Laar, PJ, van der Grond, J, Hendrikse, J. Brain perfusion territory imaging: methods and clinical applications of selective arterial spin-labeling MR imaging. Radiology 2008; 246: 354–364.CrossRefGoogle ScholarPubMed
Hendrikse, J, van der Grond, J, Lu, H, van Zijl, PC, Golay, X. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 2004; 35: 882–887.CrossRefGoogle ScholarPubMed
Wong, EC.Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn Reson Med 2007; 58: 1086–1091.CrossRefGoogle ScholarPubMed
Ye, FQ, Frank, JA, Weinberger, DR, McLaughlin, AC. Noise reduction in 3D perfusion imaging by attenuating the static signal in arterial spin tagging (ASSIST). Magn Reson Med 2000; 44: 92–100.3.0.CO;2-M>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×