Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wtssw Total loading time: 0 Render date: 2024-08-16T05:51:07.892Z Has data issue: false hasContentIssue false

11 - Solid-state quantum information carriers

from Part III - Quantum information in many-body systems

Published online by Cambridge University Press:  05 July 2014

Pieter Kok
Affiliation:
University of Sheffield
Brendon W. Lovett
Affiliation:
Heriot-Watt University, Edinburgh
Get access

Summary

In this chapter we will discuss solid-state quantum computing, concentrating on systems where qubit manipulation, initialization or readout is performed optically. We will begin with a discussion of crystals with a periodic lattice and derive Bloch's theorem, which sets constraints on the form of electronic wave functions in crystals. We will then introduce semiconductor heterostructures and show that these have a discrete energy-level structure with transitions corresponding to the optical region of the electromagnetic spectrum. The discrete levels can be used as several different kinds of qubit, and we will discuss two that can be manipulated optically, namely an electron spin and an exciton. We will touch upon crystal defects and their importance in optical quantum computing. The emphasis will be on the NV centre in diamond, which has produced some of the most important experimental results in recent years. Towards the end of the chapter, we will discuss specific implementations of single- and two-qubit gates in solid-state structures, before concluding with some methods for scaling up a solid-state device to a full-scale quantum computer.

Basic concepts of solid-state systems

In order to understand the optical characteristics of semiconductors, we must first review some basic concepts from solid-state physics. In particular, we will need the form and properties of the electronic wave functions in a periodic crystal structure. Unfortunately, the calculation of electronic states in a solid is impossible to do exactly.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×