Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-x5cpj Total loading time: 0 Render date: 2024-07-26T04:42:25.865Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2014

Colin de la Higuera
Affiliation:
Université de Nantes, France
Get access
Type
Chapter
Information
Grammatical Inference
Learning Automata and Grammars
, pp. 394 - 413
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

N., Abe. Characterizing PAC-learnability of semilinear sets. Information and Computation, 116:81–102, 1995.Google Scholar
N., Abe, R., Khardon, and T., Zeugmann, editors. Proceedings of ALT 2001, number 2225 in LNCS. Springer-Verlag, 2001.Google Scholar
N., Abe and H., Mamitsuka. Predicting protein secondary structure using stochastic tree grammars. Machine Learning Journal, 29:275–301, 1997.Google Scholar
N., Abe and M., Warmuth. On the computational complexity of approximating distributions by probabilistic automata. Machine Learning Journal, 9:205–260, 1992.Google Scholar
P., Adriaans. Language Learning from a Categorical Perspective. PhD thesis, Universiteit van Amsterdam, 1992.Google Scholar
P., Adriaans, H., Fernau, and M. van, Zaanen, editors. Grammatical Inference: Algorithms and Applications, Proceedings of ICGI'02, volume 2484 of LNAI. Springer-Verlag, 2002.Google Scholar
P., Adriaans and C., Jacobs. Using MDL for grammar induction. In Sakakibara et al. (2006), pages 293–307.Google Scholar
P., Adriaans and M., Vervoort. The EMILE 4.1 grammar induction toolbox. In Adriaans, Fernau and van Zaanen (2002), pages 293–295.Google Scholar
P., Adriaans and M., van Zaanen. Computational grammar induction for linguists. Grammars, 7:57–68, 2004.Google Scholar
A.V., Aho. Handbook of Theoretical Computer Science, pages 290–300. Elsevier, Amsterdam, 1990.Google Scholar
H., Ahonen, H., Mannila, and E., Nikunen. Forming grammars for structured documents: an application of grammatical inference. In Carrasco and Oncina (1994a), pages 153–167.Google Scholar
B., Alpern, A. J., Demers, and F. B., Schneider. Defining liveness. Information Processing Letters, 21:181–185, 1985.Google Scholar
R., Alquézar and A., Sanfeliu. A hybrid connectionist-symbolic approach to regular grammatical inference based on neural learning and hierarchical clustering. In Carrasco and Oncina (1994a), pages 203–211.Google Scholar
H., Alshawi, S., Bangalore, and S., Douglas. Head transducer model for speech translation and their automatic acquisition from bilingual data. Machine Translation, 15(1–2):105–124, 2000a.Google Scholar
H., Alshawi, S., Bangalore, and S., Douglas. Learning dependency translation models as collections of finite state head transducers. Computational Linguistics, 26(1):45–60, 2000b.Google Scholar
J. C., Amengual, J. M., Benedí, F., Casacuberta, A., Castaño, A., Castellanos, V. M., Jiménez, D., Llorens, A., Marzal, M., Pastor, F., Prat, E., Vidal, and J. M., Vilar. The EuTrans-I speech translation system. Machine Translation, 15(1):75–103, 2001.Google Scholar
D., Angluin. On the complexity of minimum inference of regular sets. Information and Control, 39:337–350, 1978.Google Scholar
D., Angluin. Finding patterns common to a set of strings. In Conference Record of the Eleventh Annual ACM Symposium on Theory of Computing, pages 130–141. ACM Press, 1979.Google Scholar
D., Angluin. Inductive inference of formal languages from positive data. Information and Control, 45:117–135, 1980.Google Scholar
D., Angluin. A note on the number of queries needed to identify regular languages. Information and Control, 51:76–87, 1981.Google Scholar
D., Angluin. Inference of reversible languages. Journal of the Association for Computing Machinery, 29(3):741–765, 1982.Google Scholar
D., Angluin. Learning regular sets from queries and counterexamples. Information and Control, 39:337-350, 1987a.Google Scholar
D., Angluin. Queries and concept learning. Machine Learning Journal, 2:319-342, 1987b.Google Scholar
D., Angluin. Identifying languages from stochastic examples. Technical Report YALEU/DCS/RR-614, Yale University, March 1988.Google Scholar
D., Angluin. Negative results for equivalence queries. Machine Learning Journal, 5:121–150, 1990.Google Scholar
D., Angluin. Queries revisited. In Abe, Khardon and Zeugmann, pages 12–31.
D., Angluin. Queries revisited. Theoretical Computer Science, 313(2):175–194, 2004.Google Scholar
D., Angluin and M., Kharitonov. When won't membership queries help? In Proceedings of 24th ACM Symposium on Theory of Computing, pages 444–454. ACM Press, 1991.Google Scholar
D., Angluin and C., Smith. Inductive inference: theory and methods. ACM Computing Surveys, 15(3):237–269, 1983.Google Scholar
H., Arimura, H., Sakamoto, and S., Arikawa. Efficient learning of semi-structured data from queries. In Abe, Khardon and Zeugmann, pages 315–331.
J., Autebert, J., Berstel, and L., Boasson. Context-free languages and pushdown automata. In A., Salomaa and G., Rozenberg, editors, Handbook of Formal Languages, volume 1, Word Language Grammar, pages 111–174. Springer-Verlag, 1997.Google Scholar
J. K., Baker. Trainable grammars for speech recognition. In D. H., Klatt and J. J., Wolf, editors, Speech Communication Papers for the 97th Meeting of the Acoustical Society of America, pages 547-550, 1979.Google Scholar
V., Balasubramanian. Equivalence and reduction of hidden Markov models. Master's thesis, Department of Electrical Engineering and Computer Science, MIT, 1993. Issued as AI Technical Report 1370.Google Scholar
J. L., Balcázar, J., Diaz, R., Gavaldà, and O., Watanabe. An optimal parallel algorithm for learning DFA. In Proceedings of the 7th COLT, pages 208–217. ACM Press, 1994a.Google Scholar
J. L., Balcázar, J., Diaz, R., Gavaldà, and O., Watanabe. The query complexity of learning DFA. New Generation Computing, 12:337-358, 1994b.Google Scholar
L. E., Baum. An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities, 3:1–8, 1972.Google Scholar
L. E., Baum, T., Petrie, G., Soules, and N., Weiss. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41:164–171, 1970.Google Scholar
L., Becerra-Bonache. On the Learnability of Mildly Context-sensitive Languages using Positive Data and Correction Queries. PhD thesis, University of Tarragona, 2006.Google Scholar
L., Becerra-Bonache, C., Bibire, and A. Horia, Dediu. Learning DFA from corrections. In H., Fernau, editor, Proceedings of the Workshop on Theoretical Aspects of Grammar Induction (TAGI), WSI-2005-14, pages 1–11. Technical Report, University of Tubingen, 2005.Google Scholar
L., Becerra-Bonache, C., de la Higuera, J. C., Janodet, and F., Tantini. Learning balls of strings with correction queries. In Proceedings of ECML'07, LNAI, pages 18–29. Springer-Verlag, 2007.Google Scholar
L., Becerra-Bonache, C., de la Higuera, J. C., Janodet, and F., Tantini. Learning balls of strings from edit corrections. Journal of Machine Learning Research, 9:1841–1870, 2008.Google Scholar
L., Becerra-Bonache, A. Horia, Dediu, and C., Tirnauca. Learning DFA from correction and equivalence queries. In Sakakibara et al. (2006), pages 281–292.Google Scholar
L., Becerra-Bonache and T., Yokomori. Learning mild context-sensitiveness: toward understanding children's language learning. In Paliouras and Sakakibara (2004), pages 53–64.Google Scholar
A., Beimel, F., Bergadano, N. H., Bshouty, E., Kushilevitz, and S., Varricchio. Learning functions represented as multiplicity automata. Journal of the ACM, 47(3):506–530, 2000.Google Scholar
T., Berg, B., Jonsson, and H., Raffelt. Regular inference for state machines with parameters. In Proceedings of FASE 2006, volume 3922 of LNCS, pages 107–121. Springer-Verlag, 2006.Google Scholar
F., Bergadano and S., Varricchio. Learning behaviors of automata from multiplicity and equivalence queries. SIAM Journal of Computing, 25(6):1268–1280, 1996.Google Scholar
M., Bernard and C., de la Higuera. Apprentissage de programmes logiques par inférence grammaticale. Revue d'Intelligence Artificielle, 14(3):375–396, 2001.Google Scholar
M., Bernard and A., Habrard. Learning stochastic logic programs. International Conference on Inductive Logic Programming, Work in progress session, 2001.Google Scholar
M., Bernard, J.-C., Janodet, and M., Sebban. A discriminative model of stochastic edit distance in the form of a conditional transducer. In Sakakibara et al. (2006), pages 240–252.Google Scholar
J., Berstel. Transductions and Context-free Languages. Teubner, 1979.Google Scholar
J., Besombes and J.-Y., Marion. Learning reversible categorial grammars from structures. In Proceedings of the International IIS: IIPWM'04 Conference, Advances in Soft Computing, pages 181–190. Springer-Verlag, 2004a.Google Scholar
J., Besombes and J.-Y., Marion. Learning tree languages from positive examples and membership queries. In S., Ben-David, J., Case, and A., Maruoka, editors, Proceedings of ALT 2004, volume 3244 of LNCS, pages 440–453. Springer-Verlag, 2004b.Google Scholar
G. J., Bex, F., Neven, T., Schwentick, and K., Tuyls. Inference of concise DTDs from XML data. In Proceedings of the 32nd International Conference on Very Large Data Bases, pages 115–126, 2006.Google Scholar
A., Biermann. A grammatical inference program for linear languages. In 4th Hawaii International Conference on System Sciences, pages 121–123, 1971.Google Scholar
A., Birkendorf, A., Boeker, and H. U., Simon. Learning deterministic finite automata from smallest counterexamples. SIAM Journal on Discrete Mathematics, 13(4):465–491, 2000.Google Scholar
V. D., Blondel and V., Canterini. Undecidable problems for probabilistic automata of fixed dimension. Theory of Computer Systems, 36(3):231–245, 2003.Google Scholar
L. E., Blum and M., Blum. Toward a mathematical theory of inductive inference. Information and Control, 28(2):125–155, 1975.Google Scholar
J. C., Bongard and H., Lipson. Active coevolutionary learning of deterministic finite automata. Journal of Machine Learning Research, 6:1651–1678, 2005.Google Scholar
J., Borges and M., Levene. Data mining of user navigation patterns. In B., Masand and M., Spiliopoulou, editors, Web Usage Mining and User Profiling, number 1836 in LNCS, pages 92–111. Springer-Verlag, 2000.Google Scholar
H., Boström. Theory-guided induction of logic programs by inference of regular languages. In 13th International Conference on Machine Learning. Morgan Kaufmann, 1996.Google Scholar
H., Boström. Predicate invention and learning from positive examples only. In Nédellec and Rouveirol (1998), pages 226–237.Google Scholar
A., Brazma. Computational Learning Theory and Natural Learning Systems, volume 4, pages 351–366. MIT Press, 1997.Google Scholar
A., Brazma and K., Cerans. Efficient learning of regular expressions from good examples. In AII'94: Proceedings of the 4th International Workshop on Analogical and Inductive Inference, pages 76–90. Springer-Verlag, 1994.Google Scholar
A., Brazma, I., Jonassen, J., Vilo, and E., Ukkonen. Pattern discovery in biosequences. In Honavar and Slutski (1998), pages 257–270.Google Scholar
L., Brehelin, O., Gascuel, and G., Caraux. Hidden Markov models with patterns to learn boolean vector sequences and application to the built-in self-test for integrated circuits. Pattern Analysis and Machine Intelligence, 23(9):997–1008, 2001.Google Scholar
A., Brocot. Calcul des rouages par approximation, nouvelle méthode. Revue Chonométrique, 3:186–194, 1861.Google Scholar
P., Brown, V. Della, Pietra, P., de Souza, J., Lai, and R., Mercer. Class-based N-gram models of natural language. Computational Linguistics, 18(4):467–479, 1992.Google Scholar
J. R., Büchi. On a decision method in restricted second order arithmetic. In Proceedings of the Congress in Logic Method and Philosophy of Science, Stanford Univ. Press, 1960.Google Scholar
H., Bunke and A., Sanfeliu, editors. Syntactic and Structural Pattern Recognition, Theory and Applications, volume 7 of Series in Computer Science. World Scientific, 1990.Google Scholar
J., Calera-Rubio and R. C., Carrasco. Computing the relative entropy between regular tree languages. Information Processing Letters, 68(6):283–289, 1998.Google Scholar
J., Carme, R., Gilleron, A., Lemay, and J., Niehren. Interactive learning of node selecting tree transducer. In IJCAI Workshop on Grammatical Inference, 2005.Google Scholar
D., Carmel and S., Markovitch. Model-based learning of interaction strategies in multiagent systems. Journal of Experimental and Theoretical Artificial Intelligence, 10(3):309–332, 1998.Google Scholar
D., Carmel and S., Markovitch. Exploration strategies for model-based learning in multiagent systems. Autonomous Agents and Multi-agent Systems, 2(2):141–172, 1999.Google Scholar
R. C., Carrasco. Accurate computation of the relative entropy between stochastic regular grammars. RAIRO (Theoretical Informatics and Applications), 31(5):437–444, 1997.Google Scholar
R. C., Carrasco, M., Forcada, and L., Santamaria. Inferring stochastic regular grammars with recurrent neural networks. In Miclet and de la Higuera (1996), pages 274–281.Google Scholar
R. C., Carrasco and J., Oncina, editors. Grammatical Inference and Applications, Proceedings of ICGI'94, number 862 in LNAI. Springer-Verlag, 1994a.Google Scholar
R. C., Carrasco and J., Oncina. Learning stochastic regular grammars by means of a state merging method. In Carrasco & Oncina (1994b), pages 139–150.Google Scholar
R. C., Carrasco and J., Oncina. Learning deterministic regular grammars from stochastic samples in polynomial time. RAIRO (Theoretical Informatics and Applications), 33(1):1–20, 1999.Google Scholar
R. C., Carrasco, J., Oncina, and J., Calera-Rubio. Stochastic inference of regular tree languages. Machine Learning Journal, 44(1):185–197, 2001.Google Scholar
R. C., Carrasco and J. R., Rico-Juan. A similarity between probabilistic tree languages: application to XML document families. Pattern Recognition, 36(9):2197–2199, 2003.Google Scholar
F., Casacuberta. Statistical estimation of stochastic context-free grammars using the insideoutside algorithm and a transformation on grammars in grammatical inference and applications. In Carrasco and Oncina (1994a), pages 119–129.Google Scholar
F., Casacuberta. Probabilistic estimation of stochastic regular syntax-directed translation schemes. In R., Moreno, editor, VI Spanish Symposium on Pattern Recognition and Image Analysis, pages 201–297. AERFAI, 1995a.Google Scholar
F., Casacuberta. Statistical estimation of stochastic context-free grammars. Pattern Recognition Letters, 16:565-573, 1995b.Google Scholar
F., Casacuberta. Growth transformations for probabilistic functions of stochastic grammars. International Journal on Pattern Recognition and Artificial Intelligence, 10(3):183–201, 1996a.Google Scholar
F., Casacuberta. Maximum mutual information and conditional maximum likelihood estimation of stochastic regular syntax-directed translation schemes. In Miclet and de la Higuera (1996b), pages 282–291.Google Scholar
F., Casacuberta and C., de la Higuera. Optimal linguistic decoding is a difficult computational problem. Pattern Recognition Letters, 20(8):813–821, 1999.Google Scholar
F., Casacuberta and C., de la Higuera. Computational complexity of problems on probabilistic grammars and transducers. In de Oliveira (2000), pages 15–24.Google Scholar
F., Casacuberta and E., Vidal. Machine translation with inferred stochastic finite-state transducers. Computational Linguistics, 30(2):205–225, 2004.Google Scholar
A., Castellanos, I., Galiano, and E., Vidal. Application of OSTIA to machine translation tasks. In Carrasco and Oncina (1994a), pages 93–105.Google Scholar
A., Castellanos, E., Vidal, M. A., Varó, and J., Oncina. Language understanding and subsequential transducer learning. Computer Speech and Language, 12:193–228, 1998.Google Scholar
J., Castro. A note on bounded query learning. Universitat Politécnica de Catalunya, 2001.Google Scholar
M. J., Castro and F., Casacuberta. The morphic generator grammatical inference methodology and multilayer perceptrons: a hybrid approach to acoustic modeling. In SSPR, volume 1121 of LNCS, pages 21–29. Springer-Verlag, 1996.Google Scholar
J., Castro and R., Gavaldà. Towards feasible PAC-learning of probabilistic deterministic finite automata. In Clark, Coste and Miclet (2008), pages 163–174.Google Scholar
J., Castro and D., Guijarro. PACS, simple-PAC and query learning. Information Processing Letters, 73(1–2):11-16, 2000.Google Scholar
G. J., Chaitin. On the length of programs for computing finite binary sequences. Journal of the ACM, 13(4):547–569, 1966.Google Scholar
G. J., Chaitin. Thinking about Godel and Turing. World Scientific, 2007.Google Scholar
E., Charniak. Statistical Language Learning. Cambridge: MIT Press, 1993.Google Scholar
E., Charniak. Tree-bank grammars. In AAAI/IAAI, volume 2, pages 1031–1036, 1996.Google Scholar
R., Chaudhuri and S., Rao. Approximating grammar probabilities: Solution to a conjecture. Journal of the ACM, 33(4):702–705, 1986.Google Scholar
E., Chávez, G., Navarro, R., Baeza-Yates, and J. L., Marroquin. Searching in metric spaces. ACM Computing Surveys, 33(3):273–321, 2001.Google Scholar
B., Chidlovskii. Wrapper generation by k-reversible grammar induction. In Proceedings of the Workshop on Machine Learning and Information Extraction, 2000.Google Scholar
B., Chidlovskii. Schema extraction from XML: a grammatical inference approach. In M., Lenzerini, D., Nardi, W., Nutt, and D., Suciu, editors, Proceedings of KRDB 2001, volume 45 of CEUR Workshop Proceedings, 2001.Google Scholar
B., Chidlovskii, J., Ragetli, and M., de Rijke. Wrapper generation via grammar induction. In Proceedings of ECML 2000, volume 1810, pages 96–108. Springer-Verlag, 2000.Google Scholar
J., Chodorowski and L., Miclet. Applying grammatical inference in learning a language model for oral dialogue. In Honavar and Slutski (1998), pages 102–113.Google Scholar
N., Chomsky. The Logical Structure of Linguistic Theory. PhD thesis, Massachusetts Institute of Technology, 1955.Google Scholar
N., Chomsky. Syntactic Structure. Mouton, 1957.Google Scholar
A., Clark. Learning deterministic context free grammars: the Omphalos competition. Technical report, 2004.Google Scholar
A., Clark. Large scale inference of deterministic transductions: Tenjinno problem 1. In Sakakibara et al. (2006), pages 227–239.
A., Clark. Learning deterministic context-free grammars: the Omphalos competition. Machine Learning Journal, 66(1):93–110, 2007.Google Scholar
A., Clark, C. Costa, Florêncio, and C., Watkins. Languages as hyperplanes: grammatical inference with string kernels. In Fürnkranz, Scheffer and Spiliopoulou, pages 90–101.
A., Clark, C. Costa, Florêncio, C., Watkins, and M., Serayet. Planar languages and learnability. In Sakakibara et al. (2006), pages 148–160.Google Scholar
A., Clark, F., Coste, and L., Miclet, editors. Grammatical Inference: Algorithms and Applications, Proceedings of ICGI'08, volume 5278 of LNCS. Springer-Verlag, 2008.Google Scholar
A., Clark and R., Eyraud. Polynomial identification in the limit of substitutable context-free languages. Journal of Machine Learning Research, 8:1725–1745, 2007.Google Scholar
R., Collobert and J., Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In W. W., Cohen, A., McCallum, and S. T., Roweis, editors, Proceedings of ICML 2008, volume 307 of ACM International Conference Proceedings Series, pages 160–167. ACM, 2008.Google Scholar
H., Comon, M., Dauchet, R., Gilleron, F., Jacquemard, D., Lugiez, S., Tison, and M., Tommasi. Tree automata techniques and applications, 1997.Google Scholar
C., Cortes, L., Kontorovich, and M., Mohri. Learning languages with rational kernels. In N. H., Bshouty and C., Gentile, editors, Proceedings of COLT 2007, volume 4539 of LNCS, pages 349–364. Springer-Verlag, 2007.Google Scholar
C., Cortes, M., Mohri, and A., Rastogi. On the computation of some standard distances between probabilistic automata. In Proceedings of CIAA 2006, volume 4094 of LNCS, pages 137–149. Springer-Verlag, 2006.Google Scholar
C. Costa, Florêncio. Consistent identification in the limit of rigid grammars from strings is NP-hard. In Adriaans, Fernau and van Zaanen (2002), pages 49–62.Google Scholar
C. Costa, Florêncio. Learning Categorial Grammars. PhD thesis, University of Utrecht, 2003.Google Scholar
F., Coste and D., Fredouille. Unambiguous automata inference by means of state-merging methods. In N., Lavrac, D., Gramberger, H., Blockeel, and L., Todorovski, editors, Proceedings of ECML'03, number 2837 in LNAI, pages 60–71. Springer-Verlag, 2003.Google Scholar
F., Coste, D., Fredouille, C., Kermorvant, and C., de la Higuera. Introducing domain and typing bias in automata inference. In Paliouras and Sakakibara (2004), pages 115–126.Google Scholar
F., Coste and J., Nicolas. How considering incompatible state mergings may reduce the DFA induction search tree. In Honavar and Slutski (1998a), pages 199–210.Google Scholar
F., Coste and J., Nicolas. Inference of finite automata: reducing the search space with an ordering of pairs of states. In Nédellec and Rouveirol (1998b), pages 37–42.Google Scholar
B., Courcelle. Recursive queries and context-free graph grammars. Theoretical Computer Science, 78(1):217–244, 1991.Google Scholar
T., Cover and J., Thomas. Elements of Information Theory. John Wiley and Sons, 1991.Google Scholar
V., Crescenzi and G., Mecca. Automatic information extraction from large websites. Journal of the ACM, 51(5):731–779, 2004.Google Scholar
V., Crescenzi and P., Merialdo. Wrapper inference for ambiguous web pages. Applied Artificial Intelligence, 22(1–2):21-52, 2008.Google Scholar
M., Crochemore, C., Hancart, and T., Lecroq. Algorithmique du texte. Vuibert, 2001.Google Scholar
M., Crochemore, C., Hancart, and T., Lecroq. Algorithms on Strings. Cambridge University Press, 2007.Google Scholar
P., Cruz and E., Vidal. Learning regular grammars to model musical style: comparing different coding schemes. In Honavar and Slutski (1998), pages 211–222.Google Scholar
P., Cruz-Alcázar and E., Vidal. Two grammatical inference applications in music processing. Applied Artificial Intelligence, 22(1–2):53-76, 2008.Google Scholar
T., Dean, K., Basye, L., Kaelbling, E., Kokkevis, O., Maron, D., Angluin, and S., Engelson. Inferring finite automata with stochastic output functions and an application to map learning. In W., Swartout, editor, Proceedings of the 10th National Conference on Artificial Intelligence, pages 208–214. MIT Press, 1992.Google Scholar
C., de la Higuera. Characteristic sets for polynomial grammatical inference. Machine Learning Journal, 27:125–138, 1997.Google Scholar
C., de la Higuera. Learning stochastic finite automata from experts. In Honavar and Slutski (1998), pages 79–89.Google Scholar
C., de la Higuera. A bibliographical study of grammatical inference. Pattern Recognition, 38:1332–1348, 2005.Google Scholar
C., de la Higuera. Data complexity issues in grammatical inference. In M., Basu and T. Kam, Ho, editors, Data Complexity in Pattern Recognition, pages 153–172. Springer-Verlag, 2006a.Google Scholar
C., de la Higuera. Ten open problems in grammatical inference. In Sakakibara et al. (2006b), pages 32–44.Google Scholar
C., de la Higuera, P., Adriaans, M., van Zaanen, and J., Oncina, editors. Proceedings of the Workshop and Tutorial on Learning Context-free grammars, at ECML'03. 2003.Google Scholar
C., de la Higuera and M., Bernard. Apprentissage de programmes logiques par inférence grammaticale. Revue d'Intelligence Artificielle, 14(3):375–396, 2001.Google Scholar
C., de la Higuera and F., Casacuberta. Topology of strings: median string is NP-complete. Theoretical Computer Science, 230:39–48, 2000.Google Scholar
C., de la Higuera and J-C., Janodet. Inference of ω-languages from prefixes. Theoretical Computer Science, 313(2):295–312, 2004.Google Scholar
C., de la Higuera, J.-C., Janodet, and F., Tantini. Learning languages from bounded resources: the case of the DFA and the balls of strings. In Clark, Coste and Miclet (2008), pages 43–56.Google Scholar
C., de la Higuera and L., Micó. A contextual normalised edit distance. In E., Chávez and G., Navarro, editors, Proceedings of the First International Workshop on Similarity Search and Applications, pages 61–68. IEEE Computer Society, 2008.Google Scholar
C., de la Higuera and J., Oncina. Learning deterministic linear languages. In Kivinen and Sloan (2002), pages 185–200.Google Scholar
C., de la Higuera and J., Oncina. Identification with probability one of stochastic deterministic linear languages. In Gavaldà et al. (2003), pages 134–148.Google Scholar
C., de la Higuera and J., Oncina. Learning probabilistic finite automata. In Paliouras and Sakakibara (2004), pages 175–186.Google Scholar
C., de la Higuera, J., Oncina, and E., Vidal. Identification of DFA: data-dependent versus data-independent algorithm. In Miclet and de la Higuera (1996), pages 313–325.Google Scholar
C., de la Higuera and F., Thollard. Identication in the limit with probability one of stochastic deterministic finite automata. In de Oliveira (2000), pages 15–24.Google Scholar
F., Denis. Learning regular languages from simple positive examples. Machine Learning Journal, 44(1):37–66, 2001.Google Scholar
F., Denis, C., d'Halluin, and R., Gilleron. PAC learning with simple examples. In 13th Symposium on Theoretical Aspects of Computer Science '96, LNCS, pages 231–242, 1996.Google Scholar
F., Denis, Y., Esposito, and A., Habrard. Learning rational stochastic languages. In Proceedings of COLT 2006, volume 4005 of LNCS, pages 274–288. Springer-Verlag, 2006.Google Scholar
F., Denis and R., Gilleron. PAC learning under helpful distributions. In Li and Maruoka (1997), pages 132–145.Google Scholar
F., Denis, A., Lemay, and A., Terlutte. Learning regular languages using non deterministic finite automata. In de Oliveira (2000), pages 39–50.Google Scholar
F., Denis, A., Lemay, and A., Terlutte. Learning regular languages using RFSA. In Abe, Khardon and Zeugmann (2001), pages 348–363.Google Scholar
A. L. de, Oliveira, editor. Grammatical Inference: Algorithms and Applications, Proceedings of ICGI '00, volume 1891 of LNAI. Springer-Verlag, 2000.Google Scholar
A. L., de Oliveira and J. P. Marques, Silva. Efficient search techniques for the inference of minimum size finite automata. In Proceedings of the 1998 South American Symposium on String Processing and Information Retrieval, pages 81–89. IEEE Computer Society Press, 1998.Google Scholar
A. L., de Oliveira and J. P. M., Silva. Efficient algorithms for the inference of minimum size DFAs. Machine Learning Journal, 44(1):93–119, 2001.Google Scholar
A., Dubey, P., Jalote, and S. Kumar, Aggarwal. Inferring grammar rules of programming language dialects. In Sakakibara et al. (2006), pages 201–213.Google Scholar
P., Dupont. Regular grammatical inference from positive and negative samples by genetic search: the GIG method. In Carrasco and Oncina (1994a), pages 236–245.Google Scholar
P., Dupont. Incremental regular inference. In Miclet and de la Higuera (1996), pages 222–237.Google Scholar
P., Dupont and J.-C., Amengual. Smoothing probabilistic automata: an error-correcting approach. In de Oliveira (2000), pages 51–62.Google Scholar
P., Dupont, F., Denis, and Y., Esposito. Links between probabilistic automata and hidden markov models: probability distributions, learning models and induction algorithms. Pattern Recognition, 38(9):1349–1371, 2005.Google Scholar
P., Dupont, B., Lambeau, C., Damas, and A., van Lamsweerde. The QSM algorithm and its application to software behavior model induction. Applied Artificial Intelligence, 22(1–2):77-115, 2008.Google Scholar
P., Dupont, L., Miclet, and E., Vidal. What is the search space of the regular inference? In Carrasco and Oncina (1994a), pages 25–37.Google Scholar
T., Erlebach, P., Rossmanith, H., Stadtherr, A., Steger, and T., Zeugmann. Learning onevariable pattern languages very efficiently on average, in parallel, and by asking queries. In Li and Maruoka (1997), pages 260–276.Google Scholar
Y., Esposito, A., Lemay, F., Denis, and P., Dupont. Learning probabilistic residual finite state automata. In Adriaans, Fernau and van Zaanen (2002), pages 77–91.Google Scholar
R., Eyraud. Context-free Grammar Learning. PhD thesis, Université de Saint-Etienne, 2006.Google Scholar
R., Eyraud, C., de la Higuera, and J.-C., Janodet. LARS: a learning algorithm for rewriting systems. Machine Learning Journal, 66(1):7–31, 2006.Google Scholar
J., Feldman. Some decidability results on grammatical inference and complexity. Information and Control, 20:244–262, 1972.Google Scholar
H., Fernau. Identification of function distinguishable languages. In H., Arimura, S., Jain, and A., Sharma, editors, Proceedings of ALT 2000, volume 1968 of LNCS, pages 116–130. Springer-Verlag, 2000.Google Scholar
H., Fernau. Learning XML grammars. In P., Perner, editor, Proceedings of MLDM '01, number 2123 in LNCS, pages 73–87. Springer-Verlag, 2001.Google Scholar
H., Fernau. Learning tree languages from text. In Kivinen and Sloan (2002), pages 153–168.Google Scholar
H., Fernau. Identification of function distinguishable languages. Theoretical Computer Science, 290(3):1679–1711, 2003.Google Scholar
H., Fernau. Algorithms for learning regular expressions. In Jain, Simon and Tomita (2005), pages 297–311.Google Scholar
H., Fernau and C., de la Higuera. Grammar induction: an invitation to formal language theorists. Grammars, 7:45–55, 2004.Google Scholar
J. A., Ferrer, F., Casacuberta, and A., Juan-Císcar. On the statistical estimation of stochastic finite-state transducers in machine translation. Applied Artificial Intelligence, 22(1–2):4-20, 2008.Google Scholar
A., Forêt and Y., Le |Nir. On limit points for some variants of rigid Lambek grammars. In Adriaans, Fernau and van Zaanen (2002), pages 106–119.Google Scholar
A., Fred. Computation of substring probabilities in stochastic grammars. In de Oliveira (2000), pages 103–114.Google Scholar
K. S., Fu. Syntactic Methods in Pattern Recognition. Academic Press, 1974.Google Scholar
K. S., Fu. Syntactic pattern recognition and applications. Prentice Hall, 1982.Google Scholar
K. S., Fu and T. L., Booth. Grammatical inference: introduction and survey. Part I and II. IEEE Transactions on Systems, Man and Cybernetics, 5:59–72 and 409-423, 1975.Google Scholar
J., Furnkranz, T., Scheffer, and M., Spiliopoulou, editors. Proceedings of ECML '06, volume 4212 of LNCS. Springer-Verlag, 2006.Google Scholar
P., García and J., Oncina. Inference of recognizable tree sets. Technical Report DSICII/47/93, Departamento de Lenguajes y Sistemas Informáticos, Universidad Politécnica de Valencia, Spain, 1993.Google Scholar
P., Garcia, E., Segarra, E., Vidal, and I., Galiano. On the use of the morphic generator grammatical inference (MGGI) methodology in automatic speech recognition. International Journal of Pattern Recognition and Artificial Intelligence, 4:667–685, 1994.Google Scholar
P., García and E., Vidal. Inference of K-testable languages in the strict sense and applications to syntactic pattern recognition. Pattern Analysis and Machine Intelligence, 12(9):920–925, 1990.Google Scholar
P., García, E., Vidal, and J., Oncina. Learning locally testable languages in the strict sense. In Workshop on Algorithmic Learning Theory (ALT 90), pages 325–338, 1990.Google Scholar
R., Gavaldà. On the power of equivalence queries. In Proceedings of the 1st European Conference on Computational Learning Theory, volume 53 of The Institute of Mathematics and its Applications Conference Series, pages 193–203. Oxford University Press, 1993.Google Scholar
R., Gavaldà, K., Jantke, and E., Takimoto, editors. Proceedings of ALT 2003, number 2842 in LNCS. Springer-Verlag, 2003.Google Scholar
R., Gavaldà, P. W., Keller, J., Pineau, and D., Precup. PAC-learning of markov models with hidden state. In Fürnkranz, Scheffer and Spiliopoulou (2006), pages 150–161.Google Scholar
C. L., Giles, S., Lawrence, and A.C., Tsoi. Noisy time series prediction using recurrent neural networks and grammatical inference. Machine Learning Journal, 44(1):161–183, 2001.Google Scholar
J. Y., Giordano. Inference of context-free grammars by enumeration: structural containment as an ordering bias. In Carrasco and Oncina (1994a), pages 212–221.Google Scholar
J. Y., Giordano. Grammatical inference using tabu search. In Miclet and de la Higuera (1996), pages 292–300.Google Scholar
F., Glover and M., Laguna. Tabu search. Springer-Verlag, 1997.Google Scholar
T., Goan, N., Benson, and O., Etzioni. A grammar inference algorithm for the world wide web. In Proceedings of AAAI Spring Symposium on Machine Learning in Information Access. AAAI Press, 1996.Google Scholar
E. M., Gold. Language identification in the limit. Information and Control, 10(5):447–474, 1967.Google Scholar
E. M., Gold. Complexity of automaton identification from given data. Information and Control, 37:302–320, 1978.Google Scholar
S. A., Goldman and M., Kearns. On the complexity of teaching. Journal of Computer and System Sciences, 50(1):20–31, 1995.Google Scholar
S. A., Goldman and H., Mathias. Teaching a smarter learner. Journal of Computer and System Sciences, 52(2):255–267, 1996.Google Scholar
R., Gonzalez and M., Thomason. Syntactic Pattern Recognition: an Introduction. Addison-Wesley, 1978.Google Scholar
J., Goodman. A bit of progress in language modeling. Technical report, Microsoft Research, 2001.Google Scholar
R. L., Graham, D. E., Knuth, and O., Patashnik. Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, 1994.Google Scholar
D., Gusfield. Algorithms on Strings, Trees, and Sequences. Cambridge University Press, 1997.Google Scholar
O., Guttman. Probabilistic Automata and Distributions over Sequences. PhD thesis, The Australian National University, 2006.Google Scholar
O., Guttman, S. V. N., Vishwanathan, and R. C., Williamson. Learnability of probabilistic automata via oracles. In Jain, Simon and Tomita (2005), pages 171–182.Google Scholar
A., Habrard, M., Bernard, and F., Jacquenet. Generalized stochastic tree automata for multi-relational data mining. In Adriaans, Fernau and van Zaanen (2002), pages 120–133.Google Scholar
A., Habrard, F., Denis, and Y., Esposito. Using pseudo-stochastic rational languages in probabilistic grammatical inference. In Sakakibara et al. (2006), pages 112–124.Google Scholar
A., Hagerer, H., Hungar, O., Niese, and B., Steffen. Model generation by moderated regular extrapolation. In R., Kutsche and H., Weber, editors, Proceedings of the 5th International Conference on Fundamental Approaches to Software Engineering (FASE '02), volume 2306 of LNCS, pages 80-95Springer-Verlag, 2002.Google Scholar
T., Hanneforth. A memory-efficient epsilon-removal algorithm for weighted acyclic finitestate automata. In Proceedings of FSMNLP 2008, 2008.Google Scholar
T., Hanneforth and C., de la Higuera. Epsilon-removal by loop reduction for finite state automata over complete semirings. In Pre-proceedings of FSMNLP 2009, 2009.Google Scholar
M. H., Harrison. Introduction to Formal Language Theory. Addison-Wesley, 1978.Google Scholar
L., Hellerstein, K., Pillaipakkamnatt, V., Raghavan, and D., Wilkins. How many queries are needed to learn?Journal of the ACM, 43(5):840–862, 1996.Google Scholar
V., Honavar and G., Slutski, editors. Grammatical Inference, Proceedings of ICGI '98, number 1433 in LNAI. Springer-Verlag, 1998.Google Scholar
T. W., Hong and K. L., Clark. Using grammatical inference to automate information extraction from the Web. In Principles of Data Mining and Knowledge Discovery, volume 2168 of LNCS, pages 216–227. Springer-Verlag, 2001.Google Scholar
J. E., Hopcroft and J. D., Ullman. Formal languages and their relation to automata. Addison-Wesley, 1977.Google Scholar
J. E., Hopcroft and J. D., Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.Google Scholar
J. J., Horning. A study of Grammatical Inference. PhD thesis, Stanford University, 1969.Google Scholar
IAPR. Proceedings of ICPR 2006. IEEE Computer Society, 2006.
O. H., Ibarra, T., Jiang, and B., Ravikumar. Some subclasses of context-free languages in NC1. Information Processing Letters, 29(3):111–117, 1988.Google Scholar
Y., Ishigami and S., Tani. VC-dimensions of finite automata and commutative finite automata with k letters and n states. Discrete Applied Mathematics, 74:123–134, 1997.Google Scholar
H., Ishizaka. Polynomial time learnability of simple deterministic languages. Machine Learning Journal, 5:151–164, 1995.Google Scholar
A., Jagota, R. B., Lyngsø, and C. N. S., Pedersen. Comparing a hidden Markov model and a stochastic context-free grammar. In Proceedings of WABI '01, number 2149 in LNCS, pages 69–74. Springer-Verlag, 2001.Google Scholar
S., Jain, D., Osherson, J. S., Royer, and A., Sharma. Systems That Learn. MIT Press, 1999.Google Scholar
S., Jain, H.-U., Simon, and E., Tomita, editors. Proceedings of ALT 2005, volume 3734 of LNCS. Springer-Verlag, 2005.Google Scholar
C. A., James. Opensmiles specification. www.opensmiles.org/spec/open-smiles.html, 2007.Google Scholar
F., Jelinek. Statistical Methods for Speech Recognition. MIT Press, 1998.Google Scholar
T., Kammeyer and R. K., Belew. Stochastic context-free grammar induction with a genetic algorithm using local search. In R. K., Belew and M., Vose, editors, Foundations of Genetic Algorithms IV, Morgan Kaufmann, 1996.Google Scholar
M., Kanazawa. Learnable Classes of Categorial Grammars. CSLI Publications, 1998.Google Scholar
S., Kapur. Computational Learning of Languages. PhD thesis, Department of Computer Science, Cornell University, 1991.Google Scholar
M. J., Kearns, Y., Mansour, D., Ron, R., Rubinfeld, R. E., Schapire, and L., Sellie. On the learnability of discrete distributions. In Proceedings of the 25th Annual ACM Symposium on Theory of Computing, pages 273–282, 1994.Google Scholar
M., Kearns and L., Valiant. Cryptographic limitations on learning boolean formulae and finite automata. In 21st ACM Symposium on Theory of Computing, pages 433–444, 1989.Google Scholar
M. J., Kearns and U., Vazirani. An Introduction to Computational Learning Theory. MIT Press, 1994.Google Scholar
C., Kermorvant and C., de la Higuera. Learning languages with help. In Adriaans, Fernau and van Zaanen, pages 161–173.
C., Kermorvant, C., de la Higuera, and P., Dupont. Improving probabilistic automata learning with additional knowledge. In A., Fred, T., Caelli, R., Duin, A., Campilho, and D., de Ridder, editors, Structural, Syntactic and Statistical Pattern Recognition, Proceedings of SSPR and SPR 2004, volume 3138 of LNCS, pages 260–268. Springer-Verlag, 2004.Google Scholar
E. B., Kinber. On learning regular expressions and patterns via membership and correction queries. In Clark, Coste and Miclet (2008), pages 125–138.Google Scholar
J., Kivinen and R. H., Sloan, editors. Proceedings of COLT 2002, number 2375 in LNAI. Springer-Verlag, 2002.Google Scholar
R., Kneser and H., Ney. Improved clustering techniques for class-based language modelling. In European Conference on Speech Communication and Technology, pages 973–976, 1993.Google Scholar
T., Knuutila and M., Steinby. Inference of tree languages from a finite sample: an algebraic approach. Theoretical Computer Science, 129:337–367, 1994.Google Scholar
S., Kobayashi. In Z., Esik, C., Martin-Vide and V., Mitrana, editors, Recent Advances in Formal Languages and Applications, pages 209–228. Springer-Verlag, 2003.Google Scholar
A. N., Kolmogorov. Three approaches to the quantitative definition of information. Problems of Information Transmission, 1(1):1–7, 1967.Google Scholar
G., Korfiatis and G., Paliouras. Modeling web navigation using grammatical inference. Applied Artificial Intelligence, 22(1-2):116–138, 2008.Google Scholar
R., Kosala, M., Bruynooghe, J., van den Bussche, and H., Blockeel. Information extraction from web documents based on local unranked tree automaton inference. In Proceedings of IJCAI-03, pages 403–408. Morgan Kaufmann, 2003.Google Scholar
T., Koshiba. Typed pattern languages and their learnability. In Proceedings of Euro COLT '95, number 904 in LNAI, pages 367–379. Springer-Verlag, 1995.Google Scholar
T., Koshiba, E., Mäkinen, and Y., Takada. Learning deterministic even linear languages from positive examples. Theoretical Computer Science, 185(1):63–79, 1997.Google Scholar
T., Koshiba, E., Makinen, and Y., Takada. Inferring pure context-free languages from positive data. Acta Cybernetica, 14(3):469–477, 2000.Google Scholar
S. C., Kremer. Parallel stochastic grammar induction. In Proceedings of the 1997 International Conference on Neural Networks (ICNN '97), volume I, pages 612–616, 1997.Google Scholar
B., Lambeau, C., Damas, and P., Dupont. State merging DFA induction with mandatory merge constraints. In Clark, Coste and Miclet (2008), pages 139–153.Google Scholar
K., Lang. Random DFA's can be approximately learned from sparse uniform examples. In Proceedings of COLT 1992, pages 45–52, 1992.Google Scholar
K., Lang. Faster algorithms for finding minimal consistent DFAs. Technical report, NEC Research Institute, 1999.Google Scholar
K., Lang and B. A., Pearlmutter. The Abbadingo One DFA Learning Competition, 1997.Google Scholar
K., Lang, B. A., Pearlmutter, and F., Coste. The Gowachin Automata Learning Competition, 1998.Google Scholar
K., Lang, B. A., Pearlmutter, and R. A., Price. Results of the Abbadingo one DFA learning competition and a new evidence-driven state merging algorithm. In Honavar and Slutski (1998), pages 1–12.Google Scholar
S., Lange and S., Zilles. On the learnability of erasing pattern languages in the query model. In Gavaldà, Jantke and Takimoto (2003), pages 129–143.Google Scholar
P., Langley. Simplicity and representation change in grammar induction. Technical report, Stanford University, 1995.Google Scholar
P., Langley and S., Stromsten. Learning context-free grammars with a simplicity bias. In Proceedings of ECML 2000, 11th European Conference on Machine Learning, volume 1810 of LNCS, pages 220–228. Springer-Verlag, 2000.Google Scholar
K., Lari and S. J., Young. The estimation of stochastic context free grammars using the inside-outside algorithm. Computer Speech and Language, 4:35–56, 1990.Google Scholar
K., Lari and S. J., Young. Applications of stochastic context-free grammars using the insideoutside algorithm. Computer Speech and Language, 5:237–257, 1991.Google Scholar
F., Lerdahl and R., Jackendoff. An overview of hierarchical structure in music. Music Perception, 1(2):229–252, 1983.Google Scholar
V. I., Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Doklady Akademii Nauk SSSR, 163(4):845–848, 1965.Google Scholar
M., Li and A., Maruoka, editors. Proceedings of ALT '97, volume 1316 of LNCS. Springer-Verlag, 1997.Google Scholar
M., Li and P., Vitanyi. Learning simple concepts under simple distributions. Siam Journal of Computing, 20:911–935, 1991.Google Scholar
M., Li and P., Vitanyi. An Introduction to Kolmogorov Complexity and its Applications. Springer-Verlag, 1993.Google Scholar
N., Littlestone. Learning quickly when irrelevant attributes abound: a new linear threshold. Machine Learning Journal, 2:285–318, 1987.Google Scholar
D., López and J. M., Sempere. Handwritten digit recognition through inferring graph grammars. A first approach. In Proceedings of SSPR '98 and SPR '98, volume 1451 of LNCS, pages 483–491. Springer-Verlag, 1998.Google Scholar
S., Lucas, E., Vidal, A., Amari, S., Hanlon, and J. C., Amengual. A comparison of syntactic and statistical techniques for off-line OCR. In Carrasco and Oncina (1994a), pages 168–179.Google Scholar
D., Luzeaux. String distances. In Distancia 92, 1992.Google Scholar
S., Lucas. Learning DFA from noisy samples. http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html, 2004.Google Scholar
R. B., Lyngsø and C. N. S., Pedersen. Complexity of comparing hidden Markov models. In Proceedings of ISAAC '01, number 2223 in LNCS, pages 416–428. Springer-Verlag, 2001.Google Scholar
R. B., Lyngsø, C. N. S., Pedersen, and H., Nielsen. Metrics and similarity measures for hidden Markov models. In Proceedings of ISMB '99, pages 178–186, 1999.Google Scholar
E., Mäkinen. A note on the grammatical inference problem for even linear languages. Fundamenta Informaticae, 25(2):175–182, 1996.Google Scholar
O., Maler and A., Pnueli. On the learnability of infinitary regular sets. In Proceedings of COLT, pages 128–136. Morgan–Kauffman, 1991.Google Scholar
F. J., Maryanski. Inference of Probabilistic Grammars. PhD thesis, University of Connecticut, 1974.Google Scholar
A., Marzal and E., Vidal. Computation of normalized edit distance and applications. Pattern Analysis and Machine Intelligence, 15(9):926–932, 1993.Google Scholar
D., McAllester and R., Schapire. Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.Google Scholar
L., Miclet. Structural Methods in Pattern Recognition. Chapman and Hall, New York, 1986.Google Scholar
L., Miclet. Syntactic and Structural Pattern Recognition, Theory and Applications, pages 237–290. World Scientific, 1990.Google Scholar
L., Miclet and C., de la Higuera, editors. Proceedings of ICGI '96, number 1147 in LNAI. Springer-Verlag, 1996.Google Scholar
L., Micó, J., Oncina, and E., Vidal. A new version of the nearest-neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing time and memory requirements. Pattern Recognition Letters, 15:9–17, 1994.Google Scholar
G. A., Miller and N., Chomsky. Handbook of Mathematical Psychology, volume 2, pages 419–491. Wiley, 1963.Google Scholar
A., Mitchell, T., Scheffer, A., Sharma, and F., Stephan. The VC-dimension of subclasses of pattern languages. In O., Watanabe and T., Yokomori, editors, Proceedings of ALT '99, volume 1720 of LNCS, pages 93–105. Springer-Verlag, 1999.Google Scholar
M., Mohri. Finite-state transducers in language and speech processing. Computational Linguistics, 23(3):269–311, 1997.Google Scholar
M., Mohri, F. C. N., Pereira, and M., Riley. The design principles of a weighted finite-state transducer library. Theoretical Computer Science, 231(1):17–32, 2000.Google Scholar
M., Mosbah. Probabilistic graph grammars. Fundamenta Informaticae, 26(3/4):341-362, 1996.Google Scholar
T., Motoki, T., Shinohara, and K., Wright. The correct definition of finite elasticity: corrigendum to identification of unions. In Proceedings of the fourth annual workshop on Computational Learning Theory, page 375, 1991.Google Scholar
T., Murgue. Log pre-processing and grammatical inference for web usage mining. In UM 2005 – Workshop on Machine Learning for User Modeling: Challenges, 2005.Google Scholar
T., Murgue and C., de la Higuera. Distances between distributions: comparing language models. In A., Fred, T., Caelli, R., Duin, A., Campilho, and D., de Ridder, editors, Structural, Syntactic and Statistical Pattern Recognition, Proceedings of SSPR and SPR 2004, volume 3138 of LNCS, pages 269–277. Springer-Verlag, 2004.Google Scholar
K., Nakamura and M., Matsumoto. Incremental learning of context free grammars based on bottom-up parsing and search. Pattern Recognition, 38(9):1384–1392, 2005.Google Scholar
B. L., Natarajan. Machine Learning: a Theoretical Approach. Morgan Kauffman, 1991.Google Scholar
M., Nasu and N., Honda. Mappings induced by pgsm-mappings and some recursively unsolvable problems of finite probabilistic automata. Information and Control, 15:250–273, 1969.Google Scholar
G., Navarro. Searching in metric spaces by spatial approximation. VLDB Journal, 11(1):28–46, 2002.Google Scholar
C., Nédellec and C., Rouveirol, editors. Proceedings of ECML '98, number 1398 in LNAI. Springer-Verlag, 1998.Google Scholar
C., Nevill-Manning and I., Witten. Identifying hierarchical structure in sequences: a lineartime algorithm. Journal of Artificial Intelligence Research, 7:67–82, 1997.Google Scholar
H., Ney. Stochastic grammars and pattern recognition. In P., Laface and R., De Mori, editors, Proceedings of the NATO Advanced Study Institute, pages 313–344. Springer-Verlag, 1992.Google Scholar
H., Ney, S., Martin, and F., Wessel. Corpus-Based Statistical Methods in Speech and Language Processing, pages 174–207. Kluwer Academic Publishers, 1997.Google Scholar
A., Nowak, N. L., Komarova, and P., Niyogi. Computational and evolutionary aspects of language. Nature, 417:611–617, 2002.Google Scholar
T., Oates, T., Armstrong, L., Becerra-Bonache, and M., Atamas. Inferring grammars for mildly context sensitive languages in polynomial-time. In Sakakibara et al. (2006), pages 137–147.
T., Oates, D., Desai, and V., Bhat. Learning k-reversible context-free grammars from positive structural examples. In C., Sammut and A. G., Hoffmann, editors, Proceedings of ICML 2002, pages 459–465. Morgan Kaufmann, 2002.Google Scholar
T., Oates, S., Doshi, and F., Huang. Estimating maximum likelihood parameters for stochastic context-free graph grammars. In Proceedings of ILP 2003, volume 2835 of LNCS, ages 281–298. Springer-Verlag, 2003.Google Scholar
J., Oncina. The data driven approach applied to the OSTIA algorithm. In Honavar and Slutski (1998), pages 50–56.Google Scholar
J., Oncina and P., García. Identifying regular languages in polynomial time. In H., Bunke, editor, Advances in Structural and Syntactic Pattern Recognition, volume 5 of Series in Machine Perception and Artificial Intelligence, pages 99–108. World Scientific, 1992.Google Scholar
J., Oncina, P., García, and E., Vidal. Learning subsequential transducers for pattern recognition interpretation tasks. Pattern Analysis and Machine Intelligence, 15(5):448–458, 1993.Google Scholar
J., Oncina and M., Sebban. Learning stochastic edit distance: application in handwritten character recognition. Pattern Recognition, 39(9):1575–1587, 2006.Google Scholar
J., Oncina and M. A., Varó. Using domain information during the learning of a subsequential transducer. In Miclet and de la Higuera (1996), pages 301–312.Google Scholar
D., Osherson, D., de Jongh, E., Martin, and S., Weinstein. Handbook of Logic and Language, pages 737–775. MIT Press, 1997.Google Scholar
G., Paliouras and Y., Sakakibara, editors. Grammatical Inference: Algorithms and Applications, Proceedings of ICGI '04, volume 3264 of LNAI. Springer-Verlag, 2004.Google Scholar
N., Palmer and P. W., Goldberg. PAC-learnability of probabilistic deterministic finite state automata in terms of variation distance. In Jain, Simon and Tomita (2005), pages 157–170.Google Scholar
R., Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.Google Scholar
A., Paz. Introduction to probabilistic automata. Academic Press, 1971.Google Scholar
G., Petasis, G., Paliouras, V., Karkaletsis, C., Halatsis, and C., Spyropoulos. E-grids: computationally efficient grammatical inference from positive examples. Grammars, 7:69-110, 2004a.Google Scholar
G., Petasis, G., Paliouras, C. D., Spyropoulos, and C., Halatsis. Eg-grids: context-free grammatical inference from positive examples using genetic search. In Paliouras and Sakakibara (2004b), pages 223–234.Google Scholar
D., Pico and F., Casacuberta. A statistical-estimation method for stochastic finite-state transducers based on entropy measures. In Advances in Pattern Recognition, volume 1876 of LNCS, pages 417–426. Springer-Verlag, 2000.Google Scholar
D., Picó and F., Casacuberta. Some statistical-estimation methods for stochastic finite-state transducers. Machine Learning Journal, 44(1):121–141, 2001.Google Scholar
L., Pitt. Inductive inference, DFA's, and computational complexity. In Analogical and Inductive Inference, number 397 in LNAI, pages 18–44. Springer-Verlag, 1989.Google Scholar
L., Pitt and M., Warmuth. Reductions among prediction problems: on the difficulty of predicting automata. In 3rd Conference on Structure in Complexity Theory, pages 60–69, 1988.Google Scholar
L., Pitt and M., Warmuth. The minimum consistent DFA problem cannot be approximated within any polynomial. Journal of the Association for Computing Machinery, 40(1):95–142, 1993.Google Scholar
N., Poggi, T., Moreno, J.-L., Berral, R., Gavaldà, and J., Torres. Web customer modeling for automated session prioritization on high traffic sites. In Proceedings of User Modeling 2007, volume 4511 of LNCS, pages 450–454. Springer-Verlag, 2007.Google Scholar
B., Pouliquen. Similarity of names across scripts: edit distance using learned costs of N-grams. In Proceedings of GOTAL 2008, Advances in Natural Language Processing, LNCS, pages 405–416. Springer-Verlag, 2008.Google Scholar
H., Qiu and E. R., Hancock. Graph matching using commute time spanning trees. In ICPR (2006), pages 1224–1227.Google Scholar
M. O., Rabin. Probabilistic automata. Information and Control, 6:230–245, 1966.Google Scholar
M., Rabin and D., Scott. Finite automata and their decision problems. IBM Journal of Research and Development, 3:114–125, 1959.Google Scholar
L., Rabiner. A tutorial on hidden Markov models and selected applications in speech recoginition. Proceedings of the IEEE, 77:257–286, 1989.Google Scholar
H., Raffelt and B., Steffen. Learnlib: A library for automata learning and experimentation. In Proceedings of FASE 2006, volume 3922 of LNCS, pages 377–380. Springer-Verlag, 2006.Google Scholar
C., Reutenauer and M.-P., Schützenberger. Minimization of rational word functions. SIAM Journal of Computing, 20(4):669–685, 1991.Google Scholar
C., Reutenauer and M.-P., Schützenberger. Variétés et fonctions rationnelles. Theoretical Computer Science, 145(1&2):229-240, 1995.Google Scholar
J. R., Rico-Juan, J., Calera-Rubio, and R. C., Carrasco. Probabilistic k-testable treelanguages. In de Oliveira (2000), pages 221–228.Google Scholar
J. R., Rico-Juan, J., Calera-Rubio, and R. C., Carrasco. Stochastic k-testable tree languages and applications. In Adriaans, Fernau and van Zaanen, pages 199–212.
J. R., Rico-Juan and L., Micó. Comparison of AESA and LAESA search algorithms using string and tree-edit-distances. Pattern Recognition Letters, 24(9–10):1417-1426, 2003.Google Scholar
A., Rieger. Inferring probabilistic automata from sensor data for robot navigation. In M., Kaiser, editor, Proceedings of the MLnet Familiarization Workshop and Third European Workshop on Learning Robots, pages 65–74, 1995.Google Scholar
J., Rissanen. Modeling for shortest data description. Automatica, 14:465–471, 1978.Google Scholar
R. L., Rivest and R. E., Schapire. Inference of finite automata using homing sequences. Information and Computation, 103:299–347, 1993.Google Scholar
B., Roark and R., Sproat. Computational Approaches to Syntax and Morphology. Oxford University Press, 2007.Google Scholar
D., Ron and R., Rubinfeld. Learning fallible deterministic finite automata. Machine Learning Journal, 18:149–185, 1995.Google Scholar
D., Ron, Y., Singer, and N., Tishby. Learning probabilistic automata with variable memory length. In Proceedings of COLT 1994, pages 35–46. ACM Press, 1994.Google Scholar
D., Ron, Y., Singer, and N., Tishby. On the learnability and usage of acyclic probabilistic finite automata. In Proceedings of COLT 1995, pages 31–40. ACM Press, 1995.Google Scholar
P., Rossmanith and T., Zeugmann. Learning k-variable pattern languages efficiently stochastically finite on average from positive data. In Honavar and Slutski (1998), pages 13–24.Google Scholar
H., Rulot, N., Prieto, and E., Vidal. Learning accurate finite-state structural models of words through the ECGI algorithm. In ICASSP-89, volume 1, pages 643–646, 1989.Google Scholar
Y., Sakakibara. Inferring parsers of context-free languages from structural examples. Technical Report 81, Fujitsu Limited, International Institute for Advanced Study of Social Information Science, Numazu, Japan, 1987.Google Scholar
Y., Sakakibara. Learning context-free grammars from structural data in polynomial time. Theoretical Computer Science, 76:223–242, 1990.Google Scholar
Y., Sakakibara. Efficient learning of context-free grammars from positive structural examples. Information and Computation, 97:23–60, 1992.Google Scholar
Y., Sakakibara. Recent advances of grammatical inference. Theoretical Computer Science, 185:15–45, 1997.Google Scholar
Y., Sakakibara, M., Brown, R., Hughley, I., Mian, K., Sjolander, R., Underwood, and D., Haussler. Stochastic context-free grammars for tRNA modeling. Nuclear Acids Research, 22:5112–5120, 1994.Google Scholar
Y., Sakakibara, S., Kobayashi, K., Sato, T., Nishino, and E., Tomita, editors. Grammatical Inference: Algorithms and Applications, Proceedings of ICGI '06, volume 4201 of LNAI. Springer-Verlag, 2006.Google Scholar
Y., Sakakibara and M., Kondo. Ga-based learning of context-free grammars using tabular representations. In Proceedings of 16th International Conference on Machine Learning (ICML-99), pages 354–360, 1999.Google Scholar
Y., Sakakibara and H., Muramatsu. Learning context-free grammars from partially structured examples. In de Oliveira (2000), pages 229–240.Google Scholar
J., Sakarovich. Eléments de théorie des automates. Vuibert, 2004.Google Scholar
A., Salomaa. On languages defined by numerical parameters. Technical Report 663, Turku Centre for Computer Science, 2005.Google Scholar
I., Salvador and J-M., Benedí. RNA modeling by combining stochastic context-free grammars and n-gram models. International Journal of Pattern Recognition and Artificial Intelligence, 16(3):309–316, 2002.Google Scholar
J. A., Sánchez, J. M., Benedí, and F., Casacuberta. Comparison between the insideoutside algorithm and the Viterbi algorithm for stochastic context-free grammars. In P., Perner, P., Wang, and A., Rosenfeld, editors, Advances in Structural and Syntactical Pattern Recognition, volume 1121 of LNCS, pages 50–59. Springer-Verlag, 1996.Google Scholar
A., Saoudi and T., Yokomori. Learning local and recognizable ω-languages and monadic logic programs. In Proceedings of EUROCOLT, LNCS, pages 157–169. Springer-Verlag, 1993.Google Scholar
L., Saul and F., Pereira. Aggregate and mixed-order Markov models for statistical language processing. In C., Cardie and R., Weischedel, editors, Proceedings of the Second Conference on Empirical Methods in Natural Language Processing, pages 81–89. Association for Computational Linguistics, Somerset, New Jersey, 1997.Google Scholar
K. U., Schulz and S., Mihov. Fast string correction with levenshtein automata. IJDAR, 5(1):67–85, 2002.Google Scholar
M., Sebban and J-C., Janodet. On state merging in grammatical inference: a statistical approach for dealing with noisy data. In Proceedings of ICML, 2003.Google Scholar
J. M., Sempere and P., García. A characterisation of even linear languages and its application to the learning problem. In Carrasco and Oncina (1994a), pages 38–44.Google Scholar
J. M., Sempere and G., Nagaraja. Learning a subclass of linear languages from positive structural information. In Honavar and Slutski (1998), pages 162–174.Google Scholar
J., Shawe-Taylor and N., Christianini. Kernel Methods for Pattern Analysis. Cambridge University Press, 2004.Google Scholar
M., Simon. Automata Theory. World Scientific, 1999.Google Scholar
Z., Solan, E., Ruppin, D., Horn, and S., Edelman. Automatic acquisition and efficient representation of syntactic structures. In Proceedings of NIPS, 2002.Google Scholar
R., Solomonoff. A preliminary report on a general theory of inductive inference. Technical Report ZTB-138, Zator Company, Cambridge, Mass., 1960.Google Scholar
R., Solomonoff. A formal theory of inductive inference. Information and Control, 7(1):1–22 and 224-254, 1964.Google Scholar
R., Solomonoff. The discovery of algorithmic probability. JCSS, 55(1):73–88, 1997.Google Scholar
B., Starkie, F., Coste, and M., van Zaanen. The Omphalos context-free grammar learning competition. In Paliouras and Sakakibara (2004a), pages 16–27.Google Scholar
B., Starkie, F., Coste, and M., van Zaanen. Omphalos context-free language learning competition. http://www.irisa.fr/Omphalos, 2004b.Google Scholar
B., Starkie and H., Fernau. The Boisdale algorithm – an induction method for a subclass of unification grammar from positive data. In Paliouras and Sakakibara (2004), pages 235–247.Google Scholar
B., Starkie, M., van Zaanen, and D., Estival. The Tenjinno machine translation competition. In Sakakibara et al. (2006), pages 214–226.Google Scholar
S. E., Stein, S. R., Heller, and D. V., Tchekhovskoi. The IUPAC chemical identifier technical manual. Technical report, Gaithersburg, Maryland, 2006.Google Scholar
M. A., Stern. Über eine zahlentheoretische funktion. Crelle's Journal, 55:193–220, 1858.Google Scholar
A., Stolcke. Bayesian Learning of Probabilistic Language Models. PhD dissertation, University of California, 1994.Google Scholar
A., Stolcke and S., Omohundro. Inducing probabilistic grammars by bayesian model merging. In Carrasco and Oncina (1994a), pages 106–118.Google Scholar
Y., Takada. Grammatical inference for even linear languages based on control sets. Information Processing Letters, 28(4):193–199, 1988.Google Scholar
Y., Takada. A hierarchy of language families learnable by regular language learners. In Carrasco and Oncina (1994a), pages 16–24.Google Scholar
F., Tantini, C., de la Higuera, and J.-C., Janodet. Identification in the limit of systematic-noisy languages. In Sakakibara et al. (2006), pages 19–31.Google Scholar
I., Tellier. Meaning helps learning syntax. In Honavar and Slutski (1998), pages 25–36.Google Scholar
I., Tellier. When categorial grammars meet regular grammatical inference. In Proceedings of LACL 2005 (Logical Aspects of Computational Linguistics, Bordeaux, France), volume 3492 of LNCS, pages 301–316. Springer-Verlag, 2005.Google Scholar
F., Thollard. Improving probabilistic grammatical inference core algorithms with postprocessing techniques. In Proceedings 8th International Conference on Machine Learning, pages 561–568. Morgan Kauffman, 2001.Google Scholar
F., Thollard and A., Clark. PAC-learnability of probabilistic deterministic finite state automata. Journal of Machine Learning Research, 5:473–497, 2004.Google Scholar
F., Thollard and P., Dupont. Entropie relative et algorithmes d'inference grammaticale probabiliste. In M., Sebag, editor, Actes de la conference CAP '99, pages 115–122, 1999.Google Scholar
F., Thollard, P., Dupont, and C., de la Higuera. Probabilistic DFA inference using Kullback-Leibler divergence and minimality. In Proceedings of the 17th International Conference on Machine Learning, pages 975–982. Morgan Kaufmann, 2000.Google Scholar
K., Thompson. Regular expression search algorithm. Journal of the ACM, 11(6):419–422, 1968.Google Scholar
C., Tirnauca. A note on the relationship between different types of correction queries. In Clark, Coste and Miclet (2008), pages 213–223.Google Scholar
B., Trakhtenbrot and Y., Bardzin. Finite Automata: Behavior and Synthesis. North Holland Publishing Company, 1973.Google Scholar
L. G., Valiant. A theory of the learnable. Communications of the Association for Computing Machinery, 27(11):1134–1142, 1984.Google Scholar
K., Vanlehn and W., Ball. A version space approach to learning context-free grammars. Machine Learning Journal, 2:39–74, 1987.Google Scholar
M., van Zaanen. ABL: alignment-based learning. In Proceedings of COLING 2000, pages 961–967. Morgan Kaufmann, 2000.Google Scholar
M., van Zaanen. The grammatical inference homepage. http://labh-curien.univ-st-etienne.fr/informatique/gi, 2003.Google Scholar
E., Vidal, E., Segarra, P., García, and I., Galiano. Multi-speaker experiments with the morphic generator grammatical inference methodology. In H., Niemann, M., Lang, and G., Sagerer, editors, Recent Advances in Speech Understanding and Dialog Systems, pages 323–327. Springer-Verlag, 1988.Google Scholar
E., Vidal, F., Thollard, C., de la Higuera, F., Casacuberta, and R. C., Carrasco. Probabilistic finite state automata – part I. Pattern Analysis and Machine Intelligence, 27(7):1013–1025, 2005a.Google Scholar
E., Vidal, F., Thollard, C., de la Higuera, F., Casacuberta, and R. C., Carrasco. Probabilistic finite state automata – part II. Pattern Analysis and Machine Intelligence, 27(7):1026–1039, 2005b.Google Scholar
J. M., Vilar. Query learning of subsequential transducers. In Miclet and de la Higuera (1996), pages 72–83.Google Scholar
J. M., Vilar. Improve the learning of subsequential transducers by using alignments and dictionaries. In de Oliveira (2000), pages 298–312.Google Scholar
A. J., Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE transactions of the empirical distribution, 13:260–269, 1967.Google Scholar
R., Wagner and M., Fisher. The string-to-string correction problem. Journal of the ACM, 21:168–178, 1974.Google Scholar
L. G., Wallace and D. M., Ball. An information measure for classification. Computer Journal, 11:185–194, 1968.Google Scholar
Y., Wang and A., Acero. Evaluation of spoken language grammar learning in the ATIS domain. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, 2002.Google Scholar
J. T., Wang, S., Rozen, B. A., Shapiro, D., Shasha, Z., Wang, and M., Yin. New techniques for DNA sequence classification. Journal of Computational Biology, 6(2):209–218, 1999.Google Scholar
O., Watanabe. A framework for polynomial time query learnability. Mathematical Systems Theory, 27(3):231–256, 1994.Google Scholar
C. S., Wetherell. Probabilistic languages: a review and some open questions. Computing Surveys, 12(4):361–379, 1980.Google Scholar
G., Wolf. Grammar discovery as data compression. In Proceedings of AISBI/GI Conference on Artificial Intelligence, pages 375–379, 1978.Google Scholar
G., -Wolf. Unifying computing and cognition. Cognition research, 2006.Google Scholar
K., Wright. Identification of unions of languages drawn from an identifiable class. In Proceedings of the Workshop on Computational Learning Theory, pages 328–333. Morgan Kaufmann, 1989.Google Scholar
P., Wyard. Representational issues for context free grammar induction using genetic algorithms. In Carrasco and Oncina (1994a), pages 222–235.Google Scholar
T., Yokomori. Learning non-deterministic finite automata from queries and counterexamples. Machine Intelligence, 13:169–189, 1994.Google Scholar
T., Yokomori. On polynomial-time learnability in the limit of strictly deterministic automata. Machine Learning Journal, 19:153–179, 1995.Google Scholar
T., Yokomori. Learning two-tape automata from queries and counterexamples. Mathematical Systems Theory, pages 259–270, 1996.Google Scholar
T., Yokomori. Polynomial-time identification of very simple grammars from positive data. Theoretical Computer Science, 1(298):179–206, 2003.Google Scholar
T., Yokomori. Grammatical inference and learning. In C., Martín-Vide, V., Mitrana, and Gh., Pǎun, editors, Formal Languages and Applications, pages 507–528. Springer-Verlag, 2004.Google Scholar
T., Yokomori. Formal languages. Springer-Verlag, 2005.Google Scholar
T., Yokomori and S., Kobayashi. Inductive learning of regular sets from examples: a rough set approach. In Proceedings of International Workshop on Rough Sets and Soft Computing, 1994.Google Scholar
M., Young-Lai and F. W., Tompa. Stochastic grammatical inference of text database structure. Machine Learning Journal, 40(2):111–137, 2000.Google Scholar
H., Yu and E. R., Hancock. String kernels for matching seriated graphs. In ICPR (2006), pages 224–228.Google Scholar
L., Yujian and L., Bo. A normalized Levenshtein distance metric. Pattern Analysis and Machine Intelligence, 29(6):1091–1095, 2007.Google Scholar
T., Zeugmann. Can learning in the limit be done efficiently? In Gavaldà, Jantke and Takimoto (2003), pages 17–38.Google Scholar
T., Zeugmann. From learning in the limit to stochastic finite learning. Theoretical Computer Science, 364(1):77–97, 2006.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Colin de la Higuera, Université de Nantes, France
  • Book: Grammatical Inference
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139194655.021
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Colin de la Higuera, Université de Nantes, France
  • Book: Grammatical Inference
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139194655.021
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Colin de la Higuera, Université de Nantes, France
  • Book: Grammatical Inference
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139194655.021
Available formats
×