Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-28T09:20:42.422Z Has data issue: false hasContentIssue false

17 - Linear dynamics of static toroidal plasmas

Published online by Cambridge University Press:  05 March 2013

J. P. Goedbloed
Affiliation:
FOM-Institute for Plasma Physics
Rony Keppens
Affiliation:
Katholieke Universiteit Leuven, Belgium
Stefaan Poedts
Affiliation:
Katholieke Universiteit Leuven, Belgium
Get access

Summary

“Ad more geometrico”

Alfvén wave dynamics in toroidal geometry

It was shown in Chapters 6–11 of Volume [1] and 12–14 of this volume that spectral theory of MHD waves and instabilities essentially concerns the dynamics of Alfvén waves in the environment of magnetized plasmas. Since Alfvén waves travel along the magnetic field lines, and the field lines in turn are constrained to the nested magnetic surfaces in an axi-symmetric toroidal plasma, this implies that the geometry of the magnetic field lines and of the constraining magnetic surfaces becomes the all-determining factor for MHD spectral theory of toroidal plasmas. Recalling the “grand vision” of Section 12.1.1 on magnetized plasmas occurring everywhere in the Universe, it is appropriate at this point to call upon the great examples of general relativity, where light waves propagate along geodesics, and upon the dream of philosophers (Spinoza) to construct the theoretical understanding of the world “ad more geometrico” (in the geometrical manner). As we will see, even when fusion applications are the main concern, it pays off to exploit the ready-made concepts of geometry expanded by the great scientists of the past.

Recall that Alfvén wave dynamics is dominated by the gradient operator parallel to the magnetic field lines, B · ∇. In toroidal geometry, this leads to such intricate dynamics that a very accurate description is needed of the geometry of the field lines and of the magnetic surfaces, i.e. of the equilibrium, if one wishes to study stability.

Type
Chapter
Information
Advanced Magnetohydrodynamics
With Applications to Laboratory and Astrophysical Plasmas
, pp. 307 - 354
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×