Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-30T04:33:56.085Z Has data issue: false hasContentIssue false

2 - The evolution of binary systems

Published online by Cambridge University Press:  05 January 2014

Philipp Podsiadlowski
Affiliation:
University of Oxford
Ignacio González Martínez-País
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Tariq Shahbaz
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Jorge Casares Velázquez
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Abstract

One of the most important environments in which accretion disks are found occur in interacting binaries. In this chapter I review the main properties of binary systems and the most important types of binary interactions, stable and unstable mass transfer, the role of mass loss, mass accretion, and, in the most dramatic case, the merging of the two binary components. I particularly emphasize the evolutionary context in which these interactions occur and illustrate this using numerous examples of different types of binaries of current research interest. These include hot subdwarfs; symbiotic binaries; binary supernova progenitors, including the progenitors of type Ia supernovae and potential progenitors of long-duration gamma-ray bursts; low-, intermediate-, and high-mass X-ray binaries, containing both neutron stars and black holes; and their descendants, including binary millisecond pulsars, Thorne-Żytkow objects, and short-duration gamma-ray bursts.

2.1 Introduction

One of the main sites for accretion disks are interacting binary systems. Indeed, the majority of stars are found in binary systems, and in many cases (up to ~50%), they are close enough that mass flows from one star to the other, in many cases forming an accretion disk. This can happen for a wide variety of different systems: systems containing two normal nondegenerate stars, or one compact star (white dwarf [WD], neutron star [NS], or black hole [BH]), or even two compact stars of various combinations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Begelman, M. C. 2002. Super-Eddington fluxes from thin accretion disks?ApJ, 568(Apr.), L97–L100.Google Scholar
Begelman, M. C. 2006. Photon bubbles and the vertical structure of accretion disks. ApJ, 643 (June), 1065–1080.Google Scholar
Bhattacharya, D., and van den Heuvel, E. P. J. 1991. Formation and evolution of binary and millisecond radio pulsars. Phys. Rep., 203, 1–124.Google Scholar
Biehle, G. T. 1991. High-mass stars with degenerate neutron cores. ApJ, 380(Oct.), 167–184.Google Scholar
Blondin, J. M., and Mezzacappa, A. 2006. The spherical accretion shock instability in the linear regime. ApJ, 642(May), 401–409.Google Scholar
Blondin, J. M., and Mezzacappa, A. 2007. Pulsar spins from an instability in the accretion shock of supernovae. Nature, 445(Jan.), 58–60.Google Scholar
Blundell, K. M., Mioduszewski, A. J., Muxlow, T. W. B., Podsiadlowski, P., and Rupen, M. P. 2001. Images of an equatorial outflow in SS 433. ApJ, 562(Nov.), L79–L82.Google Scholar
Brandt, N., and Podsiadlowski, P. 1995. The effects of high-velocity supernova kicks on the orbital properties and sky distributions of neutron-star binaries. MNRAS, 274(May), 461–484.Google Scholar
Brown, G. E. 1995. Neutron star accretion and binary pulsar formation. ApJ, 440(Feb.), 270–279.Google Scholar
Brown, G. E., Heger, A., Langer, N., Lee, C.-H., Wellstein, S., and Bethe, H. A. 2001. Formation of high mass X-ray black hole binaries. New A, 6(Oct.), 457–470.Google Scholar
Brown, G. E., Lee, C.-H., and Bethe, H. A. 1999. The formation of high-mass black holes in low-mass X-ray binaries. New A, 4(July), 313–323.Google Scholar
Burgay, M., D'Amico, N., Possenti, A., Manchester, R. N., Lyne, A. G., Joshi, B. C., McLaughlin, M. A., Kramer, M., Sarkissian, J. M., Camilo, F., Kalogera, V., Kim, C., and Lorimer, D. R. 2003. An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system. Nature, 426(Dec.), 531–533.Google Scholar
Burrows, C. J., Krist, J., Hester, J. J., Sahai, R., Trauger, J. T., Stapelfeldt, K. R., Gallagher, J. S. III., Ballester, G. E., Casertano, S., Clarke, J. T., Crisp, D., Evans, R. W., Griffiths, R. E., Hoessel, J. G., Holtzman, J. A., Mould, J. R., Scowen, P. A., Watson, A. M., and Westphal, J. A. 1995. Hubble Space Telescope observations of the SN 1987A triple ring nebula. ApJ, 452(Oct.), 680+.Google Scholar
Cannon, R. C. 1993. Massive Thorne-Żytkow objects – structure and nucleosynthesis. MNRAS, 263(Aug.), 817+.Google Scholar
Cappellaro, E., and Turatto, M. 1997. The rate of supernovae: biases and uncertainties. Pages 77+ of: P., Ruiz-Lapuente, R., Canal, and J., Isern (eds.), NATO ASIC Proc. 486: Thermonuclear Supernovae, Proceedings of the NATO Advanced Study Institute, held in Begur, Girona, Spain, June 20–30, 1995, Dordrecht: Kluwer Academic Publishers.
Casares, J., Charles, P. A., and Kuulkers, E. 1998. The mass of the neutron star in Cygnus X-2 (V1341 Cygni). ApJ, 493(Jan.), L39+.Google Scholar
Chevalier, R. A. 1993. Neutron star accretion in a stellar envelope. ApJ, 411 (July), L33–L36.Google Scholar
Colbert, E. J. M., and Mushotzky, R. F. 1999. The nature of accreting black holes in nearby galaxy nuclei. ApJ, 519(July), 89–107.Google Scholar
Davies, M. B. 1995. The binary zoo: the calculation of production rates of binaries through 2+1 encounters in globular clusters. MNRAS, 276(Oct.), 887–905.Google Scholar
Davies, M. B., and Hansen, B. M. S. 1998. Neutron star retention and millisecond pulsar production in globular clusters. MNRAS, 301(Nov.), 15–24.Google Scholar
Detmers, R. G., Langer, N., Podsiadlowski, P., and Izzard, R. G. 2008. Gamma-ray bursts from tidally spun-up Wolf-Rayet stars?A&A, 484(June), 831–839.Google Scholar
Dewi, J. D. M., Podsiadlowski, P., and Sena, A. 2006. Double-core evolution and the formation of neutron star binaries with compact companions. MNRAS, 368(June), 1742–1748.Google Scholar
Dewi, J. D. M., and Tauris, T. M. 2000. On the energy equation and efficiency parameter of the common envelope evolution. A&A, 360(Aug.), 1043–1051.Google Scholar
Duquennoy, A., and Mayor, M. 1991. Multiplicity among solar-type stars in the solar neighbourhood. II – Distribution of the orbital elements in an unbiased sample. A&A, 248(Aug.), 485–524.Google Scholar
Eggleton, P. P. 1983. Approximations to the radii of Roche lobes. ApJ, 268(May), 368+.Google Scholar
Eggleton, P. P., and Verbunt, F. 1986. Triple star evolution and the formation of short-period, low mass X-ray binaries. MNRAS, 220(May), 13P–18P.Google Scholar
Fabbiano, G. 1989. X rays from normal galaxies. ARA&A, 27, 87–138.Google Scholar
Fabian, A. C., Pringle, J. E., and Rees, M. J. 1975. Tidal capture formation of binary systems and X-ray sources in globular clusters. MNRAS, 172(Aug.), 15P+.Google Scholar
Faulkner, J. 1971. Ultrashort-period binaries, gravitational radiation, and mass transfer. I. The standard model, with applications to WZ Sagittae and Z Camelopardalis. ApJ, 170(Dec.), L99+.Google Scholar
Fedorova, A. V., Tutukov, A. V., and Yungelson, L. R. 2004. Type-Ia supernovae in semidetached binaries. Astronomy Letters, 30(Feb.), 73–85.Google Scholar
Foglizzo, T., Galletti, P., Scheck, L., and Janka, H.-T. 2007. Instability of a stalled accretion shock: evidence for the advective-acoustic cycle. ApJ, 654(Jan.), 1006–1021.Google Scholar
Frankowski, A., and Jorissen, A. 2007. Binary life after the AGB – towards a unified picture. Baltic Astronomy, 16, 104–111.Google Scholar
Frachter, A. S., and Goss, W. M. 1990. The integrated flux density of pulsars in globular clusters. ApJ, 365(Dec.), L63–L66.Google Scholar
Fryer, C. L., and Heger, A. 2005. Binary merger progenitors for gamma-ray bursts and hypernovae. ApJ, 623(Apr.), 302–313.Google Scholar
Fryer, C. L., and Kalogera, V. 2001. Theoretical black hole mass distributions. ApJ, 554(June), 548–560.Google Scholar
Fryer, C. L., and Woosley, S. E. 1998. Helium star/black hole mergers: a new gamma-ray burst model. ApJ, 502(July), L9+.Google Scholar
Greiner, J., Cuby, J. G., and McCaughrean, M. J. 2001. An unusually massive stellar black hole in the Galaxy. Nature, 414(Nov.), 522–525.Google Scholar
Hachisu, I., Kato, M., Nomoto, K., and Umeda, H. 1999. A new evolutionary path to type IA supernovae: A helium-rich supersoft X-ray source channel. ApJ, 519(July), 314–323.Google Scholar
Hameury, J. M., King, A. R., Lasota, J. P., and Raison, F. 1993. Structure and evolution of X-ray heated compact binaries. A&A, 277(Sept.), 81+.Google Scholar
Hamuy, M., Phillips, M. M., Suntzeff, N. B., Maza, J., Gonzalez, L. E., Roth, M., Krisciunas, K., Morrell, N., Green, E. M., Persson, S. E., and McCarthy, P. J. 2003. An asymptotic-giant-branch star in the progenitor system of a type Ia supernova. Nature, 424(Aug.), 651–654.Google Scholar
Han, Z., and Podsiadlowski, P. 2004. The single-degenerate channel for the progenitors of Type Ia supernovae. MNRAS, 350(June), 1301–1309.Google Scholar
Han, Z., Podsiadlowski, P., and Eggleton, P. P. 1995. The formation of bipolar planetary nebulae and close white dwarf binaries. MNRAS, 272(Feb.), 800–820.Google Scholar
Han, Z., Podsiadlowski, P., and Lynas-Gray, A. E. 2007. A binary model for the UV-upturn of elliptical galaxies. MNRAS, 380(Sept.), 1098–1118.Google Scholar
Han, Z., Podsiadlowski, P., Maxted, P. F. L., and Marsh, T. R. 2003. The origin of subdwarf B stars – II. MNRAS, 341(May), 669–691.Google Scholar
Han, Z., Podsiadlowski, P., Maxted, P. F. L., Marsh, T. R., and Ivanova, N. 2002. The origin of subdwarf B stars – I. The formation channels. MNRAS, 336(Oct.), 449–466.Google Scholar
Hjellming, M. S., and Webbink, R. F. 1987. Thresholds for rapid mass transfer in binary systems. I – Polytropic models. ApJ, 318(July), 794–808.Google Scholar
Hobbs, G., Lorimer, D. R., Lyne, A. G., and Kramer, M. 2005. A statistical study of 233 pulsar proper motions. MNRAS, 360(July), 974–992.Google Scholar
Howell, D. A., Sullivan, M., Nugent, P. E., Ellis, R. S., Conley, A. J., Le Borgne, D., Carlberg, R. G., Guy, J., Balam, D., Basa, S., Fouchez, D., Hook, I. M., Hsiao, E. Y., Neill, J. D., Pain, R., Perrett, K. M., and Pritchet, C. J. 2006. The type Ia supernova SNLS-03D3bb from a super-Chandrasekhar-mass white dwarf star. Nature, 443(Sept.), 308–311. Hulse, R. A., and Taylor, J. H. 1975. Discovery of a pulsar in a binary system. ApJ, 195(Jan.), L51–L53.Google Scholar
Iben, I. Jr., and Livio, M. 1993. Common envelopes in binary star evolution. PASP, 105(Dec.), 1373–1406.Google Scholar
Iben, I. Jr., and Tutukov, A. V. 1984. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses). ApJS, 54(Feb.), 335–372.Google Scholar
Ivanova, N. 2002. Slow mergers of massive stars. Ph.D. thesis, Balliol College, Oxford.
Ivanova, N., and Podsiadlowski, P. 2003. The Slow Merger of Massive Stars. Pages 19+ of: W., Hillebrandt & B., Leibundgut (ed), From Twilight to Highlight: The Physics of Supernovae, Springer-Verlag.
Iwamoto, K., Mazzali, P. A., Nomoto, K., Umeda, H., Nakamura, T., Patat, F., Danziger, I. J., Young, T. R., Suzuki, T., Shigeyama, T., Augusteijn, T., Doublier, V., Gonzalez, J.-F., Boehnhardt, H., Brewer, J., Hainaut, O. R., Lidman, C., Leibundgut, B., Cappellaro, E., Turatto, M., Galama, T. J., Vreeswijk, P. M., Kouveliotou, C., van Paradijs, J., Pian, E., Palazzi, E., and Frontera, F. 1998. A hypernova model for the supernova associated with the γ-ray burst of 25 April 1998. Nature, 395(Oct.), 672–674.Google Scholar
Izzard, R. G., Ramirez-Ruiz, E., and Tout, C. A. 2004. Formation rates of core-collapse supernovae and gamma-ray bursts. MNRAS, 348(Mar.), 1215–1228.Google Scholar
Janka, H.-T., Langanke, K., Marek, A., Martínez-Pinedo, G., and Muller, B. 2007. Theory of core-collapse supernovae. Phys. Rep., 442(Apr.), 38–74.Google Scholar
Johnston, S., and Bailes, M. 1991. New limits on the population of millisecond pulsars in the galactic plane. MNRAS, 252(Sept.), 277–281.Google Scholar
Justham, S., Rappaport, S., and Podsiadlowski, P. 2006. Magnetic braking of Ap/Bp stars: application to compact black-hole X-ray binaries. MNRAS, 366(Mar.), 1415–1423.Google Scholar
Karovska, M., Schlegel, E., Hack, W., Raymond, J. C., and Wood, B. E. 2005. A large X-ray outburst in Mira A. ApJ, 623(Apr.), L137–L140.Google Scholar
Kerzendorf, W. E., Schmidt, B. P., Asplund, M., Nomoto, K., Podsiadlowski, P., Frebel, A., Fesen, R. A., and Yong, D. 2009. Subaru high-resolution spectroscopy of Star G in the Tycho supernova remnant. ApJ, 701 (Aug.), 1665–1672.Google Scholar
King, A. R., Davies, M. B., Ward, M. J., Fabbiano, G., and Elvis, M. 2001. Ultraluminous X-ray sources in external galaxies. ApJ, 552(May), L109–L112.Google Scholar
King, A. R., and Ritter, H. 1999. Cygnus X-2, super-Eddington mass transfer, and pulsar binaries. MNRAS, 309(Oct.), 253–260.Google Scholar
Kobulnicky, H. A., and Fryer, C. L. 2007. A new look at the binary characteristics of massive stars. ApJ, 670(Nov.), 747–765.Google Scholar
Kolb, U., Davies, M. B., King, A., and Ritter, H. 2000. The violent past of Cygnus X-2. MNRAS, 317(Sept.), 438–446.Google Scholar
Körding, E., Falcke, H., and Markoff, S. 2002. Population X: are the super-Eddington X-ray sources beamed jets in microblazars or intermediate mass black holes?A&A, 382(Jan.), L13–L16.Google Scholar
Kramer, M., and Stairs, I. H. 2008. The double pulsar. ARA&A, 46(Sept.), 541–572.Google Scholar
Kulkarni, S. R., and Narayan, R. 1988. Birthrates of low-mass binary pulsars and low-mass X-ray binaries. ApJ, 335(Dec.), 755–768.Google Scholar
Kulkarni, S. R., Narayan, R., and Romani, R. W. 1990. The pulsar content of globular clusters. ApJ, 356(June), 174–183.Google Scholar
Kulkarni, S. R., Ofek, E. O., Rau, A., Cenko, S. B., Soderberg, A. M., Fox, D. B., Gal-Yam, A., Capak, P. L., Moon, D. S., Li, W., Filippenko, A. V., Egami, E., Kartaltepe, J., and Sanders, D. B. 2007. An unusually brilliant transient in the galaxy M85. Nature, 447(May), 458–460.Google Scholar
Landau, L. D., and Lifshitz, E. M. 1959. The Classical Theory of Fields. 2nd ed., vol. 2, Butterworth-Heinemann.
Lee, C.-H., Brown, G. E., and Wijers, R. A. M. J. 2002. Discovery of a black hole mass-period correlation in soft X-ray transients and its implication for gamma-ray burst and hypernova mechanisms. ApJ, 575(Aug.), 996–1006.Google Scholar
Leonard, D. C. 2007. Constraining the type Ia supernova progenitor: the search for hydrogen in nebular spectra. ApJ, 670(Dec.), 1275–1282.Google Scholar
MacFadyen, A. I., and Woosley, S. E. 1999. Collapsars: gamma-ray bursts and explosions in “failed supernovae.”ApJ, 524(Oct.), 262–289.Google Scholar
Madhusudhan, N., Justham, S., Nelson, L., Paxton, B., Pfahl, E., Podsiadlowski, P., and Rap-paport, S. 2006. Models of ultraluminous X-ray sources with intermediate-mass black holes. ApJ, 640(Apr.), 918–922.Google Scholar
Madhusudhan, N., Rappaport, S., Podsiadlowski, P., and Nelson, L. 2008. Models for the observable system parameters of ultraluminous X-ray sources. ApJ, 688(Dec.), 1235–1249.Google Scholar
Marietta, E., Burrows, A., and Fryxell, B. 2000. Type IA supernova explosions in binary systems: the impact on the secondary star and its consequences. ApJS, 128(June), 615–650.Google Scholar
Meng, X., Chen, X., and Han, Z. 2007. The impact of Type Ia supernova explosions on the companions in a binary system. PASJ, 59(Aug.), 835–840.Google Scholar
Meyer, F., and Meyer-Hofmeister, E. 1979. Formation of cataclysmic binaries through common envelope evolution. A&A, 78(Sept.), 167–176.Google Scholar
Mezzacappa, A., Bruenn, S. W., Blondin, J. M., Hix, W. R., and Bronson Messer, O. E. 2007 (Aug.). Ascertaining the core collapse supernova mechanism: an emerging picture? Pages 234–242 of: T., di Salvo, G. L., Israel, L., Piersant, L., Burderi, G., Matt, A., Tornambe, & M. T., Menna (eds.), The Multicolored Landscape of Compact Objects and Their Explosive Origins. American Institute of Physics Conference Series, vol. 924.
Mikolajewska, J. 2007. Symbiotic stars: continually embarrassing binaries. Baltic Astronomy, 16, 1–9.Google Scholar
Morris, T., and Podsiadlowski, P. 2007. The triple-ring nebula around SN 1987A: fingerprint of a binary merger. Science, 315(Feb.), 1103+.Google Scholar
Napiwotzki, R., Koester, D., Nelemans, G., Yungelson, L., Christlieb, N., Renzini, A., Reimers, D., Drechsel, H., and Leibundgut, B. 2002. Binaries discovered by the SPY project. II. HE 1414-0848: a double degenerate with a mass close to the Chandrasekhar limit. A&A, 386(May), 957–963.Google Scholar
Nelemans, G., Yungelson, L. R., Portegies Zwart, S. F., and Verbunt, F. 2001. Population synthesis for double white dwarfs. I. Close detached systems. A&A, 365(Jan.), 491–507.Google Scholar
Nomoto, K. 1982. Accreting white dwarf models for type I supernovae. I – Presupernova evolution and triggering mechanisms. ApJ, 253(Feb.), 798–810.Google Scholar
Nomoto, K. 1984. Evolution of 8-10 solar mass stars toward electron capture supernovae. I – Formation of electron-degenerate O + NE + MG cores. ApJ, 277(Feb.), 791–805.Google Scholar
Nomoto, K., and Iben, I. Jr., 1985. Carbon ignition in a rapidly accreting degenerate dwarf – a clue to the nature of the merging process in close binaries. ApJ, 297(Oct.), 531–537.Google Scholar
Orosz, J. A., and Kuulkers, E. 1999. The optical light curves of Cygnus X-2 (V1341 Cyg) and themassofitsneutronstar. MNRAS, 305(May), 132–142.Google Scholar
Paczyński, B. 1976. Common envelope binaries. Pages 75+ of: P., Eggleton, S., Mitton, & J., Whelan (eds.), Structure and Evolution ofClose Binary Systems. IAU Symposium, vol. 73.
Pakmor, R., Röpke, F. K., Weiss, A., and Hillebrandt, W. 2008. The impact of type Ia supernovae on main sequence binary companions. A&A, 489(Oct.), 943–951.Google Scholar
Pasquali, A., Nota, A., Langer, N., Schulte-Ladbeck, R. E., and Clampin, M. 2000. R4 and its circumstellar nebula: evidence for a binary merger?AJ, 119(Mar.), 1352–1358.Google Scholar
Patat, F., Chandra, P., Chevalier, R., Justham, S., Podsiadlowski, P., Wolf, C., Gal-Yam, A., Pasquini, L., Crawford, I. A., Mazzali, P. A., Pauldrach, A. W. A., Nomoto, K., Benetti, S., Cappellaro, E., Elias-Rosa, N., Hillebrandt, W., Leonard, D. C., Pastorello, A., Renzini, A., Sabbadin, F., Simon, J. D., and Turatto, M. 2007. Detection of circumstellar material in a normal type Ia supernova. Science, 317(Aug.), 924+.Google Scholar
Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro, P. G., Deustua, S., Fabbro, S., Goobar, A., Groom, D. E., Hook, I. M., Kim, A. G., Kim, M. Y., Lee, J. C., Nunes, N. J., Pain, R., Pennypacker, C. R., Quimby, R., Lidman, C., Ellis, R. S., Irwin, M., McMahon, R. G., Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B. J., Filippenko, A.V., Matheson, T., Fruchter, A. S., Panagia, N., Newberg, H. J. M., Couch, W. J., and The Supernova Cosmology Project. 1999. Measurements of omega and lambda from 42 high-redshift supernovae. ApJ, 517(June), 565–586.Google Scholar
Pfahl, E., Rappaport, S., and Podsiadlowski, P. 2002a. A comprehensive study of neutron star retention in globular clusters. ApJ, 573(July) 283–305.Google Scholar
Pfahl, E., Rappaport, S., and Podsiadlowski, P. 2003. The galactic population of low- and intermediate-mass X-ray binaries. ApJ, 597(Nov.), 1036–1048.Google Scholar
Pfahl, E., Rappaport, S., Podsiadlowski, P., and Spruit, H. 2002b. A new class of high-mass X-ray binaries: implications for core collapse and neutron star recoil. ApJ, 574(July), 364–376.Google Scholar
Phillips, M. M. 1993. The absolute magnitudes of Type IA supernovae. ApJ, 413(Aug.), L105–L108.Google Scholar
Piersanti, L., Gagliardi, S., Iben, I. Jr., and Tornambne, A. 2003. Carbon-oxygen white dwarf accreting CO-rich matter. II. Self-regulating accretion process up to the explosive stage. ApJ, 598(Dec.), 1229–1238.Google Scholar
Podsiadlowski, P. 1991. Irradiation-driven mass transfer low-mass X-ray binaries. Nature, 350(Mar.), 136–138.Google Scholar
Podsiadlowski, P. 2001. Common-envelope evolution and stellar mergers. Pages 239+ of: P., Podsiadlowski, S., RappaportA. R., King, F., D'Antona, and L., Burderi (eds.), Evolution of Binary and Multiple Star Systems. Astronomical Society of the Pacific Conference Series, vol. 229.
Podsiadlowski, P., Cannon, R. C., and Rees, M. J. 1995. The evolution and final fate of massive Thorne-Zytkow objects. MNRAS, 274(May), 485–490.Google Scholar
Podsiadlowski, P., Dewi, J. D. M., Lesaffre, P., Miller, J. C., Newton, W. G., and Stone, J. R. 2005. The double pulsar J0737-3039: testing the neutron star equation of state. MNRAS, 361(Aug.), 1243–1249.Google Scholar
Podsiadlowski, P., Ivanova, N., Justham, S., and Rappaport, S. 2010. Explosive common-envelope ejection: implications for gamma-ray bursts and low-mass black-hole binaries. MNRAS, 406(Aug.), 840–847.Google Scholar
Podsiadlowski, P., and Joss, P. C. 1989. An alternative binary model for SN1987A. Nature, 338(Mar.), 401–403.Google Scholar
Podsiadlowski, P., Joss, P. C., and Hsu, J. J. L. 1992. Presupernova evolution in massive interacting binaries. ApJ, 391(May), 246–264.Google Scholar
Podsiadlowski, P., Langer, N., Poelarends, A. J. T., Rappaport, S., Heger, A., and Pfahl, E. 2004a. The effects of binary evolution on the dynamics of core collapse and neutron star kicks. ApJ, 612(Sept.), 1044–1051.Google Scholar
Podsiadlowski, P., Mazzali, P. A., Nomoto, K., Lazzati, D., and Cappellaro, E. 2004b. The rates of hypernovae and gamma-ray bursts: implications for their progenitors. ApJ, 607(May), L17–L20.Google Scholar
Podsiadlowski, P., and Mohamed, S. 2007. The origin and evolution of symbiotic binaries. Baltic Astronomy, 16, 26–33.Google Scholar
Podsiadlowski, P., Morris, T. S., and Ivanova, N. 2006 (Dec.). Massive binary mergers: a unique scenario for the sgB[e] phenomenon? Pages 259+ of: M., Kraus and A. S., Miroshnichenko (eds.), Stars with the B[e] Phenomenon. Astronomical Society of the Pacific Conference Series, vol. 355.
Podsiadlowski, P., Morris, T. S., and Ivanova, N. 2007. The progenitor of SN 1987A. In: Supernova 1987A: 20 Years After: Supernovae and Gamma-Ray Bursters, American Institute of Physics Conference Series, 937, 125–133.
Podsiadlowski, P., and Rappaport, S. 2000. Cygnus X-2: The descendant of an intermediate-mass X-ray binary. ApJ, 529(Feb.), 946–951.Google Scholar
Podsiadlowski, P., Rappaport, S., and Han, Z. 2003a. On the formation and evolution of black hole binaries. MNRAS, 341(May), 385–404.Google Scholar
Podsiadlowski, P., Rappaport, S., and Pfahl, E. D. 2003b. X-ray binaries and the origin of binary millisecond pulsars. Pages 283+ of: M., Bailes, D. J., Nice, and S. E., Thorsett (eds.), Radio Pulsars. Astronomical Society of the Pacific Conference Series, vol. 302.
Podsiadlowski, P., Rappaport, S., and Pfahl, E. D. 2002. Evolutionary sequences for low- and intermediate-mass X-ray binaries. ApJ, 565(Feb.), 1107–1133.Google Scholar
Pylyser, E., and Savonije, G. J. 1988. Evolution of low-mass close binary sytems with a compact mass accreting component. A&A, 191(Feb.), 57–70.Google Scholar
Pylyser, E. H. P., and Savonije, G. J. 1989. The evolution of low-mass close binary systems with a compact component. II – Systems captured by angular momentum losses. A&A, 208(Jan.), 52–62.Google Scholar
Rappaport, S. A., Podsiadlowski, P., and Pfahl, E. 2005. Stellar-mass black hole binaries as ultraluminous X-ray sources. MNRAS, 356(Jan.), 401–414.Google Scholar
Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P. M., Gilliland, R. L., Hogan, C. J., Jha, S., Kirshner, R. P., Leibundgut, B., Phillips, M. M., Reiss, D., Schmidt, B. P., Schommer, R. A., Smith, R. C., Spyromilio, J., Stubbs, C., Suntzeff, N. B., and Tonry, J. 1998. Observational evidence from supernovae for an accelerating universe and a cosmological constant. AJ, 116(Sept.), 1009–1038.Google Scholar
Ritter, H., and Kolb, U. 1998. Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (Sixth edition). A&AS, 129(Apr.), 83–85.Google Scholar
Ruderman, M., Shaham, J., and Tavani, M. 1989. Accretion turnoff and rapid evaporation of very light secondaries in low-mass X-ray binaries. ApJ, 336(Jan.), 507–518.Google Scholar
Ruiz-Lapuente, P., Comeron, F., Méndez, J., Canal, R., Smartt, S. J., Filippenko, A. V., Kurucz, R. L., Chornock, R., Foley, R. J., Stanishev, V., and Ibata, R. 2004. The binary progenitor of Tycho Brahe's 1572 supernova. Nature, 431(Oct.), 1069–1072.Google Scholar
Ruszkowski, M., and Begelman, M. C. 2003. Eddington limit and radiative transfer in highly inhomogeneous atmospheres. ApJ, 586(Mar.), 384–388.Google Scholar
Schwab, J., Podsiadlowski, P., and Rappaport, S. 2010. Further evidence for the bimodal distribution of neutron-star masses. ApJ, 719(Aug.), 722–727.Google Scholar
Smith, N., Davidson, K., Gull, T. R., Ishibashi, K., and Hillier, D. J. 2003. Latitude-dependent effects in the stellar wind of n Carinae. ApJ, 586(Mar.), 432–450.Google Scholar
Socrates, A., and Davis, S. W. 2006. Ultraluminous X-ray sources powered by radiatively efficient two-phase super-Eddington accretion onto stellar-mass black holes. ApJ, 651 (Nov.), 1049–1058.Google Scholar
Spruit, H. C., and Taam, R. E. 2001. Circumbinary disks and cataclysmic variable evolution. ApJ, 548(Feb.), 900–907.Google Scholar
Taam, R. E., and Sandquist, E. L. 2000. Common envelope evolution of massive binary stars. ARA&A, 38, 113–141.Google Scholar
Tauris, T. M., van den Heuvel, E. P. J., and Savonije, G. J. 2000. Formation of millisecond pulsars with heavy white dwarf companions: extreme mass transfer on subthermal timescales. ApJ, 530(Feb.), L93–L96.Google Scholar
Terman, J. L., Taam, R. E., and Hernquist, L. 1995. Double core evolution. 7: The infall of a neutron star through the envelope of its massive star companion. ApJ, 445(May), 367–376.Google Scholar
Thorne, K. S., and Zytkow, A. N. 1975. Red giants and supergiants with degenerate neutron cores. ApJ, 199(July), L19–L24.Google Scholar
Thorne, K. S., and Zytkow, A. N. 1977. Stars with degenerate neutron cores. I – Structure of equilibrium models. ApJ, 212(Mar.), 832–858.Google Scholar
Tylenda, R., and Soker, N. 2006. Eruptions of the V838 Mon type: stellar merger versus nuclear outburst models. A&A, 451 (May), 223–236.Google Scholar
van den Heuvel, E. P. J. 2004 (Oct.). X-ray binaries and their descendants: binary radio pulsars; evidence for three classes of neutron stars? Pages 185+ of: V., Schoenfelder, G., Lichti, and C., Winkler (eds.), 5th INTEGRAL Workshop on the INTEGRAL Universe. ESA Special Publication, vol. 552.
van den Heuvel, E. P. J., Bhattacharya, D., Nomoto, K., and Rappaport, S. A. 1992. Accreting white dwarf models for CAL 83, CAL 87 and other ultrasoft X-ray sources in the LMC. A&A, 262(Aug.), 97–105.Google Scholar
van Kerkwijk, M. H., Charles, P. A., Geballe, T. R., King, D. L., Miley, G. K., Molnar, L. A., van den Heuvel, E. P. J., van der Klis, M., and van Paradijs, J. 1992. Infrared helium emission lines from Cygnus X-3 suggesting a Wolf-Rayet star companion. Nature, 355(Feb.), 703–705.Google Scholar
van Rensbergen, W., De Loore, C., and Jansen, K. 2006. Evolution of interacting binaries with a B type primary at birth. A&A, 446(Feb.), 1071–1079.Google Scholar
Verbunt, F., and Zwaan, C. 1981. Magnetic braking in low-mass X-ray binaries. A&A, 100(July), L7–L9.Google Scholar
Voss, R., and Nelemans, G. 2008. Discovery of the progenitor of the type Ia supernova 2007on. Nature, 451(Feb.), 802–804.Google Scholar
Wampler, E. J., Wang, L., Baade, D., Banse, K., D'Odorico, S., Gouiffes, C., and Tarenghi, M. 1990. Observations of the nebulosities near SN 1987A. ApJ, 362(Oct.), L13–L16.Google Scholar
Webbink, R. F. 1984. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. ApJ, 277(Feb.), 355–360.Google Scholar
Webbink, R. F. 1988. Late stages of close binary systems – clues to common envelope evolution. Pages 403–446 of: K.-C., Leung (ed), Critical Observations versus Physical Models for Close Binary Systems, Gordon and Breach, New York.
Whelan, J., and Iben, I. Jr., 1973. Binaries and supernovae of type I. ApJ, 186(Dec.), 1007–1014.Google Scholar
Woosley, S. E. 1993. Gamma-ray bursts from stellar mass accretion disks around black holes. ApJ, 405(Mar.), 273–277.Google Scholar
Woosley, S. E., and Heger, A. 2006. The progenitor stars of gamma-ray bursts. ApJ, 637(Feb.), 914–921.Google Scholar
Yoon, S.-C., and Cantiello, M. 2010. Evolution of massive stars with pulsation-driven superwinds during the red supergiant phase. ApJ, 717(July), L62–L65.Google Scholar
Yoon, S.-C., and Langer, N. 2004. Presupernova evolution of accreting white dwarfs with rotation. A&A, 419(May), 623–644.Google Scholar
Yoon, S.-C., and Langer, N. 2005. Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. A&A, 443(Nov.), 643–648.Google Scholar
Yoon, S.-C., Podsiadlowski, P., and Rosswog, S. 2007. Remnant evolution after a carbon-oxygen white dwarf merger. MNRAS, 380(Sept.), 933–948.Google Scholar
Yungelson, L. R., Livio, M., Tutukov, A. V., and Saffer, R. A. 1994. Are the observed frequencies of double degenerates and SN IA contradictory?ApJ, 420(Jan.), 336–340.Google Scholar
Zickgraf, F.-J., Kovacs, J., Wolf, B., Stahl, O., Kaufer, A., and Appenzeller, I. 1996. R4 in the Small Magellanic Cloud: a spectroscopic binary with a B[e]/LBV-type component. A&A, 309(May), 505–514.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×