Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-12T17:47:21.963Z Has data issue: false hasContentIssue false

18 - Weak migratory interchange by birds between Australia and Asia

from Part II - Modern invaders

Published online by Cambridge University Press:  05 February 2014

David Roshier
Affiliation:
Australian Wildlife Conservancy
Leo Joseph
Affiliation:
Australian National Wildlife Collection
Herbert H. T. Prins
Affiliation:
Wageningen Universiteit, The Netherlands
Iain J. Gordon
Affiliation:
The James Hutton Institute, Scotland
Get access

Summary

Long-distance migration is a feature of the terrestrial avifaunas of most continents, notably those of Eurasia and North America. There, lengthening spring days and warmer temperatures prompt millions of birds to move towards higher latitudes (see Alerstam 1990; Berthold et al. 2003; Greenberg and Marra 2005). Among the most spectacular of these migrations are the millions of waterfowl and shorebirds migrating between high-latitude breeding grounds across the Holartic and non-breeding grounds in the southern hemisphere, and the annual movements of songbirds, raptors and others between the forests of the Neotropics and breeding grounds in North America. Yet among terrestrial species (except shorebirds) only seven migrate to Australia from a pool of 234 Palearctic species that migrate to South East Asia (Dingle 2004, 2008). All seven are non-breeding migrants to Australia, of which only three, oriental cuckoo Cuculus optatus, white-throated needletail Hirundapus caudacutus and fork-tailed swift Apus pacificus are common visitors (Dingle 2004). It is this dearth of migration between Australia and Eurasia that is our primary focus here.

For a wide range of Australo-Papuan landbird species there is no broad environmental condition likely to warrant an ‘out of Australia’ response to Asia or further afield. The resources they need can be found elsewhere within Australo-Papua. In the south, swift parrots migrate hundreds to thousands of kilometres from Tasmania to the mainland seeking widely dispersed nectar and psyllid resources in the Austral winter (Saunders and Heinsohn 2008). As winter develops, southern populations of rainbow bee-eater and others migrate north and some depart the continent to New Guinea and islands beyond. In the north, pied imperial pigeon, metallic starling, buff-breasted paradise kingfisher and others migrate annually between the tropical forests of northern Australia and New Guinea to exploit seasonally available resources (e.g. Legge et al. 2004). A key feature of migration within Australia is the preponderance of partial migration, the phenomenon of some populations or individuals and not others of a species undertaking migration. This arises through variable responses of individuals and populations to irregular weather patterns and subsequent uncertainties of the whereabouts and availability of food resources (Chan 2001). For Palearctic migrants passing through the archipelagos of South East Asia, this uncertainty likely precludes extending migration to the Australian continent, except to habitats that are reliably productive in the Austral summer, such as the coastal habitats used by migratory shorebirds.

Type
Chapter
Information
Invasion Biology and Ecological Theory
Insights from a Continent in Transformation
, pp. 389 - 413
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alerstam, T. (1990). Bird Migration. Cambridge: Cambridge University Press.Google Scholar
Alerstam, T. (2006). Conflicting evidence about long-distance animal navigation. Science 313: 791–794.CrossRefGoogle ScholarPubMed
Alerstam, T., Hedenstrom, A. and Akesson, S., (2003). Long-distance migration: evolution and determinants. Oikos 103: 247–260.CrossRefGoogle Scholar
Alstrom, P., Fregin, S., Norman, J. A. et al. (2011). Multilocus analysis of a taxonomically densely sampled dataset reveal extensive non-monophyly in the avian family Locustellidae. Molecular Phylogenetics and Evolution 58: 513–526.CrossRefGoogle ScholarPubMed
Altizer, S., Bartel, R. and Han, B. A. (2011). Animal migration and infectious disease risk. Science 331: 296–302.CrossRefGoogle ScholarPubMed
Arriero, E. and Moller, A. P. (2008). Host ecology and life-history traits associated with blood parasite species richness in birds. Journal of Evolutionary Biology 21: 1504–1513.CrossRefGoogle ScholarPubMed
Baker, A. J. (2002). The roots of bird migration: inferences from the historical record preserved in DNA. Ardea 90: 503–513.Google Scholar
Barker, F. K., Barrowclough, G. F. and Groth, J. G. (2002). A phylogenetic hypothesis for passerine birds: taxonomic and biogeographic implications of an analysis of nuclear DNA sequence data. Proceedings of the Royal Society of London. Series B. Biological Sciences 269: 295–308.CrossRefGoogle ScholarPubMed
Barker, F. K., Cibois, A., Schikler, P., Feinstein, J. and Cracraft, J. (2004). Phylogeny and diversification of the largest avian radiation. Proceedings of the National Academy of Sciences of the United States of America 101: 11 040–11 045.CrossRefGoogle ScholarPubMed
Bell, C. P. (2000). Process in the evolution of bird migration and pattern in avian ecogeography. Journal of Avian Biology 31: 258–265.CrossRefGoogle Scholar
Bell, C. P. (2011). Resource buffering and the evolution of bird migration. Evolutionary Ecology 25: 91–106.CrossRefGoogle Scholar
Benkman, C. W., Parchman, T. L. and Mezquida, E. T. (2010). Patterns of coevolution in the adaptive radiation of crossbills. Annals of the New York Academy of Sciences 1206: 1–16.CrossRefGoogle ScholarPubMed
Bennetts, R. E. and Kitchens, W. M. (2000). Factors influencing movement probabilities of a nomadic food specialist: proximate foraging benefits or ultimate gains from exploration?Oikos 91: 459–467.CrossRefGoogle Scholar
Berthold, P. (1999). Towards a comprehensive theory for the evolution, control and adaptability of avian migration. Ostrich 70: 1–11.
Berthold, P., Gwinner, E. and Sonnenschein, E. (2003). Avian Migration. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Billerman, S. M., Huber, G. H., Winkler, D. W., Safran, R. J. and Lovette, I. J. (2011). Population genetics of a recent transcontinental colonization of South America by breeding Barn Swallows (Hirundo rustica). The Auk 28: 506–513CrossRefGoogle Scholar
Blanco, G., Tella, J. L., Potti, J. and Baz, A. (2001). Feather mites on birds: costs of parasitism or conditional outcomes?Journal of Avian Biology 32: 271–274.CrossRefGoogle Scholar
Blyth, J. and Burbidge, A. H. (1997). What do we know about the Princess Parrot Polytelis alexandrae?Eclectus 3: 26–29.Google Scholar
Böhning-Gaese, K. (2005). Influence of migrants on temperate bird communities: a macroecological approach. In Greenberg, R. and Marra, P. P. (eds), Birds of Two Worlds: The Ecology and Evolution of Migratory Birds. Baltimore, MD: Johns Hopkins University Press, pp. 143–153.Google Scholar
Boyle, W. A., Conway, C. J. and Bronstein, J. L. (2011). Why do some, but not all, tropical birds migrate? A comparative study of diet breadth and fruit preference. Evolutionary Ecology 25: 219–236.CrossRefGoogle Scholar
Briggs, S. V. (1992). Movement patterns and breeding characteristics of arid zone ducks. Corella 16: 15–22.Google Scholar
Bruderer, B. and Salewski, V. (2008). Evolution of bird migration in a biogeographical context. Journal of Biogeography 35(11): 1951–1959.CrossRefGoogle Scholar
Bunn, S. E., Balcombe, S. R., Davies, P. M. et al. (2006). Aquatic productivity and food webs of desert river ecosystems. In Kingsford, R. T. (ed.), Ecology of Desert Rivers. Melbourne: Cambridge University Press, pp. 76–99.Google Scholar
Byrne, M., Steane, D. A., Joseph, L. et al. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38: 1635–1656.CrossRefGoogle Scholar
Byrne, M., Yeates, D., Joseph, L. et al. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17: 4398–4417.CrossRefGoogle ScholarPubMed
Callaghan, D. and Harshman, J. (2005). Taxonomy and systematics. In Kear, J. (ed.), Ducks, Geese and Swans. Oxford: Oxford University Press, pp. 14–26.Google Scholar
Cassey, P., Blackburn, T. M., Sol, D., Duncan, R. P. and Lockwood, J. L. (2004). Global patterns of introduction effort and establishment success in birds. Biology Letters 271: S405–S408.Google ScholarPubMed
Chan, K. (2001). Partial migration in Australian landbirds: a review. Emu 101: 281–292.CrossRefGoogle Scholar
Christidis, L. and Norman, J. (2010). Evolution of the Australasian songbird fauna. Emu 110: 21–31.CrossRefGoogle Scholar
Cox, G. W. (1985). The evolution of avian migration systems between the temperate and tropical regions of the New World. American Naturalist 126: 451–474.CrossRefGoogle Scholar
DeBose, J. L. and Nevitt, G. A. (2008). The use of odors at different spatial scales: comparing birds with fish. Journal of Chemical Ecology 34: 867–881.CrossRefGoogle ScholarPubMed
Dingle, H. (1996). Migration: The Biology of Life on the Move. New York: Oxford University Press.Google Scholar
Dingle, H. (2004). The Australo-Papuan bird migration system: Another consequence of Wallace’s Line. Emu 104: 95–108.CrossRefGoogle Scholar
Dingle, H. (2008). Bird migration in the southern hemisphere: a review comparing continents. Emu 108: 341–359.CrossRefGoogle Scholar
Duncan, R. P., Blackburn, T. M. and Sol, D. (2003). The ecology of bird introductions. Annual Review of Ecology and Systematics 34: 71–98.CrossRefGoogle Scholar
Ebert, D. and Herre, E. A. (1996). The evolution of parasitic diseases. Parasitology Today 12: 96–101.CrossRefGoogle ScholarPubMed
Edwards, S. V. and Boles, W. E. (2002). Out of Gondwana: the origin of passerine birds. Trends in Ecology and Evolution 17: 347–349.CrossRefGoogle Scholar
Ericson, P. G. P., Christidis, L., Cooper, A. et al. (2002). A Gondwanan origin of passerine birds supported by DNA sequences of the endemic New Zealand wrens. Proceedings of the Royal Society of London. Series B. Biological Sciences 269: 235–241.CrossRefGoogle ScholarPubMed
Faaborg, J., Holmes, R. T., Anders, A. D. et al. (2010). Recent advances in understanding migration systems of New World land birds. Ecological Monographs 80: 3–48.CrossRefGoogle Scholar
Figuerola, J. and Green, A. J. (2000). Haematozoan parasites and migratory behaviour in waterfowl. Evolutionary Ecology 14: 143–153.CrossRefGoogle Scholar
Forshaw, J. (2002). Australian Parrots, 3rd edn. Queensland, Australia: Robina Press.Google Scholar
Fransson, T., Barboutis, C., Mellroth, R. and Akriotis, T. (2008). When and where to fuel before crossing the Sahara desert: extended stopover and migratory fuelling in first-year garden warblersSylvia borin. Journal of Avian Biology 39: 133–138.CrossRefGoogle Scholar
Gaston, K. J, Blackburn, T. M. and Gregory, R. D. (1997). Abundance-range size relationships of breeding and wintering birds in Britain: a comparative analysis. Ecography 20: 569–579.CrossRefGoogle Scholar
Gauthreaux, S. A., King, J. R. and Parkes, K. C. (1982). The ecology and evolution of avian migration systems. In Farner, D. S. (ed.), Avian Biology. New York: Academic Press, pp. 93– 168.CrossRefGoogle Scholar
Gill, R. E., Tibbitts, T. L., Douglas, D. C. et al. (2009). Extreme endurance flights by landbirds crossing the Pacific Ocean: ecological corridor rather than barrier?Proceedings of the Royal Society B: Biological Sciences 276: 447–458.CrossRefGoogle ScholarPubMed
Greenberg, R. and Marra, P. P. (2005). Birds of Two Worlds: The Ecology and Evolution of Migratory Birds. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Griffioen, P. A. and Clarke, M. F. (2002). Large-scale bird-movement patterns evident in Eastern Australian Atlas data. Emu 102: 99–125.CrossRefGoogle Scholar
Griswold, C. K., Taylor, C. M. and Norris, R. (2010). The evolution of migration in a seasonal environment. Proceedings of the Royal Society of London. Series B. Biological Sciences 277: 2711–2720.CrossRefGoogle Scholar
Hagstrum, J. T. (2000). Infrasound and the avian navigational map. Journal of Experimental Biology 203: 1103–1111.Google ScholarPubMed
Hawkes, L. A., Balachandran, S., Batbayar, N. et al. (2011). The trans-Himalayan flights of bar-headed geese (Anser indicus). Proceedings of the National Academy of Sciences of the United States of America 108: 9516–9519.CrossRefGoogle Scholar
Helbig, A. J. (2003). Evolution of bird migration: a phylogenetic and biogeographic perspective. In Berthold, P., Gwinner, E. and Sonnenschein, E. (eds), Avian Migration. Berlin: Springer-Verlag, pp. 3–20.CrossRefGoogle Scholar
Herrera, C. M. (1978). Ecological correlates of residence and non-residence in a Mediterranean passerine community. Journal of Animal Ecology 47: 871–890.CrossRefGoogle Scholar
Heyers, D., Manns, M., Luksch, H., Güntürkün, O. and Mouritsen, H. (2007). A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS ONE 2: e937.CrossRefGoogle ScholarPubMed
Higgins, P. J. (1999). Handbook of Australian, New Zealand and Antarctic Birds, Volume 4. Parrots to Dollarbird. Melbourne, Australia: Oxford University Press.Google Scholar
Higgins, P. J., Peter, J. M. and Cowling, S. J. (2006). Handbook of Australian, New Zealand and Antarctic Birds. Volume 7. Boatbill to Starlings. Melbourne, Australia: Oxford University Press.Google Scholar
Hockey, P. A. R. (2005). Predicting migratory behavior in landbirds. In Greenberg, R. and Marra, P. P. (eds.), Birds of Two Worlds: The Ecology and Evolution of Migratory Birds. Baltimore, MD: Johns Hopkins University Press, pp. 53–62.Google Scholar
Hughes, B. and Green, A. J. (2005). Feeding ecology. In Kear, J. (ed.), Ducks, Geese and Swans. Oxford: Oxford University Press, pp. 27–56.Google Scholar
Hughes, L. (2003). Climate change and Australia: trends, projections and impacts. Austral Ecology 28: 423–443.CrossRefGoogle Scholar
Johnson, M. D., Sherry, T. W., Strong, A. M. and Medori, A. (2005). Migrants in Neotropical bird communities: an assessment of the breeding currency hypothesis. Journal of Animal Ecology 74: 333–341.CrossRefGoogle Scholar
Jones, P. (1998). Community dynamics of arboreal insectivorous birds in African savannas in relation to seasonal rainfall patterns and habitat change. In Newbery, D. M., Prins, H. H. T. and Brown, N. D. (eds), Dynamics of Tropical Communities. Cambridge: Cambridge University Press, pp. 421–447.Google Scholar
Jønsson, K. A., Fabre, P.-H., Ricklefs, R. E. and Fjeldså, J. (2011). Major global radiation of corvoid birds originated in the proto-Papuan archipelago. Proceedings of the National Academy of Sciences of the United States of America 108: 2328–2333.CrossRefGoogle ScholarPubMed
Jønsson, K. A., Irestedt, M., Fuchs, J. et al. (2008). Explosive avian radiations and multi-directional dispersal across Wallacea: Evidence from the Campephagidae and other Crown Corvida (Aves). Molecular Phylogenetics and Evolution, 47, 221–236.CrossRefGoogle Scholar
Joseph, L. (1997). Towards a broader view of neotropical migrants: consequences of a re-examination of austral migration. Ornitologia Neotropical, 8, 31–36.Google Scholar
Joseph, L. (2005). Molecular approaches to the evolution and ecology of migration. In Greenberg, R., and Marra, P. P. (eds.), Birds of Two Worlds: The Ecology and Evolution of Migratory Birds. Baltimore, MD: Johns Hopkins University Press, pp. 18–26.Google Scholar
Joseph, L. and Stockwell, D. (2000). Temperature-based models of the migration of Swainson’s Flycatcher (Myiarchus swainsoni) across South America: A new use for museum specimens of migratory birds. Proceedings of the Academy of Natural Sciences of Philadelphia 150: 293–300.Google Scholar
Joseph, L., Wilke, T. and Alpers, D. (2003). Independent evolution of migration on the South American landscape in a long-distance temperate-tropical migratory bird, Swainson’s flycatcher (Myiarchus swainsoni). Journal of Biogeography, 30, 925–937.CrossRefGoogle Scholar
Keast, A. (1958). The influence of ecology on variation in the Mistletoe bird (Dicaeum hirundinaceum). Emu 58: 195–206.CrossRefGoogle Scholar
Keast, A. (1959). Australian birds: their zoogeography and adaptations to an arid continent. In Keast, A., Crocker, R. L., and Christian, C. S. (eds), Biogeography and Ecology in Australia. The Hague: W. Junk, pp. 89–114.CrossRefGoogle Scholar
Keatley, M. R., Hudson, I. L. and Fletcher, T. D. (2004). Long-term flowering synchrony of box-ironbark eucalypts. Australian Journal of Botany 52: 47–54.CrossRefGoogle Scholar
Kingsford, R. T. and Norman, F. I. (2002). Australian waterbirds: products of the continent’s ecology. Emu 102: 1–23.CrossRefGoogle Scholar
Kingsford, R. T., Roshier, D. A. and Porter, J. L. (2010). Australian waterbirds: time and space travellers in dynamic desert landscapes. Marine and Freshwater Research 61: 875–884.CrossRefGoogle Scholar
Kokko, H. and Lundberg, P. (2001). Dispersal, migration, and offspring retention in saturated habitats. American Naturalist 157: 188–202.CrossRefGoogle ScholarPubMed
Kondo, B. and Omland, K. E. (2007). Ancestral state reconstruction of migration: multistate analysis reveals rapid changes in New World orioles (Icterus spp.). The Auk 124: 410–419.CrossRefGoogle Scholar
Lack, D. (1974). Evolution Illustrated by Waterfowl. Oxford: Blackwell.Google Scholar
Lack, P. C. (1983). The movements of Palearctic landbird migrants in Tsavo-East National Park, Kenya. Journal of Animal Ecology 52: 513–24.CrossRefGoogle Scholar
Legge, S., Murphy, S., Igag, P. and Mack, A. L. (2004). Territoriality and density of an Australian migrant, the buff-breasted paradise kingfisher, in the New Guinean non-breeding grounds. Emu 104: 15–20.CrossRefGoogle Scholar
Leisler, B. (1992). Habitat selection and coexistence of migrants and Afrotropical residents. Ibis 134: 77–82.CrossRefGoogle Scholar
Lieser, M., Berthold, P. and Manley, G. A. (2005). Infrasound in the capercaillie (Tetrao urogallus). Journal of Ornithology 146: 395–398.CrossRefGoogle Scholar
Louchart, A. (2008). Emergence of long distance bird migrations: a new model integrating global climate changes. Naturwissenschaften 95: 1109–1119.CrossRefGoogle ScholarPubMed
McWilliams, S. R. and Karasov, W. H. (2005). Migration takes guts. Digestive physiology of migratory birds and its ecological significance. In Greenberg, R. and Marra, P. P. (eds), Birds of Two Worlds: The Ecology and Evolution of Migratory Birds. Baltimore, MD: Johns Hopkins University Press, pp. 67–78.Google Scholar
Mendes, L., Piersma, T., Lecoq, M., Spaans, B. and Ricklefs, R. E. (2005). Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109: 396–404.CrossRefGoogle Scholar
Mila, B., Smith, T. B. and Wayne, R. K. (2006). Postglacial population expansion drives the evolution of long distance migration in a songbird. Evolution 60: 2403–2409.CrossRefGoogle Scholar
Mila, B., McCormack, J. E., Castaneda, G., Wayne, R. K. and Smith, T. B. (2007a). Recent postglacial range expansion drives the rapid diversification of a songbird lineage in the genus Junco. Proceedings of the Royal Society B: Biological Sciences 274: 2653–2660.CrossRefGoogle ScholarPubMed
Mila, B., Smith, T. B. and Wayne, R. K. (2007b). Speciation and rapid phenotypic differentiation in the yellow-rumped warbler Dendroica coronata complex. Molecular Ecology 16: 159–173.CrossRefGoogle ScholarPubMed
Møller, A. P. and Szép, T. (2011). The role of parasites in ecology and evolution of migration and migratory connectivity. Journal of Ornithology 152: 141–150.CrossRefGoogle Scholar
Mönkkönen, M. and Forsman, J. T. (2005). Ecological and biogeographical aspects of the distribution of migrants versus residents in European and North American forest bird communities. In Greenberg, R. and Marra, P. P. (eds), Birds of Two Worlds: The Ecology and Evolution of Migratory Birds. Baltimore, MD: Johns Hopkins University Press, pp. 131–142.Google Scholar
Moreno, J., Briones, V., Merino, S. et al. (2003). Beneficial effects of cloacal bacteria on growth and fledging size in nestling pied flycatchers (Ficedula hypoleuca) in Spain. Auk 120: 784–790.Google Scholar
Morton, S. R., Smith, D. M. S, Dickman, C. R. et al. (2011). A fresh framework for the ecology of arid Australia. Journal of Arid Environments 75: 313–329.CrossRefGoogle Scholar
Moyle, R., Filardi, C., Smith, C. and Diamond, J. (2009). Explosive Pleistocene diversification and hemispheric expansion of a ‘great speciator’. Proceedings of the National Academy of Sciences 106: 1863–1868.CrossRefGoogle Scholar
Nakazawa, Y., Peterson, A. T., Martinez-Meyer, E. and Navarro-Siguenza, A. G. (2004). Seasonal niches of Nearctic–Neotropical migratory birds: Implications for the evolution of migration. Auk 121: 610–618.CrossRefGoogle Scholar
Newton, I. (2006). Movement patterns of common crossbills Loxia curvirostra in Europe. Ibis 148: 782–788.CrossRefGoogle Scholar
Newton, I. (2008). The Migration Ecology of Birds. London: Academic Press.Google Scholar
Nilsson, A. L. K., Linstrom, A., Jonzen, N., Nilsson, S. G. and Karlsson, L. (2006). The effect of climate change on partial migration: the blue tit paradox. Global Change Biology 12: 2014–2022.CrossRefGoogle Scholar
O’Connor, R. J. (1986). Biological characteristics of invaders among bird species in Britain. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences 314: 583–598.CrossRefGoogle Scholar
Outlaw, D. C., Voelker, G., Mila, B. and Girman, D. J. (2003). Evolution of long-distance migration in and historical biogeography of Catharus thrushes: a molecular phylogenetic approach. The Auk 120: 299–310.CrossRefGoogle Scholar
Peterson, A. T. (2003). Predicting the geography of species’ invasions via ecological niche modeling. Quarterly Review of Biology 78: 419–433.CrossRefGoogle ScholarPubMed
Piersma, T. (1997). Do global patterns of habitat use and migration strategics co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure?Oikos 80: 623–631.CrossRefGoogle Scholar
Piersma, T. and van Gils, J. A. (2010). The Flexible Phenotype: Towards a Body-centred Integration of Physiology, Ecology and Behaviour. Oxford: Oxford University Press.Google Scholar
Piersma, T., Perez-Tris, J., Mouritsen, H., Bauchinger, U. and Bairlein, F. (2005). Is there a “migratory syndrome” common to all migrant birds?Annals of New York Academy of Science 1046: 1–12.CrossRefGoogle Scholar
Powers, D. R., Van Hook, J. A., Sandlin, E. A. and McWhorter, T. J. (2010). Arthropod foraging by a southeastern Arizona hummingbird guild. Wilson Journal of Ornithology 122: 494–502.CrossRefGoogle Scholar
Pulido, F. (2007). The genetics and evolution of avian migration. Bioscience 57: 165–174.CrossRefGoogle Scholar
Rajchard, J. (2008). Exogenous chemical substances in bird perception: a review. Veterinarni Medicina 53: 412–419.CrossRefGoogle Scholar
Rappole, J. H. (1995). The Ecology of Migrant Birds: A Neotropical Perspective. London: Smithsonian Institution Press.Google Scholar
Rappole, J. H. (2005). Evolution of old and new world migration systems: a response to Bell. Ardea 93: 125–131.Google Scholar
Rappole, J. H. and Jones, P. (2002). Evolution of old and new world migration systems. In Both, C. and Piersma, T. (eds), The Avian Calendar: Exploring Biological Hurdles in the Annual Cycle. Ardea 90 (Special Issue): 525–537.Google Scholar
Rawsthorne, J., Watson, D. M. and Roshier, D. A. (2011). Implications of movement patterns of a dietary generalist for mistletoe seed dispersal. Austral Ecology 36: 650–655.Google Scholar
Rawsthorne, J., Watson, D. M. and Roshier, D. A. (2012). The restricted seed rain of a mistletoe specialist. Journal of Avian Biology 43: 9–14.CrossRefGoogle Scholar
Reside, A. E., Van Der Wal, J. J., Kutt, A. S. and Perkins, G. C. (2010). Weather, not climate, defines distributions of vagile bird species. PLoS ONE 5: e13569.CrossRefGoogle Scholar
Robin, L., Heinsohn, R. and Joseph, L. (2009). Boom and Bust: Bird Stories for a Dry Country. Collingwood, Australia: CSIRO Publishing.Google Scholar
Roshier, D. A., Doerr, V. A. J. and Doerr, E. D. (2008). Animal movement in dynamic landscapes: interaction between behavioural strategies and resource distributions. Oecologia 156: 465–477.CrossRefGoogle ScholarPubMed
Roshier, D. A., Whetton, P. H., Allan, R. J. and Robertson, A. I. (2001). Distribution and persistence of temporary wetland habitats in arid Australia in relation to climate. Austral Ecology 26: 371–384.CrossRefGoogle Scholar
Rubolini, D., Pastor, A. G., Pilastro, A. and Spina, F. (2002). Ecological barriers shaping fuel stores in barn swallows Hirundo rustica following the central and western Mediterranean flyways. Journal of Avian Biology 33: 15–22.CrossRefGoogle Scholar
Saino, N., Rubolini, D., Jonzen, N. et al. (2007). Temperature and rainfall anomalies in Africa predict timing of spring migration in trans-Saharan migratory birds. Climate Research 35: 123–134.CrossRefGoogle Scholar
Salewski, V. and Bruderer, B. (2007). The evolution of bird migration: a synthesis. Naturwissenschaften 94: 268–279.CrossRefGoogle ScholarPubMed
Salewski, V. and Jones, P. (2006). Palearctic passerines in Afrotropical environments: a review. Journal of Ornithology 147: 192–201.CrossRefGoogle Scholar
Salewski, V., Bairlein, F. and Leisler, B. (2003). Niche partitioning of two Palearctic passerine migrants with Afrotropical residents in their West African winter quarters. Behavioral Ecology 14: 493–502.CrossRefGoogle Scholar
Saunders, D. L. and Heinsohn, R. (2008). Winter habitat use by the endangered, migratory Swift Parrot (Lathamus discolor) in New South Wales. Emu 108: 81–89.CrossRefGoogle Scholar
Schmaljohann, H., Bruderer, B. and Liechti, F. (2008). Sustained bird flights occur at temperatures far beyond expected limits. Animal Behaviour 76: 1133–1138.CrossRefGoogle Scholar
Schmiegelow, F. K. A., Machtans, C. S. and Hannon, S. J. (1997). Are boreal birds resilient to forest fragmentation? An experimental study of short-term community responses. Ecology 78: 1914–1932.CrossRefGoogle Scholar
Schodde, R. (1982). Origin, adaptation and evolution of birds in arid Australia. In Barker, W. R. and Greenslade, P. J. M. (eds), Evolution of the Flora and Fauna of Arid Australia. Adelaide, Australia: Peacock Publications, pp. 191–224.Google Scholar
Schodde, R. (2006). Australasia’s bird fauna today – origins and evolutionary development. In Merrick, J. R., Archer, M., Hickey, G. M. and Lee, M. S. Y. (eds), Evolution and Biogeography of Australasian Vertebrates. Sydney, Australia: Auscipub Pty Ltd., pp. 413–458.Google Scholar
Schwanghart, W., Beck, J. and Kuhn, N. (2008). Measuring population densities in a heterogeneous world. Global Ecology and Biogeography 17: 566–568.CrossRefGoogle Scholar
Shirley, S. M. and Kark, S. (2009). The role of species traits and taxonomic patterns in alien bird impacts. Global Ecology and Biogeography 18: 450–459.CrossRefGoogle Scholar
Steadman, D. W. (2005). The paleoecology and fossil history of migratory landbirds. In Greenberg, R. and Marra, P. P. (eds), Birds of Two Worlds: The Ecology and Evolution of Migratory Birds. Baltimore, MD: Johns Hopkins University Press, pp. 5–17.Google Scholar
Stiles, F. G (1995). Behavioral, ecological and morphological correlates of foraging for arthropods by the hummingbirds of a tropical wet forest. Condor 97: 853–878.CrossRefGoogle Scholar
Symonds, M. R. E and Johnson, C. N. (2006). Determinants of local abundance in a major radiation of Australian passerines (Aves: Meliphagoidea). Journal of Biogeography 33: 794–802.CrossRefGoogle Scholar
Symonds, M. R. E., Christidis, L. and Johnson, C. N. (2006). Latitudinal gradients in abundance, and the causes of rarity in the tropics: a test using Australian honeyeaters (Aves: Meliphagidae). Oecologia 149: 406–417.CrossRefGoogle Scholar
Thomas, C. D. and Lennon, J. J. (1999). Birds extend their ranges northwards. Nature 399: 213–213.CrossRefGoogle Scholar
Tompkins, D. M., Dunn, A. M., Smith, M. J. and Telfer, S. (2011). Wildlife diseases: from individuals to ecosystems. Journal of Animal Ecology 80: 19–38.CrossRefGoogle Scholar
Veltman, C. J., Nee, S. and Crawley, M. J. (1996). Correlates of introduction success in exotic New Zealand birds. American Naturalist 147: 542–557.CrossRefGoogle Scholar
Virkkala, R. and Rajasärkkä, A. (2011). Northward density shift of bird species in boreal protected areas due to climate change. Boreal Environment Research 16: 2–13.Google Scholar
Wallraff, H. G. (2004). Avian olfactory navigation: its empirical foundation and conceptual state. Animal Behaviour 67: 189–204.CrossRefGoogle Scholar
Watson, D. M. (2009). Determinants of parasitic plant distribution: the role of host quality. Botany-Botanique 87: 16–21.CrossRefGoogle Scholar
Winger, B. M., Lovette, I. J. and Winker, D. W. (2012). Ancestry and evolution of seasonal migration in the Parulidae. Proceedings of the Royal Society B: Biological Sciences 279: 610–618.CrossRefGoogle ScholarPubMed
Woinarski, J. C. Z. (2006). Predictors of nomadism in Australian birds: a reanalysis of Allen and Saunders (2002). Ecosystems 9: 689–693.CrossRefGoogle Scholar
Wright, T., Schirtzinger, E., Eberhard, J. et al. (2008). A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the Cretaceous. Molecular Biology and Evolution 25: 2141–2156.CrossRefGoogle ScholarPubMed
Zink, R. M. (2002). Towards a framework for understanding the evolution of avian migration. Journal of Avian Biology 33: 433–436.CrossRefGoogle Scholar
Zink, R. M. (2011). The evolution of avian migration. Biological Journal of the Linnean Society 104: 237–250.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×