Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-21T15:28:45.223Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  26 January 2017

Hrvoje Tkalčić
Affiliation:
Australian National University, Canberra
Get access
Type
Chapter
Information
The Earth's Inner Core
Revealed by Observational Seismology
, pp. 198 - 214
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aki, K., and Richards, P. G. 2002. Quantitative Seismology: Theory and Methods, 2nd edn. Sausalito, CA: University Science Books.
Alboussière, T., Renaud, D., and Mickaël, M. 2010. Melting-induced stratification above the Earth's inner core due to convective translation. Nature, 466(June), 744–747.Google Scholar
Andrews, J., Deuss, A., and Woodhouse, J. 2006. Coupled normal-mode sensitivity to inner-core shear velocity and attenuation. Geophysical Journal International, 167(1), 204–212.Google Scholar
Antonangeli, D., Merkel, S., and Farber, D. L. 2006. Elastic anisotropy in HCP metals at high pressure and the sound wave anisotropy of the Earth's inner core. Geophysical Research Letters, 33(24).Google Scholar
Attanayake, J., Cormier, V. F., and de Silva, S. M. 2014. Uppermost inner core seismic structure–new insights from body waveform inversion. Earth and Planetary Science Letters, 385, 49–58.Google Scholar
Aubert, J., Amit, H., Hulot, G., and Olson, P. 2008. Thermochemical flows couple the Earth's inner core growth to mantle heterogeneity. Nature, 454(August), 758–761.Google Scholar
Aurnou, J., and Olson, P. 2000. Control of inner core rotation by electromagnetic, gravitational and mechanical torques. Physics of the Earth and Planetary Interiors, 117(1–4), 111–121.Google Scholar
Bashō, M. 1694. Oku no Hosomichi (Narrow Road to the Interior).
Bayes, T. 1763. An essay towards solving a problem in the doctrine of chances. Philosophical Transactions, 53, 370–418.Google Scholar
Beghein, C., and Trampert, J. 2003. Robust normal mode constraints on inner-core anisotropy from model space search. Science, 299(5606), 552–555.Google Scholar
Belonoshko, A. B., Skorodumova, N. V., Davis, S., Osiptsov, A. N., Rosengren, A., and Johansson, B. 2007. Origin of the low rigidity of the Earth's inner core. Science, 316(5831), 1603–1605.Google Scholar
Belonoshko, A. B., Skorodumova, N. V., Rosengren, A., and Johansson, B. 2008. Elastic anisotropy of Earth's inner core. Science, 319(5864), 797–800.Google Scholar
Bergman, M. I. 1997. Measurements of electric anisotropy due to solidification texturing and the implications for the Earth's inner core. Nature, 389(6646), 60–63.Google Scholar
Bergman, M. I. 1998. Estimates of the Earth's inner core grain size. Geophysical Research Letters, 25(10), 1593–1596.Google Scholar
Bergman, M. I. 2003. Earth's Core: Dynamics, Structure, Rotation, 1st edn. American Geophysical Union Geodynamics Series, vol. 31. Washington, DC: American Geophysical Union Books Board. Chap. Solidification of the Earth's core, pages 105–127.
Bergman, M. I., and Fearn, D. R. 1994. Chimneys on the Earth's inner-outer core boundary. Geophysical Research Letters, 477–480.Google Scholar
Bergman, M. I., Cole, D. M., and Jones, J. R. 2002. Preferred crystal orientations due to melt convection during directional solidification. Journal of Geophysical Research, 107.Google Scholar
Birch, A. F. 1940. The alpha-gamma transformation of iron at high pressures, and the problem of the earth's magnetism. American Journal of Science, 238(3), 192–211.Google Scholar
Bloxham, J., and Gubbins, D. 1987. Morphology of the geomagnetic field and implications for the geodynamo. Nature, 325(6104), 509–511.Google Scholar
Bloxham, J., Zatman, S., and Dumberry, M. 2002. The origin of geomagnetic jerks. Nature, 420(November), 65–68.Google Scholar
Bolt, B. A. 1962. Gutenberg's early PKP observations. Nature, 196, 122–124.Google Scholar
Bolt, B. A. 1972. The density distribution near the base of the mantle and near the Earth's core. Physics of the Earth and Planetary Interiors, 5, 302–311.Google Scholar
Bolt, B. A., and Qamar, A. 1970. Upper bound to the density jump at the boundary of the Earth's inner core. Nature, 228, 148–150.Google Scholar
Boué, P., Poli, P., Campillo, M., Pedersen, H., Briand, X., and Roux, P. 2013. Teleseismic correlations of ambient seismic noise for deep global imaging of the Earth. Geophysical Journal International, 194, 844–848.Google Scholar
Braginsky, S. I. 1963. Structure of the F-layer and reasons for convection in the Earth's core. Doklady Akad. Nauk SSSR, 149, 8–10.Google Scholar
Bréger, L., Romanowicz, B., and Tkalčić, H. 1999. PKP(BC-DF) Travel time residuals and short scale heterogeneity in the deep Earth. Geophysical Research Letters, 26(20), 3169–3172.Google Scholar
Bréger, L., Tkalčić, H., and Romanowicz, B. 2000. The effect of on PKP(AB-DF) travel time residuals and possible implications for inner core structure. Earth and Planetary Science Letters, 175, 133–143.Google Scholar
Brush, S. G. 1980. Discovery of the Earth's core. Am. J. Phys., 48(9), 705–724.Google Scholar
Buchbinder, G. G. R. 1971. A velocity structure of the Earth's core. Bulletin of the Seismological Society of America, 61(2), 429–456.Google Scholar
Buchbinder, G. G. R., Wright, C., and Poupinet, G. 1973. Observations of PKiKP at distances less than 110°. Bulletin of the Seismological Society of America, 63(5), 1699–1707.Google Scholar
Buffett, B. A., and Wenk, H. R. 2001. Texturing of the Earth's inner core by Maxwell stresses. Nature, 413(6851), 60–63.Google Scholar
Buffett, B. A. 1997. Geodynamic estimates of the viscosity of the Earth's inner core. Nature, 388(August), 571–573.Google Scholar
Buffett, B. A., and Creager, K. C. 1999. A comparison of geodetic and seismic estimates of inner-core rotation. Geophysical Research Letters, 26(10), 1509–1512.Google Scholar
Buffett, B. A., Huppert, H. E., Lister, J. R., and Woods, A. W. 1996. On the thermal evolution of the Earth's core. Journal of Geophysical Research: Solid Earth, 101(B4), 7989–8006.Google Scholar
Buland, R., and Gilbert, F. 1978. Improved resolution of complex eigenfrequencies in analytically continued seismic spectra. Geophysical Journal of the Royal Astronomical Society, 52(3), 457–470.Google Scholar
Bullen, K. E. 1946. A hypothesis on compressibility at pressures of the order of a million atmospheres. Nature, 157(March), 405.Google Scholar
Butler, R., and Tsuboi, S. 2010. Antipodal seismic observations of temporal and global variation at Earth's inner-outer core boundary. Geophysical Research Letters, 37(11).Google Scholar
Calvet, M., and Margerin, L. 2008. Constraints on grain size and stable iron phases in the uppermost inner core from multiple scattering modeling of seismic velocity and attenuation. Earth and Planetary Science Letters, 267(March), 200–212.Google Scholar
Calvet, M., and Margerin, L. 2012. Velocity and attenuation of scalar and elastic waves in random media: A spectral function approach. The Journal of the Acoustial Society of America, 231(3), 1843–1862.Google Scholar
Calvet, M., Chevrot, S., and Souriau, A. 2006. P-wave propagation in transversely isotropic media II. Application to inner core anisotropy: Effects of data averaging, parametrization and a priori information. Physics of the Earth and Planetary Interiors, 156, 21–40.Google Scholar
Campillo, M., and Paul, A. 2003. Long-range correlations in the diffuse seismic coda. Science, 299, 547–549.Google Scholar
Cao, A., and Romanowicz, B. 2004. Hemispherical transition of seismic attenuation at the top of the Earth's inner core. Earth and Planetary Science Letters, 228(December), 243–253.Google Scholar
Cao, A., Romanowicz, B., and Takeuchi, N. 2005. An observation of PKJKP: Inferences on inner core shear properties. Science, 308(June), 1453–1455.Google Scholar
Cao, A., Masson, Y., and Romanowicz, B. 2007. Short wavelength topography on the innercore boundary. Proceedings of the National Academy of Science, 104(January), 31–35.Google Scholar
Cao, A., and Romanowicz, B. 2004. Constraints on density and shear velocity contrasts at the inner core boundary. Geophysical Journal International, 157(3), 1146–1151.Google Scholar
Cavendish, H. 1798. Experiments to determine the density of the Earth. By Henry
Cavendish, Esq. F. R. S. and A. S. Philosophical Transactions of the Royal Society of London, 88, 469–526.
Červený, V. 1985. Gaussian beam synthetic seismograms. Journal of Geophysics, 58, 42– 72.Google Scholar
Červený, V. 2005. Seismic Ray Theory, 1st edn. Cambridge University Press.
Chapman, C. H. 2004. Fundamentals of Seismic Wave Propagation. Cambridge University Press.
Chevrot, S. 2002. Optimal measurement of relative and absolute delay times by simulated annealing. Geophysical Journal International, 151(1), 164–171.Google Scholar
Choy, G. L., and Cormier, V. F. 1983. The structure of the inner core inferred from shortperiod and broadband GDSN data. Geophysical Journal of the Royal Astronomical Society, 72, 1–21.Google Scholar
Collier, J. D., and Helffrich, G. 2001. Estimate of inner core rotation rate from United Kingdom regional seismic network data and consequences for inner core dynamical behaviour. Earth and Planetary Science Letters, 193(3–4), 523–537.Google Scholar
Cormier, V. F. 1981. Short-period PKP phases and the anelastic mechanism of the inner core. Physics of the Earth and Planetary Interiors, 24(4), 291–301.Google Scholar
Cormier, V. F. 2007. Texture of the uppermost inner core from forward- and back-scattered seismic waves. Earth and Planetary Science Letters, 258(3–4), 442–453.Google Scholar
Cormier, V. F. 2009. A glassy lowermost outer core. Geophysical Journal International, 179(1), 374–380.Google Scholar
Cormier, V. F. 2011. Encyclopedia of Earth Sciences Series. Springer Netherlands. Pages 1279–1290.
Cormier, V. F. 2015. Detection of inner core solidification from observations of antipodal PKIIKP. Geophysical Research Letters, 42, 7459–7466.Google Scholar
Cormier, V. F., and Attanayake, J. 2013. Earth's solid inner core: Seismic implications of freezing and melting. Journal of Earth Science, 24(5), 683–698.Google Scholar
Cormier, V. F., and Choy, G. L. 1986. A search for lateral heterogeneity in the inner core from differential travel times near PKP-D and PKP-C. Geophysical Research Letters, 13(13), 1553–1556.Google Scholar
Cormier, V. F., and Li, X. 2002. Frequency-dependent seismic attenuation in the inner core 2. A scattering and fabric interpretation. Journal of Geophysical Research (Solid Earth), 107(December), 2362.Google Scholar
Cormier, V. F., and Richards, P. G. 1976. Comments on ‘The Damping of Core Waves’ by Anatholy Qamar and Alfredo Eisenberg. Journal of Geophysical Research: Solid Earth, 81, 3,066–3,068.Google Scholar
Cormier, V. F., and Stroujkova, A. 2005. Waveform search for the innermost inner core. Earth and Planetary Science Letters, 236(July), 96–105.Google Scholar
Cormier, V. F., Xu, L., and Choy, G. L. 1998. Seismic attenuation of the inner core: Viscoelastic or stratigraphic. Geophysical Research Letters, 25, 4019–4022.Google Scholar
Cormier, V. F., Attanayake, J., and He, K. 2011. Inner core freezing and melting: Constraints from seismic body waves. Physics of the Earth and Planetary Interiors, 188(3), 163–172.Google Scholar
Creager, K. C. 1997. Inner core rotation rate from small-scale heterogeneity and timevarying travel times. Science, 278, 1284–1288.Google Scholar
Creager, K. C. 1992. Anisotropy of the inner core from differential travel times of the phases PKP and PKIKP. Nature, 356(March), 309–314.Google Scholar
Creager, K. C. 1999. Large-scale variations in inner core anisotropy. Journal of Geophysical Research, 104(B10), 23, 127–123, 139.Google Scholar
Cummins, P., and Johnson, L. R. 1988. Short-period body wave constraints on properties of the Earth's inner core boundary. Journal of Geophysical Research: Solid Earth, 93, 9058–9074.Google Scholar
Curtis, A., Gerstoft, P., Sato, H., Snieder, R., and Wapenaar, K. 2006. Seismic interferometry turning noise into signal. The Leading Edge, 25, 1082–1092.Google Scholar
Dahlen, F. A., and Tromp, J. 1998. Theoretical Global Seismology. Princeton University Press.
Dai, Z., Wang, W., and Wen, L. 2012. Irregular topography at the Earth's inner core boundary. Proceedings of the National Academy of Sciences, 109(20), 7654–7658.Google Scholar
Deguen, R. 2012. Structure and dynamics of Earth's inner core. Earth and Planetary Science Letters, 333, 211.Google Scholar
Deguen, R., Alboussière, T., and Brito, D. 2007. On the existence and structure of a mush at the inner core boundary of the Earth. Physics of the Earth and Planetary Interiors, 164(September), 36–49.Google Scholar
Deguen, R., and Cardin, P. 2011. Thermochemical convection in Earth's inner core. Geophysical Journal International, 187, 1101–1118.Google Scholar
Deuss, A. 2014. Heterogeneity and anisotropy of Earth's inner core. Annual Review of Earth and Planetary Sciences, 42(1), 103–126.Google Scholar
Deuss, A., Irving, J. C. E., and Woodhouse, J. H. 2010. Regional variation of inner core anisotropy from seismic normal mode observations. Science, 328(5981), 1018–1020.Google Scholar
Deuss, A., Woodhouse, J. H., Paulssen, H., and Trampert, J. 2000. The observation of inner core shear waves. Geophysical Journal International, 142(1), 67–73.Google Scholar
Doornbos, D. J. 1974. The anelasticity of the inner core. Geophysical Journal of the Royal Astronomical Society, 38(2), 397–415.Google Scholar
Doornbos, D. J. 1988. Seismological Algorithms: Computational Methods and Computer Programs. Academic Press.
Doornbos, D. J., and Husebye, E. 1972. Array analysis of PKP phases and their precursors. Physics of the Earth and Planetary Interiors, 5, 387–399.Google Scholar
Dubrovinsky, L., Dubrovinskaia, N., Narygina, O., Kantor, I., Kuznetzov, A., Prakapenka, V. B., Vitos, L., Johansson, B., Mikhaylushkin, A. S., Simak, S. I., and Abrikosov, I. A. 2007. Body-centered cubic iron-nickel alloy in Earth's core. Science, 316(5833), 1880–1883.Google Scholar
Dumberry, M. 2007. Geodynamic constraints on the steady and time-dependent inner core axial rotation. Geophysical Journal International, 170(2), 886–895.Google Scholar
Dumberry, M., and Mound, J. 2010. Inner core-mantle gravitational locking and the superrotation of the inner core. Geophysical Journal International, 181(2), 806–817.Google Scholar
Durek, J. J., and Romanowicz, B. 1999. Inner core anisotropy inferred by direct inversion of normal mode spectra. Geophysical Journal International, 139(3), 599–622.Google Scholar
Dziewoński, A. M. 1984. Mapping the lower mantle: Determination of lateral heterogeneity in P velocity up to degree and order 6. Journal of Geophysical Research: Solid Earth, 89(B7), 5929–5952.Google Scholar
Dziewoński, A. M., and Anderson, D. L. 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25, 297–356.Google Scholar
Dziewoński, A. M., and Gilbert, F. 1971. Solidity of the inner core of the Earth inferred from normal mode observations. Nature, 234(December), 465–466.Google Scholar
Engdahl, E. R., Flinn, E. A., and Massé, R. P. 1974. Differential PKiKP travel times and the radius of the inner core. Geophysical Journal of the Royal Astronomical Society, 39(3), 457–463.Google Scholar
Engdahl, E. R., Flinn, E. A., and Romney, C. F. 1970. Seismic waves reflected from the Earth's inner core. Nature, 228(5274), 852–853.Google Scholar
Engdahl, E. R., Van der Hilst, R. D., and Buland, R. P. 1998. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of the Seismological Society of America, 88, 722–743.Google Scholar
Fearn, D. R., Loper, D. E., and Roberts, P. H. 1981. Structure of the Earth's inner core. Nature, 292(5820), 232–233.Google Scholar
Fowler, C. M. R. 2005. The Solid Earth: An Introduction to Global Geophysics, 2nd edn. Cambridge University Press.
Fukao, Y., and Suda, N. 1989. Core modes of the Earth's free oscillations and structure of the inner core. Geophysical Research Letters, 16(5), 401–404.Google Scholar
Gans, R. F. 1972. Viscosity of the Earth's core. Journal of Geophysical Research, 77(2), 360–366.Google Scholar
Garcia, R., Chevrot, S., and Weber, M. 2004. Nonlinear waveform and delay time analysis of triplicated core phases. Geophysical Journal International, 109.Google Scholar
Garcia, R., Tkalčić, H., and Chevrot, S. 2006. A new global PKP data set to study Earth's core and deep mantle. Physics of the Earth and Planetary Interiors, 159(1–2), 15–31.Google Scholar
Garcia, R. F. 2002. Constraints on upper inner core structure from waveform inversion of core phases. Geophysical Journal International, 150, 651–664.Google Scholar
Garcia, R. F., Schardong, L., and Chevrot, S. 2013. A nonlinear method to estimate source parameters, amplitude, and travel times of teleseismic body waves. Bulletin of the Seismological Society of America, 103(1), 268–282.Google Scholar
Garcia, R., and Souriau, A. 2000. Inner core anisotropy and heterogeneity level. Geophysical Research Letters, 27(19), 3121–3124.Google Scholar
Geballe, Z. M., Lasbleis, M., Cormier, V. F., and Day, E. A. 2013. Sharp hemisphere boundaries in a translating inner core. Geophysical Research Letters, 40, 1719–1723.Google Scholar
Giardini, D., Li, X.-D., and Woodhouse, J. H. 1987. Three-dimensional structure of the Earth from splitting in free-oscillation spectra. Nature, 325, 405–411.Google Scholar
Giardini, D., Li, X.-D., and Woodhouse, J. H. 1988. Splitting functions of longperiod normal modes of the Earth. Journal of Geophysical Research, 93, 13716–13742.Google Scholar
Glatzmaier, G. A., and Roberts, P. H. 1996. Rotation and magnetism of Earth's inner core. Science, 274(5294), 1887–1891.Google Scholar
Green, P. G. 1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika, 82, 711–732.Google Scholar
Gubbins, D. 1981. Rotation of the inner core. Journal of Geophysical Research: Solid Earth, 86(B12), 11695–11699.Google Scholar
Gubbins, D., Masters, G., and Nimmo, F. 2008. A thermochemical boundary layer at the base of Earth's outer core and independent estimate of core heat flux. Geophysical Journal International, 174(3), 1007–1018.Google Scholar
Gubbins, D., Sreenivasan, B., Mound, J., and Rost, S. 2011. Melting of the Earth's inner core. Nature, 473(7347), 361–363.Google Scholar
Gutenberg, B. 1914. Über Erdbenwellen VIIA. Beobachtungen an Registrierungen von Fernbeben in Göttingen und Folgerungen über die Konstitution der Erdkörpers. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch- Physikalische Klasse, 125–176.Google Scholar
Halley, E. 1686. An account of the cause of the change of the variation of the magnetical needle; with an hypothesis of the structure of the internal parts of the Earth: as it was proposed to the Royal Society in one of their late meetings. Philosophical Transactions, 16(179–191), 563–578.Google Scholar
He, X., and Tromp, J. 1996. Normal-mode constraints on the structure of the Earth. Journal of Geophysical Research: Solid Earth, 101(B9), 20053–20082.Google Scholar
Helffrich, G., and Sacks, S. 1994. Scatter and bias in differential PKP travel times and implications for mantle and core phenomena. Geophysical Research Letters, 21(19), 2167–2170.Google Scholar
Helffrich, G., Kaneshima, S., and Kendall, J.-M. 2002. A local, crossing-path study of attenuation and anisotropy of the inner core. Geophysical Research Letters, 29(12), 9–1–9–4.Google Scholar
Holme, R., and de Viron, O. 2005. Geomagnetic jerks and a high-resolution length-of-day profile for core studies. Geophysical Journal International, 160, 435–439.Google Scholar
Huang, H.-H., Lin, F.-C., Tsai, V. C., and Koper, K. D. 2015. High-resolution probing of inner core structure with seismic interferometry. Geophysical Research Letters, 42, 10622–10630.Google Scholar
Iritani, R., Takeuchi, N., and Kawakatsu, H. 2010. Seismic attenuation structure of the top half of the inner core beneath the northeastern Pacific. Geophysical Research Letters, 37(19), L19303.Google Scholar
Iritani, R., Takeuchi, N., and Kawakatsu, H. 2014. Intricate heterogeneous structures of the top 300 km of the Earth's inner core inferred from global array data: I. Regional 1D attenuation and velocity profiles. Physics of the Earth and Planetary Interiors, 230(0), 15–27.Google Scholar
Irving, J. C. E., and Deuss, A. 2011. Hemispherical structure in inner core velocity anisotropy. Journal of Geophysical Research: Solid Earth, 116(B4), B04307.Google Scholar
Irving, J. C. E., Deuss, A., and Woodhouse, J. H. 2009. Normal mode coupling due to hemispherical anisotropic structure in Earth's inner core. Geophysical Journal International, 178(2), 962–975.Google Scholar
Ishii, M., and Dziewoński, A. M. 2002. The innermost inner core of the Earth: Evidence for a change in anisotropic behavior at the radius of about 300 km. PNAS, 99(22), 14026–14030.Google Scholar
Ishii, M., and Dziewoński, A. M. 2003. Distinct seismic anisotropy at the centre of the Earth. Physics of the Earth and Planetary Interiors, 140, 203–217.Google Scholar
Ishii, M., and Dziewoński, A. M. 2005. Constraints on the outer-core tangent cylinder using normal-mode splitting measurements. Geophysical Journal International, 162(3), 787–792.Google Scholar
Ishii, M., Tromp, J., Dziewoński, A. M., and Ekström, G. 2002a. Joint inversion of normal mode and body wave data for inner core anisotropy 1. Laterally homogeneous anisotropy. Journal of Geophysical Research: Solid Earth, 107(B12), ESE 20–1–ESE 20–16.Google Scholar
Ishii, M., Dziewoński, A. M., Tromp, J., and Ekström, G. 2002b. Joint inversion of normal mode and body wave data for inner core anisotropy 2. Possible complexities. Journal of Geophysical Research: Solid Earth, 107(B12), ESE 21–1–ESE 21–17.Google Scholar
Isse, T., and Nakanishi, I. 2002. Inner-core anisotropy beneath Australia and differential rotation. Geophysical Journal International, 151, 255–263.Google Scholar
Jeanloz, R., and Wenk, H.-R. 1988. Convection and anisotropy of the inner core. Geophysical Research Letters, 15(January), 72–75.Google Scholar
Jeffreys, H. 1926a. On the amplitudes of bodily seismic waves. Geophysical Journal International, 1, 334–348.Google Scholar
Jeffreys, H. 1926b. The rigidity of the Earth's central core. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 1(7), 371–383.Google Scholar
Jeffreys, H. 1939. The times of the core waves. Monthly Notices of the Royal Astronomical Society Geophysical Supplement, 4, 548.Google Scholar
Jeffreys, H. 1976. The Earth: Its Origin, History and Physical Constitution, 6th edn. Cambridge University Press.
Jiang, G., and Zhao, D. 2012. Observation of high-frequency PKiKP in Japan: Insight into fine structure of inner core boundary. Journal of Asian Earth Sciences, 59(0), 167–184. Minerals, Rocks and Mountains: Linking Petrology, Geochemistry and Geochronology.Google Scholar
Julian, B. R., Davies, D., and Sheppart, R. M. 1972. PKJKP. Nature, 235(5337), 317–318.Google Scholar
Kaneshima, S. 1996. Mapping heterogeneity of the uppermost inner core using two pairs of core phases. Geophysical Research Letters, 23(22), 3075–3078.Google Scholar
Kárason, H., and van der Hilst, R. D. 2001. Tomographic imaging of the lowermost mantle with differential times of refracted and diffracted core phases (PKP, Pdiff). Journal of Geophysical Research: Solid Earth, 106(B4), 6569–6587.Google Scholar
Karato, S. 1993. Importance of anelasticity in the interpretation of seismic tomography. Geophysical Research Letters, 20, 1623–1626.Google Scholar
Karato, S. 1999. Seismic anisotropy of the Earth's inner core resulting from flow induced by Maxwell stresses. Nature, 402(December), 871–873.Google Scholar
Karato, S. 2003. Inner core anisotropy due to magnetic field-induced preferred orientation of iron. Science, 262, 1708–1711.Google Scholar
Kawakatsu, H. 2006. Sharp and seismically transparent inner core boundary region revealed by an entire network observation of near-vertical PKiKP. Earth Planets Space, 58(July), 855–863.Google Scholar
Kennett, B. L. N. 1998. On the density distribution within the Earth. Geophysical Journal International, 132(2), 374–382.Google Scholar
Kennett, B. L. N. 2001. The Seismic Wavefield: Volume 1, Introduction and Theoretical Development, 1st edn. Cambridge University Press.
Kennett, B. L. N. 2002. The Seismic Wavefield: Volume 2, Interpretation of Seismograms on Regional and Global Scales, illustrated edn. Cambridge University Press.
Kennett, B. L. N. 2009. SeismicWave Propagation in Stratified Media. Canberra, Australia: ANU Press.
Kennett, B. L. N., Engdahl, E. R., and Buland, R. 1995. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International, 122, 108–124.Google Scholar
Kennett, B. L. N., Stipčević, J., and Gorbatov, A. 2015. Spiral-arm seismic arrays. Bulletin of the Seismological Society of America, 105(4), 2109–2116.Google Scholar
Komatitsch, D., Ritsema, J., and Tromp, J. 2002. The spectral-element method, Beowulf computing, and three-dimensional seismology. Science, 298, 1737–1742.Google Scholar
Koper, K. D., and Dombrovskaya, M. 2005. Seismic properties of the inner core boundary from PKiKP/P amplitude ratios. Earth and Planetary Science Letters, 237(3–4), 680–694.Google Scholar
Koper, K. D., and Leyton, F. 2006. Decorrelation of coda waves from earthquake doublets recorded at YKA: Inner core super-rotation? In: 18th Annual Workshop. Incorporated Research Institutions for Seismology, Tucson, Arizona.
Koper, K. D., and Pyle, M. L. 2004. Observations of PKiKP/PcP amplitude ratios and implications for Earth structure at the boundaries of the liquid core. Journal of Geophysical Research: Solid Earth, 109.Google Scholar
Krasnoshchekov, D. N., Kaazik, P. B., and Ovtchinnikov, V. M. 2005. Seismological evidence for mosaic structure of the surface of the Earth's inner core. Nature, 435(May), 483–487.Google Scholar
Kuang, W., and Bloxham, J. 1997. An Earth-like numerical dynamo model. Nature, 389(6649), 371–374.Google Scholar
Labrosse, S., Poirier, J.-P., and Le Mouël, J.-L. 2001. The age of the inner core. Earth and Planetary Science Letters, 190(3–4), 111–123.Google Scholar
Laske, G., and Masters, G. 1999. Limits on differential rotation of the inner core from an analysis of the Earth's free oscillations. Nature, 402(6757), 66–69.Google Scholar
Laske, G., and Masters, G. 2003. Earth's Core: Dynamics, Structure, Rotation, 1st edn. American Geophysical Union Geodynamics Series, vol. 31. Washington, DC: American Geophysical Union Books Board. Chap. The Earth's free oscillations and the differential rotation of the inner core, pages 5–22.
Lay, T., and Wallace, T. C. 1995. Modern Global Seismology, 1st edn. San Diego: Academic Press.
Lee, T. D. 1957. Nobel Lectures in Physics (1942–1962). 5 Toh Tuck Link, Singapore: World Scientific Publishing, Published for the Nobel foundation in 1998. Chap.Weak interactions and nonconservation of parity, Nobel Lecture, page 417.
Lehmann, I. 1936. P'. Publications du Bureau Central Séismologique International, A14(3), S.87–115.
Lehmann, I. 1987. Seismology in the days of old. Eos (Transactions, American Geophysical Union), 68(3), 33–35.Google Scholar
Leykam, D., Tkalčić, H., and Reading, A. M. 2010. Core structure re-examined using new teleseismic data recorded in Antarctica: Evidence for, at most, weak cylindrical seismic anisotropy in the inner core. Geophysical Journal International, 180(3), 1329–1343.Google Scholar
Leyton, F., and Koper, K. D. 2007a. Using PKiKP coda to determine inner core structure: 1. Synthesis of coda envelopes using single-scattering theories. Journal of Geophysical Research (Solid Earth), 112(May), 5316.Google Scholar
Leyton, F., and Koper, K. D. 2007b. Using PKiKP coda to determine inner core structure: 2. Determination of QC . Journal of Geophysical Research (Solid Earth), 112(May), 5317.Google Scholar
Leyton, F., Koper, K. D., Zhu, L., and Dombrovskaya, M. 2005. On the lack of seismic discontinuities within the inner core. Geophysical Journal International, 162(3), 779–786.Google Scholar
Li, A., and Richards, P. G. 2003. Using earthquake doublets to study inner core rotation and seismicity catalog precision. Geochemistry, Geophysics, Geosystems, 4(9), 1–23.Google Scholar
Li, D., Sun, D., and Helmberger, D. 2014. Notes on the variability of reflected inner core phases. Earthquake Science, 27(4), 441–468.Google Scholar
Li, X., and Cormier, V. F. 2002. Frequency-dependent seismic attenuation in the inner core, 1. A viscoelastic interpretation. Journal of Geophysical Research (Solid Earth), 107(December), 2361.Google Scholar
Li, X.-D., Giardini, D., and Woodhouses, J. H. 1991. Large-scale three-dimensional evendegree structure of the Earth from splitting of long-period normal modes. Journal of Geophysical Research: Solid Earth, 96(B1), 551–577.Google Scholar
Lin, F.-C., and Tsai, V. C. 2013. Seismic Interferometry with antipodal station pairs. Geophysical Research Letters, 40, 4609–4613.Google Scholar
Lin, F.-C., Tsai, V. C., Schmandt, B., and Duputel, Z. 2013. Extracting seismic core phases with array interferometry. Geophysical Research Letters, 40, 1049–1053.Google Scholar
Lincot, A., Merkel, S., and Cardin, P. 2015. Is inner core seismic anisotropy a marker for plastic flow of cubic iron. Geophysical Research Letters, 42, 1326–1333.Google Scholar
Lincot, A., Cardin, Ph., Deguen, R., and Merkel, S. 2016. Multiscale model of global innercore anisotropy induced by hcp alloy plasticity. Geophysical Research Letters, 43(3), 1084–1091. 2015GL067019.Google Scholar
Lindner, D., Song, X., Ma, P., and Christensen, D. H. 2010. Inner core rotation and its variability from nonparametric modeling. Journal of Geophysical Research: Solid Earth, 115(B4).Google Scholar
Livermore, P. W., Hollerbach, R., and Jackson, A. 2013. Electromagnetically driven westward drift and inner-core superrotation in Earth's core. Proceedings of the National Academy of Sciences, 110(40), 15914–15918.Google Scholar
Loper, D. E. 1983. Structure of the inner core boundary. Geophysical & Astrophysical Fluid Dynamics, 25(1–2), 139–155.Google Scholar
Love, A. E. H. 1927. A Treatise on the Mathematical Theory of Elasticity, 4th edn. Cambridge University Press.
Lowrie, W. 2007. Fundamentals of Geophysics, 2nd edn. Cambridge University Press.
Lythgoe, K. H., Deuss, A., Rudge, J. F., and Neufeld, J. A. 2014. Earth's inner core: Innermost inner core or hemispherical variations. Earth and Planetary Science Letters, 385, 181–189.Google Scholar
MacDonald, G. J. F., and Ness, N. F. 1961. A study of the free oscillations of the Earth. Journal of Geophysical Research, 66(6), 1865–1911.Google Scholar
Mäkinen, A. M., and Deuss, A. 2011. Global seismic body-wave observations of temporal variations in the Earth's inner core, and implications for its differential rotation. Geophysical Journal International, 187(1), 355–370.Google Scholar
Malinverno, A., and Briggs, V. 2004. Many potential solutions are generated with a variable number of unknowns using the reversible jump Monte Carlo algorithm. Geophysics, 69, 1005.Google Scholar
Mao, H.-K., Shu, J., Shen, G., Hemley, R. J., Li, B., and Singh, A. K. 1998. Elasticity and rheology of iron above 220 GPa and the nature of the Earth's inner core. Nature, 396(6713), 741–743.Google Scholar
Massé, R. P., Flinn, E. A., Seggelke, R. M., and Engdahl, E. R. 1974. PKIIKP and the average velocity of the inner core. Geophysical Research Letters, 1(1), 39–42.Google Scholar
Masters, G., and Gilbert, F. 1981. Structure of the inner core inferred from observations of its spheroidal shear modes. Geophysical Research Letters, 8(6), 569–571.Google Scholar
Masters, G., Jordan, T. H., Silver, P. G., and Gilbert, F. 1982. Aspherical Earth structure from fundamental spheroidal-mode data. Nature, 298(5875), 609–613.Google Scholar
Masters, G., Laske, G., and Gilbert, F. 2000a. Autoregressive estimation of the splitting matrix of free-oscillation multiplet. Geophysical Journal International, 141, 25–42.Google Scholar
Masters, G., Laske, G., and Gilbert, F. 2000b. Matrix autoregressive analysis of freeoscillation coupling and splitting. Geophysical Journal International, 143, 478–489.Google Scholar
Masters, T. G. 1979. Observational constraints on the chemical and thermal structure of the Earth's deep interior. Geophysical Journal International, 57, 507–534.Google Scholar
Masters, T. G., and Gubbins, D. 2003. On the resolution of density within the Earth. Physics of the Earth and Planetary Interiors, 140, 159–167.Google Scholar
Mattesini, M., Belonoshko, A. B., Buforn, E., Ramírez, M., Simak, S. I., Udías, A., Mao, H.-K., and Ahuja, R. 2010. Hemispherical anisotropic patterns of the Earth's inner core. Proceedings of the National Academy of Sciences, 107(21), 9507–9512.Google Scholar
Mattesini, M., Belonoshko, A. B., Tkalčič, H., Buforn, E., Udías, A., and Ahuja, R. 2013. Candy wrapper for the Earth's inner core. Scientific Reports, 3, 2096.Google Scholar
McSweeney, T. J., Creager, K. C., and Merrill, R. T. 1997. Depth extent of inner-core seismic anisotropy and implications for geomagnetism. Physics of the Earth and Planetary Interiors, 101(1–2), 131–156.Google Scholar
Merkel, S., Shu, J., Gillet, P., Mao, H.-K., and Hemley, R. J. 2005. X-ray diffraction study of the single-crystal elastic moduli o. -Fe up to 30 GPa. Journal of Geophysical Research: Solid Earth, 110(B5).Google Scholar
Mizzon, H., and Monnereau, M. 2013. Implication of the lopsided growth for the viscosity of Earth's inner core. Earth and Planetary Science Letters, 361(0), 391–401.Google Scholar
Mohorovičić, A. 1910. Potres of 8. X 1909. Godišnje izvješće Zagrebačkog meteorološkog opservatorija za godinu 1909, 9(4), 1–56.Google Scholar
Mohorovičić, A. 1913. Development in seismology in the last fifty years (Razvoj seizmologije posljednjih pedeset godina). Ljetopis JAZU (in Croatian), 27.Google Scholar
Mohorovičić, S. 1927. Über Nahbeben und über die Konstitution des Erdund Mondinnern. Gerlands Beiträge zur Geophisik, XVII. Band (1), 180–231.Google Scholar
Monnereau, M., Calvet, M., Margerin, L., and Souriau, A. 2010. Lopsided Growth of Earth's Inner Core. Science, 328(5981), 1014–1017.Google Scholar
Morelli, A., and Dziewoński, A. M. 1987. Topography of the core-mantle boundary and lateral heterogeneity of the inner core. Nature, 325, 678–683.Google Scholar
Morelli, A., Dziewonski, A. M., and Woodhouse, J. H. 1986. Anisotropy of the inner core inferred from PKIKP travel times. Geophysical Research Letters, 13(13), 1545–1548.Google Scholar
Newton, I. 1687. Philosophiae Naturalis Principia Mathematica. J. Societatis Regiae ac Typis J. Streater.
Niazi, M., and Johnson, L. R. 1992. Q in the inner core. Physics of the Earth and Planetary Interiors, 55–62.Google Scholar
Nimmo, F., Price, G. D., Brodholt, J., and Gubbins, D. 2004. The influence of potassium on core and geodynamo evolution. Geophysical Journal International, 156(2), 363–376.Google Scholar
Nishida, K. 2013. Global propagation of body waves revealed by cross-correlation analysis of seismic hum. Geophysical Research Letters, 40, 1691–1696.Google Scholar
Niu, F., and Chen, Q.-F. 2008. Seismic evidence for distinct anisotropy in the innermost inner core. Nature Geoscience, 1(10), 692–696.Google Scholar
Niu, F., and Wen, L. 2001. Hemispherical variations in seismic velocity at the top of the Earth's inner core. Nature, 410(April), 1081–1084.Google Scholar
Niu, F., and Wen, L. 2002. Seismic anisotropy in the top 400 km of the inner core beneath the ‘eastern’ hemisphere. Geophysical Research Letters, 29(June), 1611.Google Scholar
Ohtaki, T., Kaneshima, S., and Kanjo, K. 2012. Seismic structure near the inner core boundary in the south polar region. Journal of Geophysical Research: Solid Earth, 117(B3).Google Scholar
Okal, E. A., and Cansi, Y. 1998. Detection of PKJKP at intermediate periods by progressive multi-channel correlation. Earth and Planetary Science Letters, 164(1–2), 23–30.Google Scholar
Oldham, R. D. 1900. On the propagation of earthquake motion to great distances. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 194(252–261), 135–174.Google Scholar
Oldham, R. D. 1906. The constitution of the interior of the Earth, as revealed by earthquakes. Quarterly Journal of the Geological Society, 62(1–4), 456–475.Google Scholar
Ouzounis, A., and Creager, K. C. 2001. Isotropy overlying anisotropy at the top of the inner core. Geophysical Research Letters, 28(22), 4331–4334.Google Scholar
Pachhai, S., Tkalčić, H., and Masters, G. 2016. Estimation of splitting functions from Earth's normal mode spectra using neighbourhood algorithm. Geophysical Journal International, 204(1).Google Scholar
Peng, Z., Koper, K. D., Vidale, J. E., Leyton, F., and Shearer, P. 2008. Inner-core fine-scale structure from scattered waves recorded by LASA. Journal of Geophysical Research (Solid Earth), 113(September), 9312.Google Scholar
Poli, P., Campillo, M., Pedersen, H., and Group, LAPNET Working. 2012. Body-wave imaging of Earth's mantle discontinuities from ambient seismic noise. Science, 338, 1063–1065.Google Scholar
Poupinet, G, and Kennett, B. L. N. 2004. On the observation of high frequency PKiKP and its coda in Australia. Physics of the Earth and Planetary Interiors, 146(3–4), 497–511.Google Scholar
Poupinet, G., Pillet, R., and Souriau, A. 1983. Possible heterogeneity of the Earth's core deduced from PKIKP travel times. Nature, 305, 204–206.Google Scholar
Poupinet, G., Souriau, A., and Coutant, O. 2000. The existence of an inner core superrotation questioned by teleseismic doublets. Physics of the Earth and Planetary Interiors, 118(1–2), 77–88.Google Scholar
Poynting, J. H. 1891. On a determination of the mean density of the Earth and the gravitation constant by means of the common balance. Philosophical Transactions of the Royal Society of London. (A.), 182, 565–656.Google Scholar
Press, W. H. 2007. Numerical Recipes, 3rd edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press.
Qamar, A. 1973. Revised velocities in the Earth's core. Bulletin of the Seismological Society of America, 63(3), 1073–1105.Google Scholar
Resovsky, J. S., and Ritzwoller, M. H. 1998. New and refined constraints on threedimensional Earth structure from normal modes below 3 mHz. Journal of Geophysical Research: Solid Earth, 103(B1), 783–810.Google Scholar
Rial, J. A., and Cormier, V. F. 1980. Seismic waves at the epicenter's antipode. Journal of Geophysical Research, 85, 2661–2668.Google Scholar
Richards, P. G. 1976. On the adequacy of plane-wave reflection/transmission coefficients in the analysis of seismic body waves. Bulletin of the Seismological Society of America, 66(3), 701–717.Google Scholar
Richards, P. G., Song, X., and Li, A. 1998. Detecting possible rotation of Earth's inner core. Science, 282(November), 1227a.Google Scholar
Ritzwoller, M., Masters, G., and Gilbert, F. 1986. Observations of anomalous splitting and their interpretation in terms of aspherical structure. Journal of Geophysical Research: Solid Earth, 91(B10), 10203–10228.Google Scholar
Ritzwoller, M., Masters, G., and Gilbert, F. 1988. Constraining aspherical structure with low-degree interaction coefficients: Application to uncoupled multiplets. Journal of Geophysical Research: Solid Earth, 93(B6), 6369–6396.Google Scholar
Romanowicz, B., Tkalčić, H., and Bréger, L. 2003. Earth's Core: Dynamics, Structure, Rotation, 1st edn. American Geophysical Union Geodynamics Series, vol. 31. Washington, DC: American Geophysical Union Books Board. Chap. on the origin of complexity in PKP travel time data, pages 31–44.
Romanowicz, B., and Bréger, L. 2000. Anomalous splitting of free oscillations: A reevaluation of possible interpretations. Journal of Geophysical Research: Solid Earth, 105(B9), 21559–21578.Google Scholar
Romanowicz, B., and Mitchell, B. J. 2015. Treatise on Geophysics, 2nd edn. Vol. 1: Deep Earth Seismology. Amsterdam: Elsevier B.V. Chap. Deep earth structure: Q of the Earth from crust to core, pages 789–828.
Romanowicz, B., Li, X.-D., and Durek, J. 1996. Anisotropy in the inner core: Could it be due to low-order convection. Science, 274, 963–966.Google Scholar
Romanowicz, B., Cao, A., Godwal, B., Wenk, R., Ventosa, S., and Jeanloz, R. 2016. Seismic anisotropu in the Earth's innermost inner core: Testing structural models against mineral physics predictions. Geophysical Research Letters, 43(1), 93–100.Google Scholar
Rost, S., and Thomas, C. 2002. Array seismology: methods and applications. Reviews of Geophysics, 40(3), 1–27.Google Scholar
Ruigrok, E., Draganov, D., and Wapenaar, K. 2008. Global-scale seismic interferometry: Theory and numerical examples. Geophysical Prospecting, 56, 395–417.Google Scholar
Sambridge, M. 1999. Geophysical inversion with a neighbourhood algorithm I. Searching a parameter space. Geophysical Journal International, 103, 4839–4878.Google Scholar
Sambridge, M., Gallagher, K., Jackson, A., and Rickwood, A. 2006. Trans-dimensional inverse problems, model comparison and the evidence. Geophysical Journal International, 167, 528–542.Google Scholar
Sambridge, M., Bodin, T., Gallagher, K., and Tkalčić, H. 2013. Transdimensional inference in the geosciences. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1984), 20110547.Google Scholar
Schuster, G. T. 2009. Seismic Interferometry. Cambridge University Press.
Sha, X., and Cohen, R. E. 2010. Elastic isotropy o. -Fe under Earth's core conditions. Geophysical Research Letters, 37(10).Google Scholar
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H. 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307, 1615–1618.Google Scholar
Sharrock, D. S., and Woodhouse, J. H. 1998. Investigation of time dependent inner core structure by the analysis of free oscillation spectra. Earth Planets Space, 50, 1013– 1018.Google Scholar
Shearer, P., and Masters, G. 1990. The density and shear velocity contrast at the inner core boundary. Geophysical Journal International, 102(2), 491–498.Google Scholar
Shearer, P. M. 1994. Constraints on inner core anisotropy from PKP(DF) travel times. Journal of Geophysical Research, 99(B10), 19647–19659.Google Scholar
Shearer, P. M. 2009. Introduction to Seismology, 2nd edn. Cambridge University Press.
Shearer, P. M., and Toy, K. M. 1991. PKP(BC) versus PKP(DF) differential travel times and aspherical structure in the Earth's inner core. Journal of Geophysical Research, 96(B2), 2233–2247.Google Scholar
Shearer, P. M., Toy, K. M., and Orcutt, J. A. 1988. Axi-symmetric Earth models and innercore anisotropy. Nature, 333(May), 228–232.Google Scholar
Shearer, P. M., Rychert, C. A., and Liu, Q. 2011. On the visibility of the inner-core shear wave phase PKJKP at long periods. Geophysical Journal International, 185(3), 1379–1383.Google Scholar
Singh, S. C., Taylor, M. A. J., and Montagner, J. P. 2000. On the presence of liquid in Earth's inner core. Science, 287(5462), 2471–2474.Google Scholar
Snieder, R. 2004. Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase. Physical Review E, 69.Google Scholar
Snieder, R., Grêt, A., Douma, H., and Scales, J. 2002. Coda wave intereferometry for estimating nonlinear behaviour in seismic velocity. Science, 295, 2253–2255.Google Scholar
Song, X. 1996. Anisotropy in central part of inner core. Journal of Geophysical Research, 101(B7), 16089–16097.Google Scholar
Song, X. 2000a. Joint inversion for inner core rotation, inner core anisotropy, and mantle heterogeneity. Journal of Geophysical Research, 105(B4), 7931–7943.Google Scholar
Song, X. 2000b. Time dependence of PKP(BC)-PKP(DF) times: Could it be an artifact of potential systematic earthquake mislocations? Physics of the Earth and Planetary Interiors, 122, 221–228.Google Scholar
Song, X., and Helmberger, D. V. 1993. Anisotropy of Earth's inner core. Geophysical Research Letters, 20(23), 2591–2594.Google Scholar
Song, X., and Helmberger, D. V. 1995. Depth dependence of anisotropy of Earth's inner core. Journal of Geophysical Research, 100(B7), 9805–9816.Google Scholar
Song, X., and Helmberger, D. V. 1998. Seismic evidence for an inner core transition zone. Science, 282, 924–927.Google Scholar
Song, X., and Li, A. 2000. Support for differential inner core superrotation from earthquakes in Alaska recorded at South Pole station. Journal of Geophysical Research: Solid Earth, 105(B1), 623–630.Google Scholar
Song, X., and Poupinet, G. 2007. Inner core rotation from event-pair analysis. Earth and Planetary Science Letters, 261, 259–266.Google Scholar
Song, X., and Richards, P. G. 1996. Seismological evidence for differential rotation of the Earth's inner core. Nature, 382, 221–224.Google Scholar
Song, X., and Xu, X. 2002. Inner core transition zone and anomalous PKP(DF) waveforms from polar paths. Geophysical Research Letters, 29(4), 1–1–1–4.Google Scholar
Souriau, A. 1989. A search for time dependent phenomena inside the core from seismic data. In: EGS Meeting Abstracts.
Souriau, A. 1998a. Detecting possible rotation of Earth's inner core: Response. Science, 282, 1227a.Google Scholar
Souriau, A. 1998b. Is the rotation real? Science, 281, 55–56.Google Scholar
Souriau, A. 1998c. New seismological constraints on differential rotation of the inner core from Novaya Zemlya events recorded at DRV, Antarctica. Geophysical Journal International, 134(2), F1–F5.Google Scholar
Souriau, A., and Calvet, M. 2015. Treatise on Geophysics, 2nd edn. Vol. 1: Deep Earth Seismology. Amsterdam: Elsevier B.V. Chap. Deep earth structure: The Earth's cores, pages 725–757.
Souriau, A., and Poupinet, G. 2000. Inner core rotation: A test at the worldwide scale. Physics of the Earth and Planetary Interiors, 118, 13–27.Google Scholar
Souriau, A., and Romanowicz, B. 1996. Anistropy in inner core attenuation: A new type of data to constrain the nature of the solid core. Geophysical Research Letters, 23(1), 1–4.Google Scholar
Souriau, A., and Romanowicz, B. 1997. Anisotropy in the inner core: Relation between P-velocity and attenuation. Physics of the Earth and Planetary Interiors, 101, 33–47.Google Scholar
Souriau, A., and Roudil, P. 1995. Attenuation in the uppermost inner core from broad-band GEOSCOPE PKP data. Geophysical Journal International, 123, 572–587.Google Scholar
Souriau, A., and Souriau, M. 1989. Ellipticity and density at the inner core boundary from subcritical PKiKP and PcP data. Geophysical Journal International, 98(1), 39–54.Google Scholar
Souriau, A., Roudil, P., and Moynot, B. 1997. Inner core differential rotation: Facts and artefacts. Geophysical Research Letters, 24(16), 2103–2106.Google Scholar
Souriau, A., Teste, A., and Chevrot, S. 2003. Is there any structure inside the liquid outer core. Geophysical Research Letters, 30(11).Google Scholar
Stein, S., and Wysession, M. 2003. An Introduction to Seismology, Earthquakes, and Earth Structure. Oxford, UK: Blackwell Publishing Ltd.
Steinle-Neumann, G., Stixrude, L., Cohen, R. E., and Gulseren, O. 2001. Elasticity of iron at the temperature of the Earth's inner core. Nature, 413(6851), 57–60.Google Scholar
Stevenson, D. J. 1981. Models of the Earth's core. Science, 214(4521), 611–619.Google Scholar
Stevenson, D. J. 1987. Limits on lateral density and velocity variations in the Earth's outer core. Geophysical Journal of the Royal Astronomical Society, 88(1), 311–319.Google Scholar
Stipčević, J., Tkalčić, H., Herak, M., Markušić, S., and Herak, D. 2011. Crustal and uppermost mantle structure beneath the external Dinarides, Croatia, determined from teleseismic receiver functions. Geophysical Journal International, 185, 1003–1019.Google Scholar
Stixrude, L., and Cohen, R. E. 1995. High-pressure elasticity of iron and anisotropy of Earth's inner core. Science, 267(5206), 1972–1975.Google Scholar
Stroujkova, A., and Cormier, V. F. 2004. Regional variations in the uppermost 100 km of the Earth's inner core. Journal of Geophysical Research (Solid Earth), 109(October), 10307.Google Scholar
Su, W.-J., and Dziewonski, A. M. 1995. Inner core anisotropy in three dimensions. Journal of Geophysical Research, 100(B7), 9831–9852.Google Scholar
Su, W.-J., Dziewonski, A. M., and Jeanloz, R. 1996. Planet within a planet: Rotation of the inner core of Earth. Science, 274(5294), 1883–1887.Google Scholar
Sumita, I., and Olson, P. 1999. A laboratory model for convection in Earth's core driven by a thermally heterogeneous mantle. Science, 286(5444), 1547–1549.Google Scholar
Sumita, I., Yoshida, S., Kumazawa, M., and Hamano, Y. 1996. A model for sedimentary compaction of a viscous medium and its application to inner-core growth. Geophysical Journal International, 124(2), 502–524.Google Scholar
Sun, X., and Song, X. 2008. Tomographic inversion for three-dimensional anisotropy of Earth's inner core. Physics of the Earth and Planetary Interiors, 167(1–2), 53–70.Google Scholar
Sun, X., Poupinet, G., and Song, X. 2006. Examination of systematic mislocation of South Sandwich Islands earthquakes using station pairs: Implications of inner core rotation. Journal of Geophysical Research, 111(B11305).Google Scholar
Sylvander, M., and Souriau, A. 1996. P-velocity structure of the core-mantle boundary region inferred from PKP(AB)-PKP(BC) differential travel times. Geophysical Research Letters, 23, 853–856.Google Scholar
Tanaka, S. 2012. Depth extent of hemispherical inner core from PKP(DF) and PKP(Cdiff) for equatorial paths. Physics of the Earth and Planetary Interiors, 210–211(0), 50–62.Google Scholar
Tanaka, S., and Hamaguchi, H. 1997. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times. Journal of Geophysical Research, 102(February), 2925–2938.Google Scholar
Tanaka, S., and Tkalčić, H. 2015. Complex inner core boundary from frequency characteristics of the reflection coefficients of PKiKP waves observed by Hi-net. Progress in Earth and Planetary Science, 2, 1–16.Google Scholar
Tateno, S., Hirose, K., Ohishi, Y., and Tatsumi, Y. 2010. The structure of iron in Earth's inner core. Science, 330(6002), 359–361.Google Scholar
Tkalčić, H. 2015. Complex inner core of the Earth: The last frontier of global seismology. Reviews of Geophysics, 53(1), 59–94. 2014RG000469.Google Scholar
Tkalčić, H., Flanagan, M. P., and Cormier, V. F. 2006. Observation of near-podal precursors: Evidence for back scattering from the 150–220 km zone in the Earth's upper mantle. Geophysical Research Letters, 33(3).Google Scholar
Tkalčić, H., Kennett, B. L. N., and Cormier, V. F. 2009. On the inner–outer core density contrast from PKiKP/PcP amplitude ratios and uncertainties caused by seismic noise. Geophysical Journal International, 179(1), 425–443.Google Scholar
Tkalčić, H., Young, M., Muir, J. B., Davies, D. R., and Mattesini, M. 2015. Strong, Multi-Scale Heterogeneity in Earth's Lowermost Mantle. Scientific Reports, 5(12), 18416 EP –.Google Scholar
Tkalčić, H., and Flanagan, M. P. 2004 (December). Structure of the deep inner core from antipodal PKPPKP waves. Pages Abstract T54A–06 of: Eos Trans. AGU, Fall Meet. Suppl., vol. 85. American Geophysical Union.
Tkalčić, H. 2001 (December). Study of deep Earth structure using body waves. PhD thesis, University of California at Berkeley.
Tkalčić, Hrvoje. 2010. Large variations in travel times of mantle-sensitive seismic waves from the South Sandwich Islands: Is the Earth's inner core a conglomerate of anisotropic domains? Geophysical Research Letters, 37.Google Scholar
Tkalčić, H., and Kennett, B. L. N. 2008. Core structure and heterogeneity: A seismological perspective. Australian Journal of Earth Sciences, 55(4), 419–431.Google Scholar
Tkalčić, H., Romanowicz, B., and Houy, N. 2002. Constraints on D” structure using PKP(AB-DF), PKP(BC-DF) and PcP-P traveltime data from broad-band records. Geophysical Journal International, 148, 599–616.Google Scholar
Tkalčić, H., Cormier, V., Kennett, B. L. N., and He, K. 2010. Steep reflections from the Earth's core reveal small-scale heterogeneity in the upper mantle. Physics of the Earth and Planetary Interiors, 178, 80–91.Google Scholar
Tkalčić, H., Bodin, T., Young, M., and Sambridge, M. 2013a. On the nature of the P-wave velocity gradient in the inner core beneath Central America. Journal of Earth Science, 24(5), 699–705.Google Scholar
Tkalčić, H., Young, M., Bodin, T., Ngo, S., and Sambridge, M. 2013b. The shuffling rotation of the Earth's inner core revealed by earthquake doublets. Nature Geoscience, 6(6), 497–502.Google Scholar
Torsvik, T. H., Smethurst, M. A., Burke, K., and Steinberger, B. 2006. Large igneous provinces generated from the margins of the large low-velocity provinces in the deep mantle. Geophysical Journal International, 167(3), 1447–1460.Google Scholar
Tromp, J. 1993. Support for anisotropy of the Earth's inner core from free oscillations. Nature, 366, 679–681.Google Scholar
Tromp, J. 1995. Normal-mode splitting observations from the Great 1994 Bolivia and Kuril earthquakes: Constraints on the structure of the mantle and inner core. GSA Today, 5, 137–151.Google Scholar
Tromp, J., and Zanzerkia, E. 1995. Toroidal splitting observations from the Great 1994 Bolivia and Kuril Islands earthquakes. Geophysical Research Letters, 22(16), 2297–2300.Google Scholar
Verhoogen, J. 1961. Heat balance of the earth's core. Geophysical Journal of the Royal Astronomical Society, 4, 276–281.Google Scholar
Verne, J. G. 1864. Voyage au centre de la Terre (Journey to the Centre of the Earth).
Vidale, J. E., and Earle, P. S. 2000. Fine-scale heterogeneity in the Earth's inner core. Nature, 404(March), 273–275.Google Scholar
Vidale, J. E., and Earle, P. S. 2005. Evidence for inner-core rotation from possible changes with time in PKP coda. Geophysical Research Letters, 32(1). L01309.Google Scholar
Vidale, J. E., Dodge, D. A., and Earle, P. S. 2000. Slow differential rotation of the Earth's inner core indicated by temporal changes in scattering. Nature, 405(6785), 445–448.Google Scholar
Vinnik, L., Romanowicz, B., and Breger, L. 1994. Anisotropy in the center of the inner core. Geophysical Research Letters, 21(16), 1671–1674.Google Scholar
Vočadlo, L., Alfe, D., Gillan, M. J., Wood, I. G., Brodholt, J. P., and Price, G. D. 2003. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth's core. Nature, 424(6948), 536–539.Google Scholar
Vočadlo, L., Dobson, D. P., and Wood, I. G. 2009. Ab initio calculations of the elasticity of hcp-Fe as a function of temperature at inner-core pressure. Earth and Planetary Science Letters, 288(3–4), 534–538.Google Scholar
Wang, T., Song, X., and Xia, H. H. 2015. Equatorial anisotropy in the inner part of Earth's inner core from autocorrelation of earthquake coda. Nature Geoscience, 8(3), 224–227.Google Scholar
Waszek, L., and Deuss, A. 2011. Distinct layering in the hemispherical seismic velocity structure of Earth's upper inner core. Journal of Geophysical Research, 116, B12313.Google Scholar
Waszek, L., and Deuss, A. 2015. Observations of exotic inner core waves. Geophysical Journal International, 200, 1636–1650.Google Scholar
Waszek, L., Irving, J., and Deuss, A. 2011. Reconciling the hemispherical structure of Earth's inner core with its super-rotation. Nature Geoscience, 4(February), 264–267.Google Scholar
Wedemeyer-Bohm, S., Scullion, E., Steiner, O., van der Voort, L. R., de la Cruz Rodriguez, J., Fedun, V., and Erdelyi, R. 2012. Magnetic tornadoes as energy channels into the solar corona. Nature, 486(7404), 505–508.Google Scholar
Wen, L. 2006. Localized temporal change of the Earth's inner core boundary. Science, 314, 967–970.Google Scholar
Wen, L., and Niu, F. 2002. Seismic velocity and attenuation structures in the top of the Earth's inner core. Journal of Geophysical Research (Solid Earth), 107(November), 2273.Google Scholar
Whaler, K., and Holme, R. 1996. Catching the inner core in a spin. Nature, 382, 205–206.Google Scholar
Widmer, R., Masters, G., and Gilbert, F. 1991. Spherically symmetric attenuation within the Earth from normal mode data. Geophysical Journal International, 104(3), 541–553.Google Scholar
Widmer, R., Masters, G., and Gilbert, F. 1992. Observably split multiplets – data analysis and interpretation in terms of large-scale aspherical structure. Geophysical Journal International, 111(3), 559–576.Google Scholar
Wiechert, E. 1897. Ueber die massenverteilung im inneren der erde. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1897, 221–243.Google Scholar
Woodhouse, J. H. 1988. The calculation of eigenfrequencies and eigenfunctions of the free oscillations of the Earth and the Sun. Vol. Seismological algorithms, Computational methods and computer programs. London, UK: Academic Press.
Woodhouse, J. H., and Dahlen, F. A. 1978. The effect of a general aspherical perturbation on the free oscillations of the Earth. Geophysical Journal of the Royal Astronomical Society, 53, 335–354.Google Scholar
Woodhouse, J. H., and Girnius, T. 1982. Surface waves and free oscillations in a regionalized Earth model. Geophysical Journal of the Royal Astronomical Society, 68, 653–673.Google Scholar
Woodhouse, J. H., Giardini, D., and Li, X.-D. 1986. Evidence for inner core anisotropy from free oscillations. Geophysical Research Letters, 13(13), 1549–1552.Google Scholar
Wookey, J., and Helffrich, G. 2008. Inner-core shear-wave anisotropy and texture from an observation of PKJKP waves. Nature, 454(7206), 873–876.Google Scholar
Xu, X., and Song, X. 2003. Evidence for inner core super-rotation from time-dependent differential PKP traveltimes observed at Beijing Seismic Network. Geophysical Journal International, 152(3), 509–514.Google Scholar
Yee, T.-G., Rhie, J., and Tkalčić, H. 2014. Regionally heterogeneous uppermost inner core observed with Hi-net array. Journal of Geophysical Research: Solid Earth, 119(10), 7823–7845.Google Scholar
Yoshida, S., Sumita, I., and Kumazawa, M. 1996. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. Journal of Geophysical Research, 101(December), 28085–28104.Google Scholar
Yu, W.-C., Wen, L., and Niu, F. 2005. Seismic velocity structure in the Earth's outer core. Journal of Geophysical Research (Solid Earth), 110(February), 2302.Google Scholar
Zeng, X., and Ni, S. 2013. Constraining shear wave velocity and density contrast at the inner core boundary with PKiKP/P amplitude ratio. Journal of Earth Science, 24(5), 716–724.Google Scholar
Zhang, J., Song, X., Li, Y., Richards, P. G., Sun, X., and Waldhauser, F. 2005. Inner core differential motion confirmed by earthquake waveform doublets. Science, 309(5739), 1357–1360.Google Scholar
Zhang, J., Richards, P. G., and Schaff, D. P. 2008. Wide-scale detection of earthquake waveform doublets and further evidence for inner core super-rotation. Geophysical Journal International, 174(3), 993–1006.Google Scholar
Zou, Z., Koper, K. D., and Cormier, V. F. 2008. The structure of the base of the outer core inferred from seismic waves diffracted around the inner core. Journal of Geophysical Research: Solid Earth, 113, B05314.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Hrvoje Tkalčić, Australian National University, Canberra
  • Book: The Earth's Inner Core
  • Online publication: 26 January 2017
  • Chapter DOI: https://doi.org/10.1017/9781139583954.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Hrvoje Tkalčić, Australian National University, Canberra
  • Book: The Earth's Inner Core
  • Online publication: 26 January 2017
  • Chapter DOI: https://doi.org/10.1017/9781139583954.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Hrvoje Tkalčić, Australian National University, Canberra
  • Book: The Earth's Inner Core
  • Online publication: 26 January 2017
  • Chapter DOI: https://doi.org/10.1017/9781139583954.012
Available formats
×