Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-08T05:15:25.108Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2015

Carlo Di Castro
Affiliation:
Università degli Studi di Roma 'La Sapienza', Italy
Roberto Raimondi
Affiliation:
Università degli Studi Roma Tre
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abanov, Ar., Chubukov, A. V. and Schmalian, J. 2003. Quantum-critical theory of the spinfermion model and its application to cuprates: normal state analysis. Adv. Phys., 52, 119.CrossRefGoogle Scholar
Abbamonte, P., Rusydi, A., Smadici, S., Gu, G. D., Sawatzky, G. A. and Feng, D. L. 2005. Spatially modulated ‘Mottness’ in La2−xBaxCuO4. Nature Physics, 1, 155.CrossRefGoogle Scholar
Abel, W. R., Anderson, A. C. and Wheatley, J. C. 1966. Propagation of zero sound in liquid He3 at low temperatures. Phys. Rev. Lett., 17, 74.CrossRefGoogle Scholar
Abrahams, E., Anderson, P. W., Licciardello, D. C. and Ramakrishnan, T. V. 1979. Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett., 42, 673.CrossRefGoogle Scholar
Abramowitz, M. and Stegun, I. A. 1965. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: Dover.Google Scholar
Abrikosov, A. A. 1957. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP, 5, 1174.Google Scholar
Abrikosov, A. A., Gorkov, L. P. and Dzyaloshinski, I. E. 1963. Methods of Quantum Field Theory in Statistical Physics. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.Google Scholar
Ahlers, G. 1968. Thermal conductivity of He I near the superfluid transition. Phys. Rev. Lett., 21, 1159.CrossRefGoogle Scholar
Akhmetov, D. G. 2009. Vortex Rings. Berlin & Heidelberg: Springer.CrossRefGoogle Scholar
Allen, J. F. and Misener, A. D. 1938. Flow of liquid helium II. Nature, 141, 75.CrossRefGoogle Scholar
Altshuler, B. L. and Aronov, A. G. 1970. Contribution to the theory of disordered metals in strongly doped semiconductors. Zh. Eksp. Teor. Fiz, 77, 2028 (JETP, 50, 968).Google Scholar
Altshuler, B. L. and A. G., Aronov 1985. Electron–electron interaction in disordered conductors. In Pollak, M. and Efros, A. L. (eds.), Electron–Electron Interactions in Disordered Systems. Amsterdam: North-Holland.Google Scholar
Altshuler, B. L., Aronov, A. G. and Lee, P. A. 1980a. Interaction effects in disordered Fermi systems in two dimensions. Phys. Rev. Lett., 44, 1288.CrossRefGoogle Scholar
Altshuler, B. L., Khmel'nitzkii, D., Larkin, A. I. and Lee, P. A. 1980b. Magnetoresistance and Hall effect in a disordered two-dimensional electron gas. Phys. Rev. B, 22, 5142.CrossRefGoogle Scholar
Alvesalo, T. A., Anufriyev, Yu. D., Collan, H. K., Lounasmaa, O. V. and Wennerström, P. 1973. Evidence for superfluidity in the newly found phases of 3He. Phys. Rev. Lett., 30, 962.CrossRefGoogle Scholar
Amit, D. J. and Martín-Mayor, V. 2005. Field Theory, the Renormalization Group, and Critical Phenomena. Singapore: World Scientific.CrossRefGoogle Scholar
Andergassen, S., Caprara, S., Di Castro, C. and Grilli, M. 2001. Anomalous isotopic effect near the charge-ordering quantum criticality. Phys. Rev. Lett., 87, 056401.CrossRefGoogle ScholarPubMed
Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. and Cornell, E. A. 1995. Observation of Bose–Einstein condensation in dilute atomic vapor. Science, 269, 198.CrossRefGoogle ScholarPubMed
Anderson, P. W. 1958. Absence of diffusion in certain random lattices. Phys. Rev., 109, 1492.CrossRefGoogle Scholar
Anderson, P. W. 1966. Considerations on the flow of superfluid helium. Rev. Mod. Phys., 38, 298.CrossRefGoogle Scholar
Anderson, P. W. 2007. Is there glue in cuprate superconductors? Science, 316, 1705.CrossRefGoogle ScholarPubMed
Anderson, P. W. and Brinkman, W. F. 1973. Anisotropic superfluidity in 3He: a possible interpretation of its stability as a spin-fluctuation effect. Phys. Rev. Lett., 30, 1108.CrossRefGoogle Scholar
Anderson, P. W. and Morel, P. 1961. Generalized Bardeen–Cooper–Schrieffer states and the proposed low-temperature phase of liquid He3. Phys. Rev., 123, 1911.CrossRefGoogle Scholar
Ando, Y., Komiya, S., Segawa, K., Ono, S. and Kurita, Y. 2004. Electronic phase diagram of high-Tc cuprate superconductors from a mapping of the in-plane resistivity curvature. Phys. Rev. Lett., 93, 267001.CrossRefGoogle ScholarPubMed
Andronikashvili, E. L. 1946. A direct observation of two kinds of motion in helium II. J. Phys. (USSR), 10, 201.Google Scholar
Aslamazov, L. G. and Larkin, A. I. 1968. The influence of fluctuation pairing of electrons on the conductivity of normal metal. Phys. Lett. A, 26, 238.CrossRefGoogle Scholar
Atkins, K. R. 1959. Liquid Helium. Cambridge: Cambridge University Press.Google Scholar
Balian, R. and Werthamer, N. R. 1963. Superconductivity with pairs in a relative p Wave. Phys. Rev., 131, 1553.CrossRefGoogle Scholar
Bardeen, J., Cooper, L. N. and Schrieffer, J. R. 1957. Theory of superconductivity. Phys. Rev., 108, 1175.CrossRefGoogle Scholar
Baym, G. and Pethick, C. 1978. Low temperature properties of dilute solutions of 3He in superfluid 4He. Page 123 of: Bennemann, K. H. and Ketterson, J. B. (eds.), The Physics of Liquid and Solid Helium. New York: Wiley.Google Scholar
Baym, G. and Pethick, C. 1991. Landau Fermi-liquid Theory: Concepts and Applications. New York: Wiley.CrossRefGoogle Scholar
Bednorz, J. G., Müller, K. A. and Takashige, M. 1987. Superconductivity in alkaline earthsubstituted La2CuO4−y. Science, 236, 73.CrossRef
Belitz, D. and Kirkpatrick, T. R. 1994. The Anderson–Mott transition. Rev. Mod. Phys., 66, 261.CrossRefGoogle Scholar
Benettin, G., Di Castro, C., Jona-Lasinio, G., Peliti, L. and Stella, A. 1977. On the equivalence of different renormalization groups. In Lévy, M. and Mitter, P. (eds.), New Developments in Quantum Theory and Statistical Mechanics. New York: Plenum Press.Google Scholar
Bergmann, G. 1984. Weak localization in thin films: a time-of-flight experiment with conduction electrons. Physics Reports, 107, 1.CrossRefGoogle Scholar
Bernoulli, D. and Bernoulli, J. 2005. Hydrodynamics and Hydraulics. Mineola (N.Y.): Dover.Google Scholar
Biondi, M. A., Garfunkel, M. P. and Mc Coubrey, A. O. 1957a. Microwave measurements of the energy gap in superconducting aluminum. Phys. Rev., 108, 495.CrossRefGoogle Scholar
Biondi, M. A., Forrester, A. T. and Garfunkel, M. P. 1957b. Millimeter wave studies of superconducting tin. Phys. Rev., 108, 497.CrossRefGoogle Scholar
Bloch, I., Dalibard, J. and Zwerger, W. 2008. Many-body physics with ultracold gases. Rev. Mod. Phys., 80, 885.CrossRefGoogle Scholar
Blume, M., Emery, V. J. and Griffiths, R. B. 1971. Ising model for the λ transition and phase separation in 3He–4He mixtures. Phys. Rev. A, 4, 1071.CrossRefGoogle Scholar
Bogoliubov, N. N. 1947. On the theory of superfluidity. J. Phys., 11, 23.Google Scholar
Bogoliubov, N. N. and Shirkov, D. V. 1959. Introduction to the Theory of Quantized Fields. New York: Wiley-Interscience.Google Scholar
Boltzmann, L. 1964. Lectures on Gas Theory. New York: Dover.Google Scholar
Bonch-Bruevich, V. L. and Tyablikov, S. V. 1962. The Green FunctionMethod in Statistical Physics. Amsterdam: North-Holland Publishing Company.Google Scholar
Bose, S. N. 1924. Plancks Gesetz und Lichtquantenhypothese. Z. Phys., 26, 178.CrossRefGoogle Scholar
Bradley, C. C., Sackett, C. A., Tollett, J. J. and Hulet, R. G. 1995. Evidence of Bose– Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett., 75, 1687.CrossRefGoogle Scholar
Brezin, E., Le Guillou, J. C. and Zinn-Justin, J. 1973. Approach to scaling in renormalized perturbation theory. Phys. Rev. D, 8, 2418.CrossRefGoogle Scholar
Brooks, J. S. and Donnelly, R. J. 1977. The calculated thermodynamic properties of superfluid helium-4. J. Phys. Chem. Ref. Data, 6, 51.CrossRefGoogle Scholar
Brueckner, K. A., Soda, T., Anderson, P. W. and Morel, P. 1960. Level structure of nuclear matter and liquid He3. Phys. Rev., 118, 1442.CrossRefGoogle Scholar
Byers, N. and Yang, C. N. 1961. Theoretical considerations concerning quantized magnetic flux in superconducting cylinders. Phys. Rev. Lett., 7, 46.CrossRefGoogle Scholar
Callen, H. B. and Welton, T. A. 1951. Irreversibility and generalized noise. Phys. Rev., 83, 34.Google Scholar
Campisi, M., Hänggi, P. and Talkner, P. 2011. Quantum fluctuation relations: foundations and applications. Rev. Mod. Phys., 83, 771.CrossRefGoogle Scholar
Castellani, C. and Di Castro, C. 1986. Effective Landau theory for disordered interacting electron systems: specific-heat behavior. Phys. Rev. B, 34, 5935.CrossRefGoogle ScholarPubMed
Cassandro, M. and Gallavotti, G. 1975. The Lavoisier law and the critical point. Nuovo Cimento B, 25, 691.CrossRefGoogle Scholar
Cassandro, M. and Jona-Lasinio, G. 1978. Critical point behaviour and probability theory. Advances in Physics, 27, 913.CrossRefGoogle Scholar
Castellani, C., Di Castro, C., Forgacs, G. and Tabet, E. 1983. Gauge invariance and the multiplicative renormalisation group in the Anderson transition. J. Phys. C Solid State Physics, 16, 159.CrossRefGoogle Scholar
Castellani, C., Di Castro, C., Lee, P. A. and Ma, M. 1984a. Interaction-driven metal– insulator transitions in disordered fermion systems. Phys. Rev. B, 30, 527.CrossRefGoogle Scholar
Castellani, C., Di Castro, C., Lee, P. A., Ma, M., Sorella, S. and Tabet, E. 1984b. Spin fluctuations in disordered interacting electrons. Phys. Rev. B, 30, 1596.CrossRefGoogle Scholar
Castellani, C., Di Castro, C., Lee, P. A., Ma, M., Sorella, S. and Tabet, E. 1986. Enhancement of the spin susceptibility in disordered interacting electrons and the metal–insulator transition. Phys. Rev. B, 33, 6169.CrossRefGoogle ScholarPubMed
Castellani, C., Di Castro, C. and Grilli, M. 1995. Singular quasiparticle scattering in the proximity of charge instabilities. Phys. Rev. Lett., 75, 4650.CrossRefGoogle ScholarPubMed
Castellani, C., Di Castro, C., Pistolesi, F. and Strinati, G. C. 1997. Infrared behavior of interacting bosons at zero temperature. Phys. Rev. Lett., 78, 1612.CrossRefGoogle Scholar
Castellani, C., Di Castro, C. and Lee, P. A. 1998. Metallic phase and metal–insulator transition in two-dimensional electronic systems. Phys. Rev. B, 57, 9381.CrossRefGoogle Scholar
Chaikin, P. M. and Lubensky, T. C. 1995. Principles of Condensed Matter Physics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Chang, J., Blackburn, E., Holmes, A. T., et al. 2012. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67. Nature Physics, 8, 871.CrossRef
Chapman, S. and Cowling, T. G. 1970. The Mathematical Theory of Non-uniform Gases. Cambridge: Cambridge University Press.Google Scholar
Chin, C., Grimm, R., Julienne, P. and Tiesinga, E. 2010. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82, 1225.CrossRefGoogle Scholar
Chu, S. 1998. Nobel Lecture: The manipulation of neutral particles. Rev. Mod. Phys., 70, 685.CrossRefGoogle Scholar
Clausius, R. 1857. Über die Art der Bewegung, welche wir Wärme nennen. Ann. Phys., 176, 353.CrossRefGoogle Scholar
Clausius, R. 1858. Über die mittlere Läge der Wege, welche bei Molecularbewegung gasförmigen Körper von den einzelnen Molecülen zurücklegen werden, nebst anderen Bemerkungen über der mechanischen Wärmetheorie. Ann. Phys., 181, 239.CrossRefGoogle Scholar
Cohen, D. and Imry, Y. 2012. Straightforward quantum-mechanical derivation of the Crooks fluctuation theorem and the Jarzynski equality. Phys. Rev. E, 86, 011111.CrossRefGoogle ScholarPubMed
Cohen-Tannoudji, C. N. 1998. Nobel Lecture: Manipulating atoms with photons. Rev. Mod. Phys., 70, 707.CrossRefGoogle Scholar
Comin, R., Frano, A., Yee, M. M., et al. 2014. Charge order driven by Fermi-arc instability in Bi2Sr2?xLaxCuO6+δ. Science, 343, 390.CrossRefGoogle Scholar
Corak, W. S., Goodman, B. B., Satterthwaite, C. B. and Wexler, A. 1956. Atomic heats of normal and superconducting vanadium. Phys. Rev., 102, 656.CrossRefGoogle Scholar
Crooks, G. E. 1999. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E, 60, 2721.CrossRefGoogle ScholarPubMed
da Silva Neto, E. H., Aynajian, P., Frano, A., et al. 2014. Ubiquitous interplay between charge ordering and high-temperature superconductivity in cuprates. Science, 343, 393.CrossRefGoogle ScholarPubMed
Dalfovo, F., Giorgini, S., Pitaevskii, L. P. and Stringari, S. 1999. Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys., 71, 463.CrossRefGoogle Scholar
Dash, J. G. and Taylor, R. D. 1957. Hydrodynamics of oscillating disks in viscous fluids: density and viscosity of normal fluid in pure He4 from 1.2 K to the lambda point. Phys. Rev., 105, 7.CrossRefGoogle Scholar
Davis, K. B., Mewes, M. O., Andrews, M. R., et al. 1995. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett., 75, 3969.CrossRefGoogle Scholar
De Gennes, P. G. 1966. Superconductivity of Metals and Alloys. NewYork:W. A. Benjamin.
de Groot, S. R., Hooman, G. J. and Seldam, C. A. T. 1950. On the Bose–Einstein condensation. Proc. R. Soc. Lond. A, 203, 266.CrossRefGoogle Scholar
Deaver, B. S. and Fairbank, W. M. 1961. Experimental evidence for quantized flux in superconducting cylinders. Phys. Rev. Lett., 7, 43.CrossRefGoogle Scholar
Debye, P. 1912. Zur Theorie der spezifischen Wärmen. Ann. Phys., 344, 789.CrossRefGoogle Scholar
DeMarco, B. and Jin, D. S. 1999. Onset of Fermi degeneracy in a trapped atomic gas. Science, 285, 1703.CrossRefGoogle Scholar
DeMarco, B., Papp, S. B. and Jin, D. S. 2001. Pauli blocking of collisions in a quantum degenerate atomic Fermi gas. Phys. Rev. Lett., 86, 5409.CrossRefGoogle Scholar
Di Castro, C. 1972. The multiplicative renormalization group and the critical behavior in d = 4 − ∊ dimensions. Lett. Nuovo Cimento, 5, 69.CrossRefGoogle Scholar
Di Castro, C. and Jona-Lasinio, G. 1969. On the microscopic foundation of scaling laws. Phys. Lett. A, 29, 322.CrossRefGoogle Scholar
Di Castro, C. and Metzner, W. 1991. Ward identities and the β function in the Luttinger liquid. Phys. Rev. Lett., 67, 3852.CrossRefGoogle ScholarPubMed
Di Castro, C. and Raimondi, R. 2004. Disordered electron systems. In Giuliani, G. F. and Vignale, G. (eds.), The Electron Liquid Paradigm in Condensed Matter Physics. Amsterdam: IOS Press.Google Scholar
Dingle, R. B. 1973. Asymptotic Expansions: Their Derivation and Interpretation. London and New York: Academic Press.Google Scholar
Dirac, P. A. M. 1926. On the theory of quantum mechanics. Proc. R. Soc. Lond. A, 112, 661.CrossRefGoogle Scholar
Dobrosavljević, V., Trivedi, N. and Valles, J. M. Jr. (eds.). 2012. Conductor–Insulator Quantum Phase Transitions. Oxford: Oxford University Press.CrossRefGoogle Scholar
Dolan, G. J. and Osheroff, D. D. 1979. Nonmetallic conduction in thin metal films at low temperatures. Phys. Rev. Lett., 43, 721.CrossRefGoogle Scholar
Domb, C. and Green, M. S. (eds.). 1976. Phase Transitions and Critical Phenomena: Volume 6. San Diego: Academic Press Inc.Google Scholar
Drude, P. 1900. Zur Elektronentheorie der Metalle. Ann. Phys., 306, 566.CrossRefGoogle Scholar
Dzyaloshinskii, I. E. and Larkin, A. I. 1973. Correlation functions for a one-dimensional Fermi system with long-range interaction (Tomonaga model). Zh. Eksp. Teor. Fiz., 65, 411 (Sov. Phys. JETP, 38, 202 (1974)).Google Scholar
Edwards, J. T. and Thouless, D. J. 1972. Numerical studies of localization in disordered systems. J. Phys. C, 5, 807.CrossRefGoogle Scholar
Efetov, K. B., Larkin, A. I. and Khmel'nitskii, D. E. 1980. Interaction of diffusion modes in the theory of localization. Zh. Eksp. Teor. Fiz., 79, 1120 (JETP, 52, 568).Google Scholar
Ehrenfest, P. 1933. Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach den entsprechenden Singularitaeten des thermodynamischen Potentiales. Proceedings Koninklijke Akademie van Wetenschappen, 36, 153.Google Scholar
Einstein, A. 1905. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys., 322, 549.CrossRefGoogle Scholar
Einstein, A. 1907. Berichtigung zu meiner Arbeit: die Plancksche Theorie der Strahlung. Ann. Phys., 327, 800.CrossRefGoogle Scholar
Einstein, A. 1910. Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Ann. Phys., 338, 1275.CrossRefGoogle Scholar
Einstein, A. 1924. Quantentheorie des einatomigen idealen Gases / Quantum theory of ideal monoatomic gases. Sitz. Ber. Preuss. Akad. Wiss., 22, 261.Google Scholar
Einstein, A. 1925. Quantentheorie des einatomigen idealen Gases, 2. Sitz. Preuss. Akad. Wiss., 1, 3.Google Scholar
Emery, V. J. and Kivelson, S. A. 1993. Frustrated electronic phase separation and hightemperature superconductors. Physica C, 209, 597.CrossRefGoogle Scholar
Emery, V. J. and Sessler, A. M. 1960. Possible phase transition in Liquid He3. Phys. Rev., 119, 43.CrossRefGoogle Scholar
Esposito, M., Harbola, U. and Mukamel, S. 2009. Nonequilibrium fluctuations, fluctuation theorems and counting statistics in quantum systems. Rev. Mod. Phys., 81, 1665.CrossRefGoogle Scholar
Fauqué, B., Sidis, Y., Hinkov, V., et al. 2006. Magnetic order in the pseudogap phase of high-TC superconductors. Phys. Rev. Lett., 96, 197001.CrossRefGoogle ScholarPubMed
Fermi, E. 1926a. Sulla quantizzazione del gas perfetto monoatomico. Rendiconti della R. Accademia Nazionale dei Lincei, 3, 145.Google Scholar
Fermi, E. 1926b. Zur Quantelung des idealen einatomigen Gases. Z. Phys., 36, 902.CrossRefGoogle Scholar
Ferrell, R. A., Màenyhàrd, N., Schmidt, H., Schwabl, F. and Szépfalusy, P. 1968. Fluctuations and lambda phase transition in liquid helium. Ann. Phys., 47, 565.CrossRefGoogle Scholar
Ferrenberg, A. M. and Landau, D. P. 1991. Critical behavior of the three-dimensional Ising model: a high-resolution Monte Carlo study. Phys. Rev. B, 44, 5081.CrossRefGoogle ScholarPubMed
Ferrier-Barbut, I., Delehaye, M., Laurent, S., et al. 2014. A mixture of Bose and Fermi superfluids. Science, 345, 1035.CrossRefGoogle ScholarPubMed
Fetter, A. L. and Walecka, J. D. 1971. Quantum Theory of Many-particle Systems. New York: McGraw-Hill.Google Scholar
Feynman, R. P. 1953a. Atomic theory of liquid helium near absolute zero. Phys. Rev., 91, 1301.CrossRefGoogle Scholar
Feynman, R. P. 1953b. Atomic theory of the λ transition in helium. Phys. Rev., 91, 1291.CrossRefGoogle Scholar
Feynman, R. P. 1954. Atomic theory of the two-fluid model of liquid helium. Phys. Rev., 94, 262.CrossRefGoogle Scholar
Feynman, R. P. 1972. Statistical Mechanics. Reading, Mass.: W. A. Benjamin.Google Scholar
Feynman, R. P. and Cohen, M. 1956. Energy spectrum of the excitations in liquid helium. Phys. Rev., 102, 1189.CrossRefGoogle Scholar
Finkelstein, A. M. 1983. Influence of Coulomb interaction on the properties of disordered metals. Zh. Eksp. Teor. Fiz., 84, 168 (Sov. Phys. JETP, 57, 97).Google Scholar
Finkelstein, A. M. 1984.Weak localization and Coulomb interaction in disordered systems. Z. Phys. B, 56, 189.CrossRefGoogle Scholar
Finkelstein, A. M. 1990. Electron liquid in disordered conductors. Sov. Sci. Rev., 14, 1.Google Scholar
Fisher, M. E. 1967. The theory of equilibrium critical phenomena. Rep. Prog. Phys, 30, 615.CrossRefGoogle Scholar
Fokker, A. D. 1914. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys., 348, 810.CrossRefGoogle Scholar
Gao, L., Xue, Y. Y., Chen, F., et al. 1994. Superconductivity up to 164 K in HgBa2Cam−1CumO2m+2+δ (m = 1, 2, and 3) under quasihydrostatic pressures. Phys. Rev. B, 50, 4260.CrossRefGoogle ScholarPubMed
Gavoret, J. and Nozières, P. 1964. Structure of the perturbation expansion for the Bose liquid at zero temperature. Ann. Phys., 28(3), 349.CrossRefGoogle Scholar
Gell-Mann, M. and Low, F. E. 1954. Quantum electrodynamics at small distances. Phys. Rev., 95, 1300.CrossRefGoogle Scholar
Ghiringhelli, G., Le Tacon, M., Minola, M., et al. 2012. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x. Science, 337, 821.CrossRef
Giamarchi, T. 2004. Quantum Physics in One Dimension. New York: Oxford University Press.Google Scholar
Gibbs, J. W. 1902. Elementary Principles in Statistical Mechanics. New York: Charles Scribner's Sons.Google Scholar
Giorgini, S., Pitaevskii, L. P. and Stringari, S. 2008. Theory of ultracold Fermi gases. Rev. Mod. Phys., 80, 1215.CrossRefGoogle Scholar
Glover, R. E. 1967. Ideal resistive transition of a superconductor. Phys. Lett. A, 25, 542.CrossRefGoogle Scholar
Glover, R. E. and Tinkham, M. 1957. Conductivity of superconducting films for photon energies between 0.3 and 40kTc. Phys. Rev., 108, 243.CrossRefGoogle Scholar
Goldner, L. S. and Ahlers, G. 1992. Superfluid fraction of 4He very close to Tλ. Phys. Rev. B, 45, 13129.CrossRefGoogle Scholar
Gor'kov, L. P., Larkin, A. I. and Khmel'nitskii, D. E. 1979. Particle conductivity in a two-dimensional random potential. JETP Lett., 30, 228.Google Scholar
Graf, E. H., Lee, D. M. and Reppy, John D. 1967. Phase separation and the superfluid transition in liquid 3He-4He mixtures. Phys. Rev. Lett., 19, 417.CrossRefGoogle Scholar
Griffiths, R. B. 1970. Thermodynamics near the two-fluid critical mixing point in 3He-4He. Phys. Rev. Lett., 24, 715.CrossRef
Griffiths, R. B. and Pearce, P. A. 1978. Position-space renormalization-group transformations: some proofs and some problems. Phys. Rev. Lett., 41, 917.CrossRefGoogle Scholar
Gross, E. P. 1961. Structure of a quantized vortex in boson systems. Nuovo Cimento, 20, 454.CrossRefGoogle Scholar
Haldane, F. D. M. 1981. ‘Luttinger liquid theory’ of one-dimensional quantum fluids. I. Properties of the Luttinger model and their extension to the general 1D interacting spinless Fermi gas. J. Phys. C Solid State Phys., 14, 2585.CrossRefGoogle Scholar
Halperin, B. I. and Hohenberg, P. C. 1969a. Hydrodynamic theory of spin waves. Phys. Rev., 188, 898.CrossRefGoogle Scholar
Halperin, B. I. and Hohenberg, P. C. 1969b. Scaling laws for dynamic critical phenomena. Phys. Rev., 177, 952.CrossRefGoogle Scholar
Hebard, A. F., Rosseinsky, M. J., Haddon, R. C., et al. 1991. Superconductivity at 18 K in potassium-doped C60. Nature, 350, 600.CrossRefGoogle Scholar
Heisenberg, W. 1926. Mehrkörperproblem und Resonanz in der Quantenmechanik. Z. Phys., 38, 411.CrossRefGoogle Scholar
Henshaw, D. G. and Woods, A. D. B. 1961. Modes of atomic motions in liquid helium by inelastic scattering of neutrons. Phys. Rev., 121, 1266.CrossRefGoogle Scholar
Hertel, G., Bishop, D. J., Spencer, E. G., Rowell, J. M. and Dynes, R. C. 1983. Tunneling and transport measurements at the metal-insulator transition of amorphous Nb: Si. Phys. Rev. Lett., 50, 743.CrossRefGoogle Scholar
Hewson, A. C. 1997. The Kondo Problem to Heavy Fermions. Cambridge: Cambridge University Press.Google Scholar
Hikami, S. 1981. Anderson localization in a nonlinear σ-model representation. Phys. Rev. B, 24, 2671.CrossRefGoogle Scholar
Hikami, S., Larkin, A. I. and Nagaoka, Y. 1980. Spin–orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys., 63(2), 707.CrossRefGoogle Scholar
Hohenberg, P. C. 1967. Existence of long-range order in one and two dimensions. Phys. Rev., 158, 383.CrossRefGoogle Scholar
Hohenberg, P. C. and Halperin, B. I. 1977. Theory of dynamic critical phenomena. Rev.Mod. Phys., 49, 435.CrossRefGoogle Scholar
Hohenberg, P. C. and Martin, P. C. 1965. Microscopic theory of superfluid helium. Ann. Phys., 34, 291.CrossRefGoogle Scholar
Holm, C. and Janke, W. 1993. Critical exponents of the classical three-dimensional Heisenberg model: a single-cluster Monte Carlo study. Phys. Rev. B, 48, 936.CrossRefGoogle ScholarPubMed
Hor, P. H., Gao, L., Meng, R. L., et al. 1987. High-pressure study of the new Y-Ba-Cu-O superconducting compound system. Phys. Rev. Lett., 58, 911.CrossRefGoogle Scholar
Huang, K. 1963. Statistical Mechanics. New York: J. Wiley & Sons.Google Scholar
Hubbard, J. 1963. Electron correlations in narrow energy bands. Proc. Roy. Soc. A, 276, 238.CrossRefGoogle Scholar
Ioffe, A. F. and Regel, A. R. 1960. Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semicond., 4, 237.Google Scholar
Ishida, K., Nakaii, Y. and Hosono, H. 2009. To what extent iron-pnictide new superconductors have been clarified: a progress report. J. Phys. Soc. Jpn., 78, 062001.CrossRefGoogle Scholar
Ito, T., Takenaka, K. and Uchida, S. 1993. Systematic deviation from T -linear behavior in the in-plane resistivity of YBa2Cu3O7−y : evidence for dominant spin scattering. Phys. Rev. Lett., 70, 3995.CrossRefGoogle Scholar
Jaklevic, R. C., Lambe, J., Silver, A. H. and Mercereau, J. E. 1964. Quantum interference effects in Josephson tunneling. Phys. Rev. Lett., 12, 159.CrossRefGoogle Scholar
Jarzynski, C. 1997. Nonequilibrium equality for free energy differences. Phys. Rev. Lett., 78, 2690.CrossRefGoogle Scholar
Jasnow, D. and Wortis, M. 1968. High-temperature critical indices for the classical anisotropic Heisenberg model. Phys. Rev., 176, 739.CrossRefGoogle Scholar
Johnson, J. B. 1928. Thermal agitation of electricity in conductors. Phys. Rev., 32, 97.CrossRefGoogle Scholar
Jona-Lasinio, G. 1973. Generalized renormalization transformations. In Lundquist, B. and Lundquist, S. (eds.), Collective Properties of Physical Systems. New York: Academic Press,.Google Scholar
Josephson, B. D. 1964. Coupled superconductors. Rev. Mod. Phys., 36, 216.CrossRefGoogle Scholar
Josephson, B. D. 1966. Relation between the superfluid density and order parameter for superfluid He near Tc. Phys. Lett., 21(6), 608–9.CrossRefGoogle Scholar
Kac, M. 1959. Probability and Related Topics in the Physical Sciences. New York: Interscience.Google Scholar
Kadanoff, L. P. 1966. Scaling laws for Ising models near Tc. Physics, 2, 263.CrossRefGoogle Scholar
Kadanoff, L. P., Götze, W., Hamblen, D., et al. 1967. Static phenomena near critical points: theory and experiment. Rev. Mod. Phys., 39, 395.CrossRefGoogle Scholar
Kamerling-Onnes, H. 1911. Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures. KNAW, Proceedings, 13, 1274.Google Scholar
Kamihara, Y., Watanabe, T., Hirano, M. and Osono, H. 2008. Iron-based layered superconductors La[O1−xFx] FeAs (x = 0.05 ÷ 0.12) with Tc = 26. J. Am. Chem. Soc., 130, 3296.CrossRefGoogle Scholar
Kaminski, A., Rosenkranz, S., Fretwell, H. M., et al. 2002. Spontaneous breaking of timereversal symmetry in the pseudogap state of a high-Tc superconductor. Nature, 416, 610.CrossRefGoogle Scholar
Kapitza, P. L. 1938. Viscosity of liquid helium below the λ-point. Nature, 141, 74.CrossRefGoogle Scholar
Katsumoto, S. 1988. Themetal–insulator transition in a persistent photoconductor. In Ando, T. and Fukuyama, H. (eds.), Anderson Localization. Proceedings of the International Symposium, Tokyo, Japan, 1987. Berlin and New York: Springer.Google Scholar
Katsumoto, S., Komori, F., Sano, N. and Kobayashi, S.-I. 1987. Fine tuning of metal– insulator transition in Al0.3Ga0.7As using persistent photoconductivity. J. Phys. Soc. Jpn., 56, 2259.CrossRefGoogle Scholar
Keesom, W.H. and Clusius, K. 1932. Über die spezifische Wärme des flüssigen Heliums. Proc. R. Acad. Amsterdam, 35.Google Scholar
Keesom, W. H. and MacWood, G. E. 1938. The viscosity of liquid helium. Physica, 5, 737.CrossRefGoogle Scholar
Keesom, W. H. and van den Ende, J. N. 1930. The specific heat of substances at the temperature obtained with the aid of helium. II Measurements of the atomic heats of lead and of bismath. Proc. R. Acad. Amsterdam, 33, 243.Google Scholar
Kerrisk, J. F. and Keller, W. E. 1967. Thermal conductivity of liquid helium I. Bull. Am. Phys. Soc. Ser. II, 12, 550.Google Scholar
Ketterle, W. and Zwierlein|M. W. 2008. Making, probing and understanding ultracold Fermi gases. In Inguscio, M., Ketterle, W. and Salomon, C. (eds.), Ultra-cold Fermi Gases. International School of Physics Enrico Fermi. Amsterdam: IOS Press.Google Scholar
Ketterle, W., Durfee, D. S. and Stamper-Kurn, D. M. 1999. Making, probing and understanding Bose–Einstein condensates. In Inguscio, M., Stringari, S. and Wieman, C. (eds.), Bose–Einstein Condensation in Atomic Gases. International School of Physics Enrico Fermi. Amsterdam: IOS Press.Google Scholar
Khalatnikov, I. M. 1965. An Introduction to the Theory of Superfluidity. New York, Amsterdam: W. A. Benjamin.Google Scholar
Khinchin, A. I. 1949. Mathematical Foundations of Statistical Mechanics. New York: Dover.Google Scholar
Khorana, B. M. and Chandrasekhar, B. S. 1967. AC Josephson effect in superfluid helium. Phys. Rev. Lett., 18, 230.CrossRefGoogle Scholar
Kordyuk, A. A. 2012. Iron-based superconductors: magnetism, superconductivity, and electronic structure. Low Temp. Phys., 38, 888.CrossRefGoogle Scholar
Krönig, A. 1856. Grundzüge einer Theorie der Gase. Annalen der Physik und Chemie, 99, 315.CrossRefGoogle Scholar
Lamb, H. 1945. Hydrodynamics. New York: Dover.Google Scholar
Landau L., D. 1937a. Theory of phase transformations. I. Zh. Eksp. Teor. Fiz., 7, 19 (Sov. Phys. JETP, 11, 26 (1937)).Google Scholar
Landau, L. D. 1937b. Theory of phase transformations. II. Zh. Eksp. Teor. Fiz., 7, 627 (Sov. Phys. JETP, 11, 545 (1937)).Google Scholar
Landau, L. D. 1941. The theory of superfluidity on Helium II. Zh. Eksp. Teor. Fiz., 11, 542 (J. Phys. USSR, 5, 71 (1941)).Google Scholar
Landau, L. D. 1947. On the Theory of Superfluidity of Helium II. J. Phys. (USSR), 11, 91.Google Scholar
Landau, L. D. 1956. The theory of a Fermi liquid. Zh. Eksp. Teor. Fiz., 30, 1058 (Sov. Phys. JETP, 3, 920 (1957)).Google Scholar
Landau, L. D. 1957. Oscillations in a Fermi liquid. Zh. Eksp. Teor. Fiz., 32, 59 (Sov. Phys. JETP, 5, 101 (1957)).Google Scholar
Landau, L. D. 1958. On the theory of the Fermi liquid. Zh. Eksp. Teor. Fiz., 35, 97 (Sov. Phys. JETP, 8, 70 (1959)).Google Scholar
Landau, L. D. and Lifshitz, E. M. 1959. Statistical Physics. London: Pergamon Press.Google Scholar
Lanford, O. E. 1975. Dynamical Systems, Theory and Applications, Lecture Notes in physics, vol. 38. Berlin: Springer.Google Scholar
Langevin, P. 1908. Sur la théorie du mouvement brownien. C.R. Acad. Sci. (Paris), 146, 530.Google Scholar
Larkin, A. I. and Varlamov, A. 2005. Theory of Fluctuations in Superconductors. Oxford: Oxford University Press.CrossRefGoogle Scholar
LeBoeuf, D., Doiron-Leyraud, N., Levallois, J., et al. 2007. Electron pockets in the Fermi surface of hole-doped high-Tc superconductors. Nature, 450, 533.CrossRefGoogle ScholarPubMed
Lee, D. M. and Leggett, A. J. 2011. Superfluid 3He – the early days. J. Low Temp. Phys., 164, 140.CrossRefGoogle Scholar
Lee, P. A. and Ramakrishnan, T. V. 1985. Disordered electronic systems. Rev. Mod. Phys., 57, 287.CrossRefGoogle Scholar
Lee, P. A., Nagaosa, N. and Wen, X. G. 2006. Doping a Mott insulator: physics of hightemperature superconductivity. Rev. Mod. Phys., 78, 17.CrossRefGoogle Scholar
Lee, T.D. and Yang, C.N. 1952. Statistical theory of equations of state and phase transitions. II. Lattice gas and Ising model. Phys. Rev., 87, 410.CrossRefGoogle Scholar
Leggett A., J. 1965. Theory of a superfluid Fermi liquid. I. General formalism and static properties. Phys. Rev., 140, A1869.CrossRefGoogle Scholar
Leggett A., J. 1980. Diatomic molecules and Cooper pairs. In Pfôkalski, A. and Przystawa J., A. (eds.), Modern Trends in the Theory of Condensed Matter. Lecture Notes in Physics, vol. 115. Berlin: Springer.CrossRefGoogle Scholar
Leggett A., J. 2006. Quantum Liquids. Oxford: Oxford University Press.CrossRefGoogle Scholar
Leggett A., J. 1975. A theoretical description of the new phases of liquid 3He. Rev. Mod. Phys., 47, 331.CrossRefGoogle Scholar
Leggett A., J. 2001. Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys., 73, 307.CrossRefGoogle Scholar
Licciardello D., C. and Thouless D., J. 1975. Constancy of minimum metallic conductivity in two dimensions. Phys. Rev. Lett., 35, 1475.CrossRefGoogle Scholar
Lipa J., A., Swanson, D., R., Nissen J., A., Chui T. C., P. and Israelsson U., E. 1996. Heat capacity and thermal relaxation of bulk helium very near the lambda point. Phys. Rev. Lett., 76, 944.CrossRefGoogle ScholarPubMed
Livingston J., D. 1963. Magnetic properties of superconducting lead-base alloys. Phys. Rev., 129, 1943.CrossRefGoogle Scholar
London, F. 1938. The λ-phenomenon of liquid helium and the Bose–Einstein degeneracy. Nature, 141, 643.CrossRefGoogle Scholar
London, F. 1959. Superfluids II. New York: Wiley.Google Scholar
London, F. and London, H. 1935. The electromagnetic equations of the supraconductor. Proc. R. Soc. Lond. A, 149, 71.CrossRefGoogle Scholar
Löw, U., Emery V., J., Fabricius, K. and Kivelson S., A. 1994. Study of an Ising model with competing long- and short-range interactions. Phys. Rev. Lett., 72, 1918.CrossRefGoogle ScholarPubMed
Luther, A. and Peschel, I. 1974. Single-particle states, Kohn anomaly and pairing fluctuations in one dimension. Phys. Rev. B, 9, 2911–2919.CrossRefGoogle Scholar
Luttinger J., M. 1963. An exactly soluble model of a many-fermion system. J. Math. Phys., 4, 1154.CrossRefGoogle Scholar
Ma S., K. 1976. Modern Theory of Critical Phenomena. London: Benjamin.Google Scholar
Machida, K. 1989. Magnetism in La2CuO4 based compounds. Physica C, 158, 192.CrossRefGoogle Scholar
Mahan G., D. 2000. Many-particle Physics. New York: Kluwer/Plenum.CrossRefGoogle Scholar
Matsubara, T. 1955. A new approach to quantum-statistical mechanics. Prog. Theor. Phys., 14, 351.CrossRefGoogle Scholar
Mattis D., C. and Lieb E., H. 1965. Exact solution of a many fermion system and its associated boson field. J. Math. Phys., 6, 304.CrossRefGoogle Scholar
Maxwell J., C. 1860a. Illustrations of the dynamical theory of gases. Part II. Philos. Magazine, 20, 21.Google Scholar
Maxwell J., C. 1860b. Illustrations of the dynamical theory of gases. Part I. On the motions and collisions of perfectly elastic spheres. Philos. Magazine, 19, 19.Google Scholar
Maxwell J., C. 1875. On the dynamical evidence of the molecular constitution of Bodies. Nature, 11, 357.CrossRefGoogle Scholar
McMillan W., L. and Mochel, J. 1981. Electron tunneling experiments on amorphous Ge1−xAux. Phys. Rev. Lett., 46, 556.CrossRefGoogle Scholar
Meissner, W. and Ochsenfeld, R. 1933. Ein neuer Effekt bei Eintritt der Supraleitfähigkeit. Naturwissenschaften, 21, 787.CrossRefGoogle Scholar
Mermin N., D. and Wagner, H. 1966. Absence of ferromagnetism or anti ferromagnetism in one- or two-dimensional isotropic Heisenberg models. Phys. Rev. Lett., 17, 1133.CrossRefGoogle Scholar
Metzner, W. and Di Castro, C. 1993. Conservation laws and correlation functions in the Luttinger liquid. Phys. Rev. B, 47, 16107.CrossRefGoogle ScholarPubMed
Metzner, W., Castellani, C. and Di Castro, C. 1998. Fermi systems with strong forward scattering. Adv. Phys., 47, 317.CrossRefGoogle Scholar
Migdal, A. A. 1969. A diagram technique near the Curie point and the second order phase transition in a Bose liquid. Sov. Phys. JETP, 28, 1036.Google Scholar
Mott N., F. 1967. Electrons in disordered structures. Adv. Phys., 16, 49.CrossRefGoogle Scholar
Mott N., F. 1972. Conduction in non-crystalline systems IX. The minimum metallic conductivity. Philos. Magazine, 26, 1015.CrossRefGoogle Scholar
Nakamura, Y. and Uchida, S. 1993. Anisotropic transport properties of single crystal La2−x SrxCuO4: evidence for the dimensional crossover. Phys. Rev. B, 47, 8369CrossRefGoogle Scholar
Nernst W., H. 1906. Über die Berechnung chemischer Gleichgewichte aus thermischen Messungen. Nachrichten von der Gesellschaft Wissenschaften zu Göttingen Matematisch-Physikalische Klasse, 1.
Nishida, N., Furubayashi, T., Yamaguchi, M., Morigaki, K. and Ishimoto, H. 1985. Metal– insulator transition in the amorphous Si1−xAux system with a strong spin–orbit interaction. Solid State Electronics, 28, 81.CrossRefGoogle Scholar
Nozières, P. 1964. Theory of Interacting Fermi Systems. New York: W. A. Benjamin.Google Scholar
Nozières, P. and Pines, D. 1966. The Theory ofQuantum Liquids. NewYork: W.A.Benjamin.Google Scholar
Nozières, P. and Schmitt-Rink, S. 1985. Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity. J. L. Temp. Phys., 59, 195.CrossRefGoogle Scholar
Nyquist, H. 1928. Thermal agitation of electric charge in conductors. Phys. Rev., 32, 110.CrossRefGoogle Scholar
Okuma, S., Komori, F. and Kobayashi, S. 1988. Themetal–insulator transition in disordered metals. In Ando, T. and Fukuyama, H. (eds.), Anderson Localization. Proceedings of the International Symposium. Berlin: Springer.Google Scholar
Onsager, L. 1931a. Reciprocal relations in irreversible processes. I. Phys. Rev., 37, 405.CrossRefGoogle Scholar
Onsager, L. 1931b. Reciprocal relations in irreversible processes. II. Phys. Rev., 38, 2265.CrossRefGoogle Scholar
Ornstein, L. S. and Zernike, F. 1914. Accidental deviations of density and opalescence at the critical point of a single substance. KNAW, Proceedings, 17, 793.Google Scholar
Osheroff D., D., Richardson R., C. and Lee D., M. 1972a. Evidence for a new phase of solid He3. Phys. Rev. Lett., 28, 885.CrossRefGoogle Scholar
Osheroff, D., D., Gully, W. J., Richardson R., C. and Lee D., M. 1972b. New magnetic phenomena in liquid He3 below 3 mK. Phys. Rev. Lett., 29, 920.CrossRefGoogle Scholar
Paalanen M., A., Sachdev, S., Bhatt R., N. and Ruckenstein A., E. 1986. Spin dynamics of nearly localized electrons. Phys. Rev. Lett., 57, 2061.CrossRefGoogle ScholarPubMed
Patashinskij A., Z. and Pokrovskij V., L. 1966. Behavior of ordered systems near the transition point. Sov. Phys. JETP, 23, 292.Google Scholar
Patashinskij A., Z. and Pokrovskij V., L. 1979. Fluctuations Theory of Phase Transitions. Oxford: Pergamon Press.Google Scholar
Paulson D., N., Kojima, H. and Wheatley J., C. 1974. Profound effect of a magnetic field on the phase diagram of superfluid 3He. Phys. Rev. Lett., 32, 1098.CrossRefGoogle Scholar
Peliti, L. 2011. Statistical Mechanics in a Nutshell. Princeton: Princeton University Press.Google Scholar
Penrose, O. and Onsager, L. 1956. Bose–Einstein condensation and liquid helium. Phys. Rev., 104, 576.CrossRefGoogle Scholar
Perali, A., Pieri, P., Pisani, L. and Strinati, G. C. 2004. BCS-BEC crossover at finite temperature for superfluid trapped Fermi atoms. Phys. Rev. Lett., 92, 220404.CrossRefGoogle ScholarPubMed
Perrin, J. B. 1913. Les Atoms. Paris: Librairie Felix Alcan.Google Scholar
Pethick C., J. and Smith, H. 2008. Bose–Einstein Condensation in Dilute Gases. 2nd edn. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Phillips N., E. 1959. Heat capacity of aluminum between 0.1 K and 4.0K. Phys. Rev., 114, 676.CrossRefGoogle Scholar
Phillips W., D. 1998. Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 70, 721.CrossRefGoogle Scholar
Pippard A., B. 1955. Trapped flux in superconductors. Phil. Trans. R. Soc. Lond. A, 248, 97.CrossRefGoogle Scholar
Pippard A., B. 1957. Elements of Classical Thermodynamics: for Advanced Students of Physics. Cambridge: Cambridge University Press.Google Scholar
Pitaevskii L., P. 1959. On the superfluidity of liquid 3He. Zh. Eksp. Teor. Fiz., 37, 1794 (Sov. Phys. JETP, 10, 1267 (1960)).Google Scholar
Pitaevskii L., P. 1961. Vortex lines in imperfect Bose gas. Zh. Eksp. Teor. Fiz., 40, 646 (Sov. Phys. JETP, 13, 451 (1961)).Google Scholar
Pitaevskii, L. P. and Stringari, S. 2003. Bose–Einstein Condensation. Oxford: Clarendon Press.Google Scholar
Planck, M. K. E. L. 1900a. Über eine Verbesserung der Wienschen Spectralgleichung. Verhandlungen der Deutschen Physikalischen Gesellschaft, 2, 202.Google Scholar
Planck, M. K. E. L. 1900b. Zur Theorie des Gesetzes der Energieverteilung im Normalspectrum. Verhandlungen der Deutschen Physikalischen Gesellschaft, 2, 237.Google Scholar
Planck, M. K. E. L. 1917. Über einen Satz der statischen Dynamik und seine Erweiterung in der Quantentheorie. Sitzungberichte der Preussischen Akadademie der Wissenschaften, 324.
Polyakov, A.M. 1968. Microscopic description of critical phenomena. Zh. Eksp. Teor. Fiz., 55, 1026 (Sov. Phys. JETP, 28, 533 (1969)).Google Scholar
Polyakov, A.M. 1969. Properties of long and short range correlations in the critical region. Zh. Eksp. Teor. Fiz., 57, 271 (Sov. Phys. JETP, 30, 151 (1970)).Google Scholar
Punnoose, A. and Finkel'stein, A. M. 2002. Dilute electron gas near the metal–insulator transition: role of valleys in silicon inversion layers. Phys. Rev. Lett., 88, 016802.Google ScholarPubMed
Qian, Z., Vignale, G. and Marinescu, D. C. 2004. Spin mass of an electron liquid. Phys. Rev. Lett., 93, 106601.CrossRefGoogle ScholarPubMed
Raffa, F., Ohno, T., Mali, M., et al. 1998. Isotope dependence of the spin gap in YBa2Cu4O8 as determined by Cu NQR relaxation. Phys. Rev. Lett., 81, 5912.CrossRefGoogle Scholar
Rammer, J. 2007. Quantum Field Theory of Non-equilibrium States. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Randeria, M. and Trivedi, N. 1998. Pairing correlations above Tc and pseudogaps in underdoped cuprates. J. Phys. Chem. Solids, 59, 1754.CrossRefGoogle Scholar
Rayfield, G. W. and Reif, F. 1964. Quantized vortex rings in superfluid helium. Phys. Rev., 136, A1194.CrossRefGoogle Scholar
Richards, P. L. and Anderson, P. W. 1965. Observation of the analog of the AC Josephson effect in superfluid helium. Phys. Rev. Lett., 14, 540.CrossRefGoogle Scholar
Riedel, E. K. and Wegner, F. J. 1974. Effective critical and tricritical exponents. Phys. Rev. B, 9, 294.CrossRefGoogle Scholar
Rohde, M. and Micklitz, H. 1987. Indication of universal behavior of Hall conductivity near the metal–insulator transition in disordered systems. Phys. Rev. B, 36, 7572.CrossRefGoogle ScholarPubMed
Rosenbaum, T. F., Andres, K., Thomas, G. A. and Bhatt, R. N. 1980. Sharp metal–insulator transition in a random solid. Phys. Rev. Lett., 45, 1723.CrossRefGoogle Scholar
Rosenbaum, T. F., Milligan, R. F., Paalanen, M. A., Thomas, G. A., Bhatt, R. N. and Lin, W. 1983. Metal–insulator transition in a doped semiconductor. Phys. Rev. B, 27, 7509.CrossRefGoogle Scholar
Rubio Temprano, D., Mesot, J., Janssen, S., et al. 2000. Large isotope effect on the pseudogap in the high-temperature superconductor HoBa2Cu4O8. Phys. Rev. Lett., 84, 1990.CrossRefGoogle ScholarPubMed
Schreck, F., Khaykovich, L., Corwin, K. L., et al. 2001. QuasipureBose–Einstein condensate immersed in a Fermi sea. Phys. Rev. Lett., 87, 080403.CrossRefGoogle Scholar
Schrieffer, J. R. 1999. Theory of Superconductivity. Reading, Mass.: Pegasus Books.Google Scholar
Schrödinger, E. 1968. Statistical Thermodynamics. Cambridge: Cambridge University Press.Google Scholar
Schroer, B. 1973. Theory of critical phenomena based on the normal-product formalism. Phys. Rev. B, 8, 4200.CrossRefGoogle Scholar
Sebastian, S. E., Harrison, N., Palm, E., et al. 2008. A multi-component Fermi surface in the vortex state of an underdoped high-Tc superconductor. Nature, 454, 200.CrossRefGoogle ScholarPubMed
Seibold, G., Grilli, M. and Lorenzana, J. 2012. Stripes in cuprate superconductors: excitations and dynamic dichotomy. Physica C, 481, 132.CrossRefGoogle Scholar
Serin, B., Reynold, C.A. and Nesbitt, L. B. 1950. Mass dependence of the superconducting transition temperature of mercury. Phys. Rev., 80, 761.CrossRefGoogle Scholar
Shankar, R. 1994. Renormalization-group approach to interacting fermions. Rev. Mod. Phys., 66, 129.CrossRefGoogle Scholar
Shapiro, S., Janus, A. R. and Holly, S. 1964. Effect of microwaves on Josephson currents in superconducting tunneling. Rev. Mod. Phys., 36, 223.CrossRefGoogle Scholar
Simon, M. E. and Varma, C. M. 2002. Detection and implications of a time-reversal breaking state in underdoped cuprates. Phys. Rev. Lett., 89, 247003.CrossRefGoogle Scholar
Sólyom, J. 1979. The Fermi gas model of one-dimensional conductors. Adv. Phys., 28, 201.
Stanley, H. E. 1987. Introduction to Phase Transitions and Critical Phenomena. Oxford: Oxford University Press.Google Scholar
Stupp, H., Hornung, M., Lakner, M., Madel, O. and Löhneysen, H. V. 1993. Possible solution of the conductivity exponent puzzle for the metal-insulator transition in heavily doped uncompensated semiconductors. Phys. Rev. Lett., 71, 2634.
Tallon, J. L. and Loram, J. W. 2001. The doping dependence of T * – what is the real high-Tc phase diagram?Physica C: Superconductivity, 349, 53.CrossRefGoogle Scholar
Thomas, G. A., Ootuka, Y., Kobayashi, S. and Sasaki, W. 1981. Comparison of the specific heat and conductivity of Si: P. Phys. Rev. B, 24, 4886.CrossRefGoogle Scholar
Thomas, G. A., Ootuka, Y., Katsumoto, S., Kobayashi, S. and Sasaki, W. 1982. Evidence for localization effects in compensated semiconductors. Phys. Rev. B, 25, 4288.CrossRefGoogle Scholar
Thompson, C. J. 1972. Mathematical Statistical Mechanics. Princeton: Princeton University Press.Google Scholar
Timusk, T. 2003. The mysterious pseudogap in high temperature superconductors: an infrared view. Solid State Comm., 127(5), 337.CrossRefGoogle Scholar
Timusk, T. and Statt, B. 1999. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys., 62, 61.CrossRefGoogle Scholar
Tinkham, M. 1975. Introduction to Superconductivity. New York: McGraw-Hill.Google Scholar
Tino, G. M., Cataliotti, F. S., Cornell, E. A., Fort, C., Inguscio, M. and Prevedelli, M. 1999. Towards quantum degeneracy of bosonic and fermionic potassium atoms. In Inguscio, M., Stringari, S. and Wieman, C. (eds.), Bose–Einstein Condensation in Atomic Gases, Amsterdam: IOP Press.Google Scholar
Tisza, L. 1938. Transport phenomena in helium II. Nature, 141, 913.CrossRefGoogle Scholar
Tomonaga, S. 1950. Remarks on Bloch's method of sound waves applied to many-fermion problems. Prog. Theor. Phys., 5, 544.CrossRefGoogle Scholar
Tranquada, J. M. 2012. Cuprates get orders to charge. Science, 337, 811.CrossRefGoogle Scholar
Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y. and Uchida, S. 1995. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature, 375, 561.CrossRefGoogle Scholar
Tranquada, J. M., Axe, J. D., Ichikawa, N., Nakamura, Y., Uchida, S. and Nachumi, B. 1996. Neutron-scattering study of stripe-phase order of holes and spins in La1.48Nd0.4Sr0.12CuO4. Phys. Rev. B, 54, 7489.CrossRefGoogle ScholarPubMed
Tranquada, J. M., Axe, J. D., Ichikawa, N., Moodenbaugh, A. R., Nakamura, Y. and Uchida, S. 1997. Coexistence of and competition between, superconductivity and charge-stripe order in La1.6−xNd0.4SrxCuO4. Phys. Rev. Lett., 78, 338.CrossRef
Truscott, A. G., Strecker, K. E., McAlexander, W. I., Partridge, G. B. and Hulet, R. G. 2001. Observation of Fermi pressure in a gas of trapped atoms. Science, 291, 2570.CrossRefGoogle Scholar
Tsuei, C. C. and Kirtley, J. R. 2000. Pairing symmetry in cuprate superconductors. Rev. Mod. Phys., 72, 969.CrossRefGoogle Scholar
Valatin, J. G. 1962. Superconducting electron and nucleon systems. In Lectures in Theoretical Physics, Boulder, Colorado (1961), vol. 4. New York: Interscience.Google Scholar
van der Waals, J. D. 1873. Over de Continuiteit van den Gasen Vloeistoftoestand. Leiden: A. W. Suthoff.Google Scholar
Van Hove, L. 1954. Time-dependent correlations between spins and neutron scattering in ferromagnetic crystals. Phys. Rev., 95, 1374.CrossRefGoogle Scholar
Varma, C. M. 1993. Towards a theory of the marginal Fermi-liquid state. J. Phys. Chem. Solids, 54, 1081.CrossRefGoogle Scholar
Varma, C. M. 1999. Pseudogap phase and the quantum-critical point in copper-oxide metals. Phys. Rev. Lett., 83, 3538.CrossRefGoogle Scholar
Vojta, M. 2009. Lattice symmetry breaking in cuprate superconductors: stripes, nematics and superconductivity. Adv. Phys, 58, 699.CrossRefGoogle Scholar
Vollhardt, D. 1998. Pair correlations in superfluid helium 3. In Kresin, V. (ed.), Pair Correlations in Many-Fermion Systems. New York: Plenum Press.Google Scholar
Wang, Y. and Chubukov, A. 2014. Charge-density-wave order with momentum (2Q, 0) and (0, 2Q) within the spin-fermion model: continuous and discrete symmetry breaking, preemptive composite order and relation to pseudogap in hole-doped cuprates. Phys. Rev. B, 90, 035149.Google Scholar
Webb, R. A., Greytak, T. J., Johnson, R. T. and Wheatley, J. C. 1973. Observation of a second-order phase transition and its associated P − T phase diagram in liquid He3. Phys. Rev. Lett., 30, 210.CrossRefGoogle Scholar
Wegner, F. 1976. Electrons in disordered systems. Scaling near the mobility edge. Zeit. für Phys. B, 25, 327.Google Scholar
Wegner, F. 1979. The mobility edge problem: continuous symmetry and a conjecture. Zeit. für Phys. B, 35, 307.Google Scholar
Wegner, F. J. and Riedel, E.K. 1973. Logarithmic corrections to themolecular-field behavior of critical and tricritical systems. Phys. Rev. B, 7, 248.CrossRefGoogle Scholar
Wheatley, J. C. 1966. Quantum Fluids: Proceedings of the Sussex University Symposium 16–20 August 1965. Amsterdam: North-Holland.Google Scholar
Wheatley, J. C. 1975. Experimental properties of superfluid 3He. Rev. Mod. Phys., 47, 415.CrossRefGoogle Scholar
Widom, B. 1974. The critical point and scaling theory. Physica, 73, 107–118.CrossRefGoogle Scholar
Wigner, E. P. 1957. Relativistic invariance and quantum phenomena. Rev. Mod. Phys., 29, 255.CrossRefGoogle Scholar
Williams, G. V. M., Pringle, D. J. and Tallon, J. L. 2000. Contrasting oxygen and copper isotope effects in YBa2Cu4O8 superconducting and normal states. Phys. Rev. B, 61, R9257.CrossRefGoogle Scholar
Wilson, K. G. 1971a. Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Phys. Rev. B, 4, 3174.CrossRefGoogle Scholar
Wilson, K. G. 1971b. Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Phys. Rev. B, 4, 3184.CrossRefGoogle Scholar
Wilson, K. G. 1972. Feynman-graph expansion for critical exponents. Phys. Rev. Lett., 28, 548.CrossRefGoogle Scholar
Wilson, K. G. and Fisher, M. E. 1972. Critical exponents in 3.99 dimensions. Phys. Rev. Lett., 28, 240.CrossRefGoogle Scholar
Wilson, K. G. and Kogut, J. 1974. The renormalization group and the ∈ expansion. Phys. Rep., 12, 75.CrossRefGoogle Scholar
Wu, M. K., Ashburn, J. R., Torng, C. J., et al. 1987. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure. Phys. Rev. Lett., 58, 908.CrossRefGoogle Scholar
Wu, T., Mayaffre, H., Kramer, S., et al. 2011. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy. Nature, 477, 191.CrossRefGoogle ScholarPubMed
Yamaguchi, M., Nishida, N., Furubayashi, T., Morigaki, K., Ishimoto, H. and Ono, K. 1983. Metal–nonmetal transition and superconductivity in amorphous Si1−x Aux System. Physica B+C, 117-118, 694.CrossRefGoogle Scholar
Yamase, H., Oganesyan, V. and Metzner, W. 2005. Mean-field theory for symmetry-breaking Fermi surface deformations on a square lattice. Phys. Rev. B, 72, 035114.CrossRefGoogle Scholar
Yang, C. N. 1962. Concept of off-diagonal long-range order and the quantum phases of liquid He and of superconductors. Rev. Mod. Phys., 34, 694.CrossRefGoogle Scholar
Yang, C.N. and Lee, T.D. 1952. Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev., 87, 404.CrossRefGoogle Scholar
Zaanen, J. and Gunnarsson, O. 1989. Charged magnetic domain lines and the magnetism of high-Tc oxides. Phys. Rev. B, 40, 7391.CrossRefGoogle ScholarPubMed
Zemansky, M. W. 1968. Heat and Thermodynamics. New York: MacGraw-Hill.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Carlo Di Castro, Università degli Studi di Roma 'La Sapienza', Italy, Roberto Raimondi, Università degli Studi Roma Tre
  • Book: Statistical Mechanics and Applications in Condensed Matter
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139600286.037
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Carlo Di Castro, Università degli Studi di Roma 'La Sapienza', Italy, Roberto Raimondi, Università degli Studi Roma Tre
  • Book: Statistical Mechanics and Applications in Condensed Matter
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139600286.037
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Carlo Di Castro, Università degli Studi di Roma 'La Sapienza', Italy, Roberto Raimondi, Università degli Studi Roma Tre
  • Book: Statistical Mechanics and Applications in Condensed Matter
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139600286.037
Available formats
×