Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T11:35:49.668Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2014

Giampiero Esposito
Affiliation:
Università degli Studi di Napoli 'Federico II'
Giuseppe Marmo
Affiliation:
Università degli Studi di Napoli 'Federico II'
Gennaro Miele
Affiliation:
Università degli Studi di Napoli 'Federico II'
George Sudarshan
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asorey, M., Ibort, A. and Marmo, G. (2005) Global theory of quantum boundary conditions and topology change, Int. J. Mod. Phys. A20, 1001–26.Google Scholar
Balachandra, A. P., Marmo, G., Skagerstam, B. S. and Stern, A. 1983) Gauge Symmetries and Fibre Bundles. Applications to Particle Dynamics (Berlin, Springer).Google Scholar
Balachandran, A. P., Jo, S. G. and Marmo, G. (2010) Group Theory and Hopf Algebras. Lectures for Physicists (Singapore, World Scientific).CrossRefGoogle Scholar
Balmer, J. J. (1885) Notiz über die spectrallinien des wasserstoffs, Verh. d. Naturf. Ges. 7, 548–60.Google Scholar
Bergmann, P. G. (1949) Non-linear field theories, Phys. Rev. 75, 680–5.CrossRefGoogle Scholar
Bergmann, P. G. and Brunings, J. H. M. (1949) Non-linear field theories II. Canonical equations and quantization, Rev. Mod. Phys. 21, 480–7.CrossRefGoogle Scholar
Bimonte, G. and Musto, R. (2003a) Comment on quantitative wave-particle duality in multibeam interferometers, Phys. Rev. A67, 066101.CrossRefGoogle Scholar
Bimonte, G. and Musto, R. (2003b) Interferometric duality in multibeam experiments, J. Phys. A36, 11481–502.Google Scholar
Bohr, N. (1913) On the constitution of atoms and molecules, in The Old Quantum Theory, ed. D., Ter Haar (Glasgow, Pergamon Press).Google Scholar
Born, M. and Wolf, E. (1959) Principles of Optics (London, Pergamon Press).Google Scholar
Born, M. (1969) Atomic Physics (London, Blackie & Son).Google Scholar
Bose, S. N. (1924) Plancks gesetz und lichtquantenhypothese, Z. Phys. 26, 178–81.CrossRefGoogle Scholar
Brillouin, L. (1926a) La mécanique ondulatoire de Schrödinger; une méthode générale de resolution par approximations successives, Comptes Rendus 183, 24–6.Google Scholar
Brillouin, L. (1926b) Remarques sur la mécanique ondulatoire, J. Phys. Radium 7, 353–68.CrossRefGoogle Scholar
Cartan, E. (1938) La Théorie des Spineurs I & II (Paris, Hermann).Google Scholar
Cartier, P. and DeWitt-Morette, C. (2000) Functional integration, J. Math. Phys. 41, 4154–87.CrossRefGoogle Scholar
Chaturvedi, S., Ercolessi, E., Marmo, G., et al. (2007) Ray space ‘Riccati’ evolution and geometric phases for N-level quantum systems, Pramana 69, 317–27.CrossRefGoogle Scholar
Chevalley, C. (1946) Theory of Lie Groups (Princeton, Princeton University Press).Google Scholar
Cohen-Tannoudji, C., Diu, B. and Laloe, F. (1977a) Quantum Mechanics. I (New York, Wiley).Google Scholar
Cohen-Tannoudji, C., Diu, B. and Laloe, F. (1977b) Quantum Mechanics. II (New York, Wiley).Google Scholar
Compton, A. H. (1923a) A quantum theory of the scattering of X-rays by light elements, Phys. Rev. 21, 483–502.CrossRefGoogle Scholar
Compton, A.E. (1923b) The spectrum of scattered X-rays, Phys. Rev. 22, 409–13.CrossRefGoogle Scholar
Curie, P. (1894) Sur la symmetrie dans les phènomènes physiques. Symmetrie d'un champ electrique et d'un champ magnetique. J. Phys. (Paris) 3.Google Scholar
Davisson, C. and Germer, L. H. (1927) Diffraction of electrons by a crystal of nickel, Phys. Rev. 30, 705–40.CrossRefGoogle Scholar
de Broglie, L. (1923) Waves and quanta, Nature 112, 540.CrossRefGoogle Scholar
de Ritis, R., Marmo, G. and Preziosi, B. (1999) A new look at relativity transformations, Gen. Rel. Grav. 31, 1501–17.CrossRefGoogle Scholar
DeWitt, B. S. (2003) The Global Approach to Quantum Field Theory, International Series of Monographs on Physics 114 (Oxford, Clarendon Press).Google Scholar
Dirac, P. A. M. (1926) The fundamental equations of quantum mechanics, Proc. R. Soc. Lond. A109, 642–53.Google Scholar
Dirac, P. A. M. (1928) The quantum theory of the electron, Proc. R. Soc. Lond. A117, 610–24.Google Scholar
Dirac, P. A. M. (1933) The Lagrangian in quantum mechanics, Phys. Z. USSR 3, 64–72.Google Scholar
Dirac, P. A. M. (1958) The Principles of Quantum Mechanics (Oxford, Clarendon Press).Google Scholar
Dirac, P. A. M. (1964) Lectures on Quantum Mechanics (Belfer Graduate School of Science, New York, Yeshiva University).Google Scholar
DuBridge, L. A. (1933) Theory of the energy distribution of photoelectrons, Phys. Rev. 43, 727–41.CrossRefGoogle Scholar
Dyson, F. J. (1949) The radiation theories of Tomonaga, Schwinger and Feynman, Phys. Rev. 75, 486–502.CrossRefGoogle Scholar
Ehrenfest, P. (1927) Bemerkung über die angenäherte gültigkeit der klassischen mechanik innerhalb der quantenmechanik, Z. Phys. 45, 455–7.CrossRefGoogle Scholar
Einstein, A. (1905) On a heuristic point of view about the creation and conversion of light, in The Old Quantum Theory, ed. D., Ter Haar (Glasgow, Pergamon Press).Google Scholar
Einstein, A. (1917) On the quantum theory of radiation, in Sources of Quantum Mechanics, ed. B. L., van der Waerden (New York, Dover).Google Scholar
Elsasser, W. (1925) Bemerkungen zur quantenmechanik freier elektrone, Naturwiss enschafter 13, 711.CrossRefGoogle Scholar
Ercolessi, E., Marmo, G. and Morandi, G. (2010) From the equations of motion to the canonical commutation relations, Riv. Nuovo Cim. 33, 401–590.Google Scholar
Esposito, G., Marmo, G. and Sudarshan, E. C. G. (2004) From Classical to Quantum Mechanics (Cambridge, Cambridge University Press).CrossRefGoogle Scholar
Esteve, J. G., Falceto, F. and Garcia-Canal, C. (2010) Generalization of the Hellmann–Feynman theorem, Phys. Lett. A374, 819–22.Google Scholar
Fermi, E. (1932) Quantum theory of radiation, Rev. Mod. Phys. 4, 87–132.CrossRefGoogle Scholar
Fermi, E. (1950) Nuclear Physics (Chicago, The University of Chicago Press).Google Scholar
Feynman, R. P. (1939) Forces in molecules, Phys. Rev. 56, 340–3.CrossRefGoogle Scholar
Feynman, R. P. (1948) Space–time approach to non-relativistic quantum mechanics, Rev. Mod. Phys. 20, 367–87.CrossRefGoogle Scholar
Franck, J. and Hertz, G. (1914) Über zusammenstösse zwischen elektronen und den molekülen des quecksilberdampfes und die ionisierungsspannung desselben, Verh. d. Deutsch. Phys. Ges. 16, 457–67.Google Scholar
Gamow, G. (1928) Zur Quantentheorie des Atomkernes, Z. Phys. 51, 204–12.CrossRefGoogle Scholar
Gamow, G. (1946) Expanding universe and the origin of elements, Phys. Rev. 70, 572–3.CrossRefGoogle Scholar
Gazeau, J. P. (2009) Coherent States in Quantum Physics (New York, Wiley).CrossRefGoogle Scholar
Gerlach, W. and Stern, O. (1922) Der experimentelle nachweiss der richtungsquantelung im magnetfeld, Z. Phys. 9, 349–52.CrossRefGoogle Scholar
Glauber, R. J. (1963) Coherent and incoherent states of the radiation field, Phys. Rev. 131, 2766–88.CrossRefGoogle Scholar
Glimme, J. and Jaffe, A. (1987) Quantum Physics: A Functional Integral Point of View (Berlin, Springer).CrossRefGoogle Scholar
Grabowski, J., Kus, M. and Marmo, G. (2011) Entanglement for multipartite systems of indistinguishable particles, J. Phys. A44, 175302.Google Scholar
Gradshteyn, I. S. and Ryzhik, I. M. (1965) Tables of Integrals, Series and Products (New York, Academic Press).Google Scholar
Grechko, L. G., Sugarov, V. I. and Tomasevich, O. F. (1977) Problems in Theoretical Physics (Moscow, MIR).Google Scholar
Green, H. S. (1953) A generalized method of field quantization, Phys. Rev. 90, 270–3.CrossRefGoogle Scholar
Haas, A. E. (1910a) Sitz. Ber. der Wiener Akad Abt IIa, 119–344.
Haas, A. E. (1910b) Uber eine neue theoretische methode zur bestimmung des elektrischen elementar quantums und des halbmessers des wasserstoffatoms, Phys. Z. 11, 537–8.Google Scholar
Haas, A. E. (1925) Introduction to Theoretical Physics (London, Constable & Company).Google Scholar
Hawking, S. W. (1974) Black hole explosions?, Nature 248, 30–1.CrossRefGoogle Scholar
Hawking, S. W. (1975) Particle creation by black holes, Commun. Math. Phys. 43, 199–220.CrossRefGoogle Scholar
Heisenberg, W. (1925) Quantum-theoretical re-interpretation of kinematic and mechanical relations, Z. Phys. 33, 879–93.Google Scholar
Herzberg, G. (1944) Atomic Spectra and Atomic Structure (New York, Dover).Google Scholar
Holland, P. R. (1993) The Quantum Theory of Motion (Cambridge, Cambridge University Press).CrossRefGoogle Scholar
Holton, G. (2000) Millikan's struggle with theory, Europhys. News 31 No 3, 12–14.CrossRefGoogle Scholar
Hörmander, L. (1983) The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis (New York, Springer).Google Scholar
Hughes, A. L. and DuBridge, L. A. (1932) Photoelectric Phenomena (New York, McGraw-Hill).Google Scholar
Hunziker, W. (1974) Scattering in classical mechanics, in Scattering Theory in Mathematical Physics, eds. J. A., La Vita and J. P., Marchand, 79–96.Google Scholar
Ibort, A., Man'ko, V. I., Marmo, G., Simoni, A. and Ventriglia, F. (2009) An introduction to the tomographic picture of quantum mechanics, Phys. Scripta 79, 065013 (2009).CrossRefGoogle Scholar
Ibort, A., Man'ko, V. I., Marmo, G., Simoni, A. and Ventriglia, F. (2010) On the tomographic picture of quantum mechanics, Phys. Lett. A374, 2614–17.Google Scholar
Ibort, A., Man'ko, V. I., Marmo, G., Simoni, A. and Ventriglia, F. (2011) A pedagogical presentation of a C*-algebraic approach to quantum tomography, Phys. Scripta 84, 065006 (2011).CrossRefGoogle Scholar
Jackson, J. D. (1975) Classical Electrodynamics (New York, Wiley).Google Scholar
Jeans, J. H. (1905) On the partition of energy between matter and aether, Phil. Mag. 10, 91–8.CrossRefGoogle Scholar
Jeffreys, H. (1923) On certain approximate solutions of linear differential equations of the second order, Proc. London Math. Soc. 23, 428–36.Google Scholar
Jordan, P., von Neumann, J. and Wigner, E. P. (1934) On the algebraic generalization of the quantum mechanical formalism, Ann. Math. 34, 29–64.Google Scholar
Kirchhoff, G. (1860) On the relation between the radiating and absorbing powers of different bodies for light and heat, Phil. Mag. (4) 20, 1–21.CrossRefGoogle Scholar
Klauder, J. R. and Skagerstam, B. S. (eds.) (1985) Coherent States. Applications in Physics and Mathematical Physics (Singapore, World Scientific).CrossRef
Kramers, H. A. (1926) Wellenmechanik und halbzahlige Quantisierung, Z. Phys. 39, 828–40.CrossRefGoogle Scholar
Landau, L. D. (1930) Diamagnetismus der metalle, Z. Phys. 64, 629–37.CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. (1958) Course of Theoretical Physics. III: Quantum Mechanics, Non-Relativistic Theory (Oxford, Pergamon Press).Google Scholar
Lesgourgues, J., Mangano, G., Miele, G. and Pastor, S. (2013) Neutrino Cosmology (Cambridge, Cambridge University Press).CrossRefGoogle Scholar
Lim, Y. K. (1998) Problems and Solutions on Quantum Mechanics (Singapore, World Scientific).CrossRefGoogle Scholar
Lippmann, B. A. and Schwinger, J. (1950) Variational principles for scattering processes, I, Phys. Rev. 79, 469–80.Google Scholar
Mandel, L. (1963) Intensity fluctuations of partially polarized light, Proc. Phys. Soc. (London) 81, 1104–14.CrossRefGoogle Scholar
Mandel, L., Sudarshan, E. C. G. and Wolf, E. (1964) Theory of photoelectric detection of light fluctuations, Proc. Phys. Soc. (London) 84, 435–44.CrossRefGoogle Scholar
Man'ko, M. A., Man'ko, V. I., Marmo, G., Simoni, A. and Ventriglia, F. (2013) Introduction to tomography, classical and quantum, Nuovo Cimento 36C, 163–82.Google Scholar
Marmo, G. and Mukunda, N. (1986) Symmetries and constants of the motion in the Lagrangian formalism on TQ: beyond point transformations, Nuovo Cimento B92, 1–12.Google Scholar
Marmo, G. and Preziosi, B. (2006) The structure of space-time: relativity groups, Int. J. Geom. Methods Mod. Phys. 3, 591–603.CrossRefGoogle Scholar
Marmo, G. and Volkert, G. F. (2010) Geometrical description of quantum mechanics. Transformations and dynamics, Phys. Scripta 82, 038117.CrossRefGoogle Scholar
Merli, P. G., Missiroli, G. F. and Pozzi, G. (1974) Electron interferometry with the Elmiskop 101 electron microscope, J. Phys. E7, 729–33.Google Scholar
Messiah, A. (2014) Quantum Mechanics (New York, Dover).Google Scholar
Millikan, R. A. (1916) A direct photoelectric determination of Planck's h, Phys. Rev. 7, 355–88.CrossRefGoogle Scholar
Montgomery, D. and Zippin, L. (1940) Topological transformation groups, Ann. Math. 41, 788–91.CrossRefGoogle Scholar
Montgomery, D. and Zippin, L. (1955) Topological Transformation Groups (New York, Interscience).Google Scholar
Montonen, C. and Olive, D. I. (1977) Magnetic monopoles as gauge particles?, Phys. Lett. B72, 117–20.Google Scholar
Morandi, G., Ferrario, C., Lo Vecchio, G., Marmo, G. and Rubano, C. (1990) The inverse problem in the calculus of variations and the geometry of the tangent bundle, Phys. Rep. 188, 147–284.CrossRefGoogle Scholar
Morette, C. (1951) On the definition and approximation of Feynman's path integral, Phys. Rev. 81, 848–52.CrossRefGoogle Scholar
Moyal, J. E. (1949) Quantum mechanics as a statistical theory, Proc. Camb. Phil. Soc. 45, 99–124.CrossRefGoogle Scholar
Parisi, G. (2001) Planck's legacy to statistical mechanics, COND-MAT 0101293 (preprint).
Paschen, F. and Back, E. (1912) Normale und anomale Zeemaneffekte, Ann. Phys. 39, 897–932.Google Scholar
Paschen, F. and Back, E. (1913) Normale und anomale Zeemaneffekte, Nachtrag, Ann. Phys. 40, 960–70.Google Scholar
Penrose, R. and Rindler, W. (1984) Spinors and Space-time. Two-Spinor Calculus and Relativistic Fields (Cambridge, Cambridge University Press).CrossRefGoogle Scholar
Penzias, A. and Wilson, R. W. (1965) A measurement of excess antenna temperature at 4080-Mc/s, Astrophys. J. 142, 419–21.CrossRefGoogle Scholar
Perelomov, A. M. (1986) Generalized Coherent States and Their Applications (Berlin, Springer-Verlag).CrossRefGoogle Scholar
Phipps, T. E. and Taylor, J. B. (1927) The magnetic moment of the hydrogen atom, Phys. Rev. 29, 309–20.CrossRefGoogle Scholar
Planck, M. (1900) On the theory of the energy distribution law of the normal spectrum, Verh. d. Deutsch. Phys. Ges. 2, 237–45.Google Scholar
Radon, J. (1917) über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Sächs. Akad. Wiss. Leipzig, Math. Nat. Kl. 69, 262–77.Google Scholar
Rayleigh, J. W. S. (1900) Remarks upon the law of complete radiation, Phil. Mag. 49, 539–40.CrossRefGoogle Scholar
Rayleigh, J. W. S. (1912) On the propagation of waves through a stratified medium, with special reference to the question of reflection, Proc. R. Soc. London A86, 207–26.Google Scholar
Reed, M. and Simon, B. (1975) Methods of Modern Mathematical Physics. II: Fourier Analysis and Self-Adjointness (New York, Academic Press).Google Scholar
Reed, M. and Simon, B. (1979) Methods of Modern Mathematical Physics. III: Scattering Theory (New York, Academic Press).Google Scholar
Robertson, H. P. (1930) A general formulation of the uncertainty principle and its classical interpretation, Phys. Rev. 35, 667.Google Scholar
Rollnik, H. (1956) Streumaxima und gebundene Zustande, Z. Phys. 145, 639–53.CrossRefGoogle Scholar
Scully, M. O., Englert, B. G. and Walther, H. (1991) Quantum optical tests of complementarity, Nature 351, 111–16.CrossRefGoogle Scholar
Smithey, D. T., Beck, M., Raymer, M. G. and Faridani, A. (1993) Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum, Phys. Rev. Lett. 70, 1244–7.CrossRefGoogle ScholarPubMed
Smoot, G. F., Bennett, C.L, Kagut, A. et al. (1992) Structure in the COBE differential microwave radiometer first year maps, Astrophys. J. 396, L1–L5.CrossRefGoogle Scholar
Sommerfeld, A. and Debye, P. (1913) Theorie des lichtelektrischen effektes vom staudpunkt des wirkumgsquantums, Ann. der Phys. 41, 873–930.Google Scholar
Spergel, D. N., Verde, L., Peiris, H. V., et al. (2003) First year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters, Astrophys. J. Suppl. 148, 175–94.CrossRefGoogle Scholar
Squires, G. L. (1995) Problems in Quantum Mechanics (Cambridge, Cambridge University Press).CrossRefGoogle Scholar
Stark, J. (1914) Beobachtungen über den effekt des elektrischen feldes auf spektrallinien, Ann. Phys. 43, 965–82.Google Scholar
Stewart, B. (1858) An account of some experiments on radiant heat, involving an extension of Prévost's theory of exchanges, Trans. R. Soc. Edin. 22, 1–20.Google Scholar
Sudarshan, E. C. G. (1963) Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams, Phys. Rev. Lett. 10, 277–9.CrossRefGoogle Scholar
Sudarshan, E. C. G. and Rothman, T. (1991) The two-slit interferometer re-examined, Am. J. Phys. 59, 592–5.CrossRefGoogle Scholar
Sudarshan, E. C. G., Chiu, C. B. and Bhamathi, G. (1995) Generalized uncertainty relations and characteristic invariants for the multimode states, Phys. Rev. A52, 43–54.Google Scholar
Syad, T. A., Antoine, J. P. and Gazeau, J. P. (2000) Coherent States, Wavelets and Their Generalizations, Graduate Texts in Contemporary Physics (New York, Springer-Verlag).Google Scholar
Ter Haar, D. (1967) The Old Quantum Theory (Glasgow, Pergamon Press).Google Scholar
Thirring, W. (1997) Classical Mathematical Physics. Dynamical Systems and Field Theories, 3rd Edition (New York, Springer-Verlag).CrossRefGoogle Scholar
Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T. and Ezawa, H. (1989) Demonstration of single-electron buildup of an interference pattern, Am. J. Phys. 57, 117–20.CrossRefGoogle Scholar
Uhlenbeck, G. E. and Goudsmit, S. (1926) Spinning electrons and the structure of spectra, Nature 117, 264–5.CrossRefGoogle Scholar
Von Neumann, J. (1955) Mathematical Foundations of Quantum Mechanics (Princeton, Princeton University Press).Google Scholar
Wentzel, G. (1926) Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik, Z. Phys. 38, 518–29.CrossRefGoogle Scholar
Weyl, H. (1931) The Theory of Groups and Quantum Mechanics (New York, Dover).Google Scholar
Wheeler, J. A. and Zurek, W. H. (1983) Quantum Theory and Measurement (Princeton, Princeton University Press).CrossRefGoogle Scholar
Wien, W. (1896) Über die energieverteilung im emissionsspektrum eines schwarzen körpers, Ann. Phys. 58, 662–9.Google Scholar
Wiener, N. (1930) Generalized harmonic analysis, Acta Math. 55, 117–258.CrossRefGoogle Scholar
Wightman, A. S., ed. (1995). Wigner Collected Works, vol. 6, part 4, (Berlin, Springer).
Wightman, A. S. (1996) How it was learned that quantized fields are operator-valued distributions, Fortschr. Phys. 44, 143–78.CrossRefGoogle Scholar
Wigner, E. P. (1959) Group Theory and its Application to the Quantum Mechanics of Atomic Spectra (New York, Academic Press).Google Scholar
Willmore, T. J. (1960) The definition of Lie derivative, Proc. Edin. Math. Soc. 12, 27–9.CrossRefGoogle Scholar
Wintner, A. (1947) The unboundedness of quantum-mechanical matrices, Phys. Rev. 71, 738–9.CrossRefGoogle Scholar
Witten, E. (1997) Duality, spacetime and quantum mechanics, Phys. Today May, 28–33.Google Scholar
Zeeman, P. (1897a) On the influence of magnetism on the nature of the light emitted by a substance, Phil. Mag. 43, 226–39.CrossRefGoogle Scholar
Zeeman, P. (1897b) Doublets and triplets in the spectrum produced by external magnetic forces, Phil. Mag. 44, 55–60, 255–9.Google Scholar
Zhang, W. M., Feng, D. H. and Gilmore, R. (1990) Coherent states: theory and some applications, Rev. Mod. Phys. 26, 867.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Giampiero Esposito, Università degli Studi di Napoli 'Federico II', Giuseppe Marmo, Università degli Studi di Napoli 'Federico II', Gennaro Miele, Università degli Studi di Napoli 'Federico II', George Sudarshan, University of Texas, Austin
  • Book: Advanced Concepts in Quantum Mechanics
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139875950.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Giampiero Esposito, Università degli Studi di Napoli 'Federico II', Giuseppe Marmo, Università degli Studi di Napoli 'Federico II', Gennaro Miele, Università degli Studi di Napoli 'Federico II', George Sudarshan, University of Texas, Austin
  • Book: Advanced Concepts in Quantum Mechanics
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139875950.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Giampiero Esposito, Università degli Studi di Napoli 'Federico II', Giuseppe Marmo, Università degli Studi di Napoli 'Federico II', Gennaro Miele, Università degli Studi di Napoli 'Federico II', George Sudarshan, University of Texas, Austin
  • Book: Advanced Concepts in Quantum Mechanics
  • Online publication: 05 November 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139875950.020
Available formats
×