Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-swr86 Total loading time: 0 Render date: 2024-07-19T17:36:56.727Z Has data issue: false hasContentIssue false

7 - Stratospheric Ozone Depletion

from PART III - WHAT IS THE PRESENT STATE OF KNOWLEDGE?

Published online by Cambridge University Press:  05 February 2015

David P. Stone
Affiliation:
Former Chair of the Arctic Monitoring and Assessment Programme (AMAP)
Get access

Summary

By three methods we may learn wisdom: First by reflection, which is noblest;

Second by imitation, which is easiest;

And third by experience, which is bitterest.

Confucius, The Analects

When scientists in North America, Europe and the Soviet Union were beginning to detect and understand the causes of freshwater and terrestrial acidification, another potentially more serious problem (especially for the Arctic) was slowly being recognized: The stratospheric ozone layer that protects us all from the harmful effects of solar ultraviolet light was thinning.

Before we go further into this part of the Arctic Messenger's story, we need a basic understanding of the behaviour and nature of oxygen and ozone in the stratosphere. Oxygen can exist in three forms. Most commonly, it occurs as a molecule made up of two oxygen atoms (O2). However, it can also occur alone as a single atom (atomic oxygen) or as a molecule of three oxygen atoms (O3). This is ozone. In the stratosphere, highly energetic shortwave ultraviolet radiation from the sun can break O2 molecules apart into lone oxygen atoms. When one of these free oxygen atoms bumps into an intact O2 molecule, it can join up with the molecule to form ozone. However, a cascade of chemical and physical processes involving solar radiation and a number of naturally occurring compounds containing nitrogen, hydrogen and chlorine also continually break down stratospheric ozone. Therefore, the amount of stratospheric ozone present at any moment in time is the result of a dynamic process of production and removal.

Why Is Stratospheric Ozone Important?

Stratospheric ozone absorbs solar ultraviolet radiation (UV), which warms the stratosphere. More importantly, this absorption acts as a sort of filter. The ozone allows only a relatively small proportion of the highly energetic UV radiation to reach the troposphere below.

Type
Chapter
Information
The Changing Arctic Environment
The Arctic Messenger
, pp. 85 - 105
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×