Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-11T09:18:48.878Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 April 2016

Teo Mora
Affiliation:
University of Genoa
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, W.W., Boyle, A., Loustaunau, P., Transitivity for Weak and Strong Gröbner Bases, J. Symb. Comp. 15 (1993), 49–65.Google Scholar
Alonso, M. E., Castro-Jimènez, F. J., Hauser, H., Encoding Algebraic Power Series arxiv.ong/pdf/1403.4104v1.pdf
Alonso, M. E., Luengo, I., Raimondo, M., An Algorithm on Quasi-Ordinary Polynomials, L. N. Comp. Sci. 357 (1989), 59–73, Springer.Google Scholar
Anick, D. J., On the Homology of Associative Algebras, Trans. A.M.S. 296 (1986), 641–659.Google Scholar
Apel, J., Gröbnerbasen in Nichetkommutativen Algebren und ihre Anwendung, Dissertation, Leipzig (1988).
Apel, J., Division of Entire Functions by Polynomial Ideals, L. N. Comp. Sci. 948 (1995), 82–958, Springer.Google Scholar
Apel, J., The Theory of Involuting Divisions and an Application to Hilbert Function Computations, J. Symb. Comp. 25 (1998), 683–704.Google Scholar
Apel, J., Computational Ideal Theory in Finitely Generated Extension Rings, T.C.S. 224 (2000), 1–33.Google Scholar
Apel, J., Lassner, W., An algorithm for calculations in enveloping fields of Lie algebras, In: Proc. Int. Conf. on Comp. Algebra and Its Appl. in Theoretical Physics, JINR D11-85-792, Dubna (1985), 231–241.
Apel, J., Lassner, W., Computation and Simplification in Lie Fields, L. N. Comp. Sci. 378 (1987), 468–478, SpringerGoogle Scholar
Apel, J., Stückrad, J., Tworzewski, P., Winiarski, T., Reduction of Everywhere Convergent Power Series with Respect to Gröbner Bases, J. Pure Appl. Algebra 110 (1996), 113–129.Google Scholar
Apel, J., Stückrad, J., Tworzewski, P., Winiarski, T., Properties of Entire Functions over Polynomial Rings via Gröbner Bases, J. AAECC 14 (2003), 1–10.Google Scholar
Artin, M., Schelter, W., Graded Algebras of Global Dimension 3, Adv. Math. 66 (1987), 171–216.Google Scholar
Aschenbrenner, M., Hillar, C. J.Finite Generation of Symmetric Ideals, Trans. A.M.S. 359 (2007), 5171–5192, and Trans. A.M.S. 361 (2009), 5627.Google Scholar
Aschenbrenner, M., Hillar, C. J.An Algorithm for Finding Symmetric Gröbner Bases in Infinite Dimensional Ring, Proc. ISSAC'08 (2008), 117–123, ACM.Google Scholar
Assi, A., Standard Bases, Criticals Tropisms and Flatness, J. AAECC 4 (1993), 197–215.Google Scholar
Bächler, T., Gerdt, V., Lange-Hegermann, M., Robertz, D., Thomas Decomposition of Algebraic and Differentil Systems, J. Symb. Comp. 47 (2012), 1223–1266.Google Scholar
Bardet, M., Étude des systèmes algébriques sutdterminés. Applications aux codes correcteures et à la cryptographie, These de Doctorat, Paris6 (2004).
Barkee, B., Gröbner Bases. The Ancient Secret Mystic Power of the Algu Compubraicus. A Revelation Whose Simplicity Will Make Ladies Swoon and Grown Men Cry, Cornell University MSI Technical Report (1988).
Bayer, D., The Division Algorithm and the Hilbert Scheme, PhD Thesis, Harvard (1981).
Becker, T., Standard Bases and Some Computations in Rings of Power Series, J. Symb. Comp. 10 (1990), 165–178.Google Scholar
Becker, T., Standard Bases in Power Series Rings: Uniqueness and Superfluous Criterial Pairs, J. Symb. Comp. 15 (1993), 251–265.Google Scholar
Becker, T., Weispfenning, V., Gröbner Bases, Springer (1982).
Bergman, G. H., The Diamond Lemma for Ring Theory, Adv. Math. 29 (1978), 178–218.Google Scholar
Bigatti, A., Aspetti combinatorici e computazionali dell'Algebra Commutative, PhD Thesis, Genova (1995).
Bigatti, A., Upper Bounds for the Betti Numbers of a Given Hilbert Function, Communications in Algebra 21 (1993), 2317–2334.Google Scholar
Borges, M. A., Borges, M., Gröbner Bases Property on Elimination Ideal in the Noncommutative Case. In: Buchberger, B., Winkler, F. (Eds.), Gröbner Bases and Application (1998), Cambridge University Press, 323–337.
Borges, M. A., Borges, M., Castellanos, J.A., Martinez, E., The Symmetric Groups Given by a Gröbner Basis, J. Pure Appl. Algebra 207 (2006), 149–154.Google Scholar
Borges, M. A., Estrada, M. V., Gröbner Bases and G-presentations of Finite Generated Monoids (1995), preprint.
Borodin, A., On Relating Time and Space to Size and Depth, SIAM Journal on Computing 6 (1977), 733.Google Scholar
Borodin, A., Cook, S., Pippenger, N.Parallel Computation for Well-endowed Rings and Space-bounded Probabilistic Machines, Information and Control 58 (1983), 113–136.Google Scholar
Bouillet, F., Lazard, D., Ollivier, F., Petitot, M., Representation for the Radical of a Finitely Generated Differential Ideal (1996), Proc. ISSAC'95 (1995), 158–166, ACM.
Buchberger, B.Miscellaneous Results on Gröbner Bases for Polynomial Ideals II. Technical Report 83/1, University of Delaware, Department of Computer and Information Sciences, 1983. p. 31.
Bueso, J.L., Castro, F. J., Gomez Torrecilla, J., Lobillo, F. J., An Introduction to Effective Calculus in Quantum Groups. In : Caenepeel, S., Verschoren, A. (Eds.) Rings, Hopf Algebras and Brauer Groups, M. Decker (1998), 55–83.
Cartan, E., Sur l'intégration des systèmes d’équations aux différentielles totals, Ann. Éc. Norm. 3e série 18 (1901), 241.Google Scholar
Cartan, E., Sur la structure des groupes infinis de transformations, Ann. Éc. Norm. 3e série 21 (1904), 153.Google Scholar
Cartan, E., Sur les systèmes en involution d’équations aux dérivées partielles du second ordre à une fonction inconnue de trois variables indépendentes, Bull. Soc. Math. 39 (1920), 356.Google Scholar
Ceria, M., Roggero, M., Term-ordering Free Involutive Bases, J. Symb. Comp. 68 (2015), 87–108. http://arxiv.org/pdf/1310.0916v1.pdfGoogle Scholar
Chyzak, F., Salvy, B., Non-commutative Elimination in Ore Algebras Proves Multivariate Identities, J. Symb. Comp. 26 (1998), 187–227.Google Scholar
Cioffi, F., Roggero, M., Flat Families by Strongly Stable Ideals and a Generalization of Gröbner Bases, J. Symb. Comp. 46 (2011), 1070–1084.Google Scholar
Cohn, P. M., Noncommutative Unique Factorization Domains, Trans. A.M.S. 109 (1963), 313–331.Google Scholar
Cohn, P. M., Ring with a Weak Algorithm, Trans. A.M.S. 109 (1963), 332–356.Google Scholar
Cojocaru, S., Ufnarovski, V., Noncommutative Gröbner Basis, Hilbert Series, Anick's Resolution and BERGMAN under MS-DOS, Computer Science Journal of Moldova 3 (1995), 24–39.Google Scholar
Deery, T., Rev-lex Segment Ideals and Minimal Betti Numbers, Queens Papers in Pure and Applied Algebra, The Curves Seminar, vol. X (1999).
de Graaf, W. A., Wisliceny, J., Constructing Bases of Finitely Presented Lie Algebras using Gröbner Bases in Free Algebras, Proc. ISSAC'99 (1999), 37–44, ACM.
Delassus, E., Extension du théorème de Cauchy aux systèmes les plus généraux d’équations aux dérivées partielles, Ann. Éc. Norm. 3e série 13 (1896), 421–467.Google Scholar
Delassus, E., Sur les systèmes algébriques et leurs relations avec certains systèmes d'equations aux dérivées partielles, Ann. Éc. Norm. 3e série 14 (1897), 21–44.Google Scholar
Delassus, E., Sur les invariants des systèmes différentiels, Ann. Éc. Norm. 3e série 25 (1908), 255–318.Google Scholar
Drach, J., Essai sur la théorie général de l'integration et sur la classification des Trascendentes, Ann. Éc. Norm. 3e série 15 (1898), 245–384.Google Scholar
Dubé, T.W., The Structure of Polynomial Ideals and Gröbner Bases. SIAM J. Comput., 19(4) (2006), 750–773.Google Scholar
Eder, C., Perry, J., F5C: A Variant of Faugère's F5 Algorithm with Reduced Gröbner Bases, J. Symb. Comp. 45 (2010), 1442–1450.Google Scholar
Eder, C., Perry, J., Signature-based Algorithms to Compute Gröbner Bases, Proc. ISSAC'11 (2011), 99–106, ACM.
Eisenbud, D., Peeva, I., Sturmfels, B., Non-commutative Gröbner Bases for Commutative Algebras, Proc. A.M.S. 126 (1998) 687–691.Google Scholar
Farkas, D. R., Feustel, C. D., Green, E. L.Synergy in the Theories of Gröbner Bases and Path Algebras, Can. J. Math. 45 (1993), 727–739.Google Scholar
Faugère, J.-C., A New Efficient Algorithm for Computating Gröbner Bases (F4), J. Pure Appl. Algebra 139 (1999), 61–88.Google Scholar
Faugère, J.-C., A New Efficient Algorithm for Computating Gröbner Bases without Reduction to Zero (F5), Proc. ISSAC 2002 (2002), 75–83, ACM.Google Scholar
Galligo, A., Some Algorithmic Questions on Ideals of Differential Operators, L. N. Comp. Sci. 204 (1985), 413–421, Springer.Google Scholar
Gateva-Ivanova, T., Noetherian Properties and Growth of Some Associative Algebras, Progress in Mathematics 94 (1990), 143–158, Birkhäuser.Google Scholar
Gateva-Ivanova, T., On the Noetherianity of Some Associative Finitely Presented Algebras, J. Algebra 138 (1991), 13–35.Google Scholar
Gateva-Ivanova, T., Noetherian Properties of Skew Polynomial Rings with Binomial Relations, Trans. A.M.S. 345 (1994), 203–219.Google Scholar
Gateva-Ivanova, T., Skew Polynomial Rings with Binomial Relations, J. Algebra 185 (1996), 710–753.Google Scholar
Giesbrecht, M., Reid, G., Zhan, Y., Non-Commutative Grobner Bases in Poincare–Birkhoff–Witt Extension, The Ontario Research Centre for Computer Algebra, ORCCA Technical Report TR-03-02 (2003)
Gerdt, V. P., Involutive algorithms for computing Gröbner bases. In Computational Commutative and Non-Commutative Algebraic Geometry, Cojocaru, S., Pfister, G., Ufnarovski, V. (Eds.), NATO Science Series, IOS Press, 2005, pp. 199–225.
Gerdt, V. P., Blinkov, Y. A., Involutive Bases of Polynomial Ideals, Math. Comp. Simul. 45 (1998), 543–560.Google Scholar
Gerdt, V. P., Blinkov, Y. A., Minimal Involutive Bases, Math. Comp. Simul. 45 (1998), 519–541.Google Scholar
Gerdt, V. P., Blinkov, Y. A., Involutive Division Generated by an Antigraded Monomial Ordering, L. N. Comp. Sci. 6885 (2011), 158–174, Springer.Google Scholar
Gerdt, V. P., Yanovich, D.A., Effectiveness of Involutive Criteria in Computation of Polynomial Janet Bases, Programming and Computer Software 32 (2006), 134–138.Google Scholar
Gerdt, V. P., Zinin, M.V., A Pommaret Division Algorithm for Computing Gröbner Bases in Boolean Rings. Proceedings of ISSAC 2008, 95–102, ACM Press.
Gerritzen, L., On Non-Associative Gröbner Bases, Symposium in Honor of Bruno Buchberger's 60th Birthday, RISC-Linz, 2002.
Gerritzen, L., Tree Polynomials and Non-Associative Gröbner Bases, J. Symb. Comp. 41 (2006), 297–316.Google Scholar
Green, E. L., Multiplicative Bases, Gröbner Bases and Right Gröbner Bases, J. Symb. Comp. 29 (2000), 601–624.Google Scholar
Göbel, M., Computing Bases for Rings of Permutation-invariant Polynomials, J. Symb. Comp. 19 (1995), 258–291.Google Scholar
Göbel, M., Symedeal Gröbner Bases, L. N. Comp. Sci. 1103 (1996), 48–62, Springer.Google Scholar
Göbel, M., A Constructive Description of SAGBI Bases for Polynomial Invariants of Permutation Groups, J. Symb. Comp. 26 (1998), 261–272.Google Scholar
Göbel, M., On the Reduction of G-invariant Polynomials for Arbitrary Permutation Groups, Progress in Computer Science and Applied Logic 15 (1998), 35–46.Google Scholar
Göbel, M., The ‘Smallest’ Ring of Polynomial Invariants of a Permutation Group which has no Finite SAGBI Bases with Respect to any Admissible Order, Theoret. Comput. Sci. 222 (1999), 177–187.Google Scholar
Göbel, M., Rings of Polynomial Invariants of the Alternating Group Have No Finite SAGBI Bases with Respect to any Admissible Order, Information Processing Letters. 74 (2000), 15–18.CrossRefGoogle Scholar
Göbel, M., Finite SAGBI Bases for Polynomial Invariants of Conjugates of Alternating Groups, Mathematics of Computation 71 (2001), 761–765.Google Scholar
Göbel, M., Kredel, H., Reduction of Permutation-Invariant Polynomials. A Noncommutative Case Study, Information and Computation 175 (2002), 158–170.Google Scholar
Gräbe, H.-G., The Tangent Cone Algorithm and Homogeneization, J. Pure Appl. Algebra 97 (1994), 303–312.Google Scholar
Gräbe, H.-G., Algorithms in Local Algebra, J. Symb. Comp. 19 (1995), 545–557.Google Scholar
Gräbe, H.-G., Triangular Systems and Factorized Gröbner Bases, L. N. Comp. Sci. 948 (1995), 248–261, Springer.Google Scholar
Gräbe, H.-G., Minimal Primary Decomposition and Factoring Gröbner Bases, J. AAECC 8 (1997), 265–278.Google Scholar
Granger, M., Oaku, T., Takayama, N., Tangent Cone Algorithm for Homogenized Differential Operations, J. Symb. Comp. 39 (2005), 417–431.Google Scholar
Grassmann, H., Greuel, G.-M., Martin, B., et al., Standard Bases, Syzygies and their Implementation in SINGULAR, University of Kaiserslautern Fach. Math. Preprint 251 (1994).Google Scholar
Greuel, G.-M., Pfister, G., Advances and Improvements in the Theory of Standard Bases and Syzygies, Arch. Math. 66 (1996), 131–176.Google Scholar
Greuel, G.-M., Seelisch, F., Wienand, O., The Gröbner Basis of the Ideal of Vanishing Polynomials, J. Symb. Comp. 46 (2011), 561–570.Google Scholar
Gunther, N., Sur une inègalité dans la théorie des fonctions rationnelles et entieres (in Russian) [Journal de l'Institut des Ponts et Chaussées de Russie] Izdanie Inst. In?z. Putej Soob?s?cenija Imp. Al. I. 84 (1913).Google Scholar
Gunther, N., Sur la forme canonique des systèmes déquations homogènes (in Russian) [Journal de l'Institut des Ponts et Chaussées de Russie] Izdanie Inst. In?z. Putej Soob?s?cenija Imp. Al. I. 84 (1913).Google Scholar
Gunther, N., Sur les caractéristiques des systémes d’équations aux dérivées partialles, C. R. Acad. Sci. Paris 156 (1913), 1147–1150.Google Scholar
Gunther, N., Sur la forme canonique des equations algébriques, C. R. Acad. Sci. Paris 157 (1913), 577–80.Google Scholar
Gunther, N., Sur la théorie générale des systèmes d’équations aux dérivées partielles, C. R. Acad. Sci. Paris 158 (1914), 853–856, 1108–1111.Google Scholar
Gunther, N., Sur l'extension du théorème de Cauchy aux systèmes d’équations aux dérivées partielles (in Russian), Mat. Sbornik 32 (1924) 367–434.Google Scholar
Gunther, N., Sur les modules des formes algébriques, Trudy Tbilis. Mat. Inst. 9 (1941), 97–206.Google Scholar
Hartley, D., Tuckey, P., A Direct Characterization of Gröbner Bases in Clifford and Grassmann Algebras, J. Symb. Comp. 20 (1995), 197–205.Google Scholar
Hartshorne, R., Connectedness of the Hilbert Scheme, Publ. Math. I.H.E.S. 29 (1966), 261–304.Google Scholar
Hashemi, A., Ars, G., Extended F5 criteria, Adv. Math. 66 (1987), 171–216.Google Scholar
Hermiller, S. M., Kramer, X. H., Laubenbacher, R.C.Monomial Orderings, Rewriting Systems and Gröbner Bases for the Commutator Ideal of a Free Algebra, J. Symb. Comp. 27 (1999), 133–141.Google Scholar
Hermiller, S. M., McCammond, J., Noncommutative Gröbner Bases for the Commutator Ideal, Int. J. Algebra Comp. 16 (2006) 187–202.CrossRefGoogle Scholar
Heyworth, A., One-sided Noncommutative Gröbner Bases with Applications to Computing Green's Relations, J. Algebra 242 (2001) 401–416.CrossRefGoogle Scholar
Hironaka, H., Idealistic Exponents of Singularity. In: Algebraic Geometry, The Johns Hopkins Centennial Lectures (1977), 52–125.Google Scholar
Hulett, H., Maximum Betti Numbers of Homogeneous Ideals with a Given Hilbert Function, Communications in Algebra 21 (1993), 2335–2350.Google Scholar
Hulett, H., Maximum Betti Numbers for a Given Hilbert Function, PhD Thesis, Urbana- Champaign (1993).
Janet, M., Sur les systèmes d’équations aux dérivées partielles, J. Math. Pure et Appl. 3 (1920), 65–151.Google Scholar
Janet, M., Les modules de formes algébraiques et la théorie générale des systèmes diffèrentielles, Ann. Éc. Norm. 3e série 41 (1924), 27–65.Google Scholar
Janet, M., Les systèmes d’équations aux dérivées partielles, Mémorial Sci. Math. XXI (1927), Gauthiers-Villars.Google Scholar
Janet, M., Leçons sur les systèmes d’équations aux dérivées partielles (1929), Gauthiers-Villars.
Kandri-Rody, A., Kapur, D., Computing the Gröbner Basis of an Ideal in Polynomail Rings over the Integers. In: Proc. Third MACSYMA Users’ Conference (1984).
Kandri-Rody, A., Kapur, D., Computing the Gröbner Basis of an Ideal in Polynomail Rings over a Euclidean Ring, J. Symb. Comp. 6 (1990), 37–56.Google Scholar
Kandri-Rody, A., Weispfenning, W., Non-commutative Gröbner Bases in Algebras of Solvable Type, J. Symb. Comp. 9 (1990), 1–26.Google Scholar
Kapur, D., Madlener, K., A Completion Procedure for Computing a Canonical Basis for a k-subalgebra. In: Kaltofen, E., Watt, S. M. (Eds.), Computer and Mathematics, Springer (1989), 1–11.
Kapur, D., Sun, Y., Wang, D., A New Algorithm for Computing Comprehensive Gröbner Systems, Proc. ISSAC 2010 (2010), 29–36, ACM.
Keller, B. J., Alternatives in Implementing Noncommutative Gröbner Basis Systems, Progress in Computer Science and Applied Logic 15 (1991), 105–126, Birkhäuser.Google Scholar
Kobayashi, Y., A Finitely Presented Monid which has Solvable Word Problem but has no Regular Complete Presentation, Theoret. Comput. Sci. 146 (1995), 312–329.Google Scholar
Kredel, H., Solvable Polynomial Rings, Dissertation, Passau (1992).
Kruskal, J. B., The Theory of Well-quasi-ordering: A Frequently Discovered Concept, J. Combin. Theory Ser. A 13 (1972) 297–305.CrossRefGoogle Scholar
Kühnle, K., Mayr, E.W., Exponential Space Computation of Gröbner Bases, Proc. ISSAC 96 (1996) 63–71, ACM.
Labontè, G., An Algorithm for the Construction of Matrix Representations for Finite Present Non-commutative Algebras, J. Symb. Comp. 9 (1990), 27–38.Google Scholar
Lambek, J., Lectures on Rings and Modules, Blaisdell (1966).
LaScala, R., Gröbner Bases and Gradings for Partial Difference Ideals, Math. Comp. 84 (2015), 959–985. arxiv.ong/pdf/1112.2065v4.pdfGoogle Scholar
LaScala, R., Levandovskyy, V., Letterplace Ideals and Non-commutative Gröbner Bases, J. Symb. Comp. 44 (2009), 1374–1393.Google Scholar
LaScala, R., Levandovskyy, V., Skew Polynomial Rings, Gröbner Bases and the Letterplace Embedding of the Free Associative Algebra, J. Symb. Comp. 48 (2013), 110–131.Google Scholar
Lascoux, A., Pragacz, P.S-function Series, J. Phys.A Math. Gen. 21 (1988), 4105– 4114.Google Scholar
Lauer, M., Canonical Representative for Residue Classes of a Polynomial Ideal, Proc. 1976 SymSAC, (1976) 339–345, ACM.
Lazard, D., Solving Zero-dimensional Algebraic Systems, J. Symb. Comp. 15 (1992), 117–132.Google Scholar
Lella, P., A Network of Rational Curves on the Hilbert Scheme, arxiv.ong/pdf/1006.5020v2.pdf
Levandovskyy, V. L., Non-commutative Computer Algebra for Polynomiakl Algebras: Gröbner Bases, Applications and ImplementationDissertation, Kaiserslautern (2005).
Levandovskyy, V. L., Studzinski, G., Schnitzler, B., Enhanced Computations of Gröbner Bases in Free Algebras as a New Application of the Letterplace ParadigmProc. ISSAC'13 (2013), 259–266, ACM.
Levin, A. B., Gröbner Bases with Respect to Several Orderings and Multivariate Dimension Polynomials, J. Symb. Comp. 42 (2007), 561–578.Google Scholar
Li, H., Looking for Gröbner Basis Theory for (Almost) Skew 2-nomial Algebras, J. Symb. Comp. 45 (2010), 918–942.Google Scholar
Liu, J., The Membership Problem for Ideals of Binomial Skew Polynomial Rings, Proc. ISSAC 2001 (2001), 192–194, ACM
Macaulay, F. S., Some Formulae in Elimination, Proc. London Math. Soc. (1) 35 (1903), 3–27.Google Scholar
Macaulay, F. S., The Algebraic Theory of Modular Systems, Cambridge University Press (1916).
Macaulay, F. S., Some Properties of Enumeration in the Theory of Modular Systems, Proc. London Math. Soc. 26 (1927), 531–555.Google Scholar
MacMillan, W. D., A Reduction of a Systems of Powers Series to an Equivalent System of Polynomials, Math. Ann. 72 (1912) 157–179.Google Scholar
MacMillan, W. D., A Method for Determining the Solutions of a System of Analytic Functions in the Neighborhood of a Branch Point, Math. Ann. 72 (1912), 180–202.Google Scholar
Madlener, K., Reinert, B., String Rewriting and Gröbner Bases – A General Approach to Monoid and Group Rings, Progr. Comp. Sci. Appl. Logic 15 (1991), 127–180, Birkhäuser.Google Scholar
Madlener, K., Reinert, B., Computing Gröbner Bases in Monoid and Group Rings, Proc.ISSAC '93 (1993), 254–263, ACM.Google Scholar
Mall, D., Characterizations of Lexicographical Sets and Simply-connected Hilbert Schemes, L. N. Comp. Sci. 1252 (1997), 221–236, Springer.Google Scholar
Mall, D., On the Relation between Gröbner and Pommaret Bases, J. AAECC 9 (1998), 117–124.Google Scholar
Mansfield, E. L., Szanto, A., Elimination Theory for Differential Difference Polynomials, Proc. ISSAC 2002 (2002), 191–198, ACM.
Månsson, J., A Prediction Algorithm for Rational Language, Licentiate Thesis, Lund University (2001).
Månsson, J., Nordbeck, B., Regular Gröbner Bases, J. Symb. Comp. 33 (2002), 163–181.Google Scholar
Marinari, M.G., Sugli ideali di Borel, Boll. UMI 4 (2001), 207–237.Google Scholar
Marinari, M.G., Ramella, L., Some Properties of Borel Ideals, J. Pure Appl. Algebra 139 (1999), 833–200.Google Scholar
Marinari, M.G., Ramella, L., A Characterization of Stable and Borel IdealsJ. AAECC 16 (2005), 45–68.Google Scholar
Marinari, M.G., Ramella, L., Borel Ideals in Three Variables, Beiträge zur Algebra und Geometrie 47 (2006), 195–209.Google Scholar
Markwig, T., Standard Bases in K[[t1, …, tm]][x1, …, xn]s, J. Symb. Comp. 43 (2008), 765–786.Google Scholar
Mårtensson, K., An Algorithm to Detect Regular Behaviour of Binomial Gröbner Basis Rational Language, Master's Thesis, Lund University (2006).
Maurer, J., Puiseux Expansions for Space Curves, Manuscripta Math., 32 (1980), 91–100.Google Scholar
Mayr, E.W., Ritscher, S., Dimension-dependent Bounds for Gröbner Bases of Polynomial Ideals, J. Symb. Comp. 49 (2013), 78–94.Google Scholar
Mayr, E.W., Ritscher, S., Space-efficient Bounds for Gröbner Bases of Polynomial Ideals, Proc. ISSAC 2011 (2011).
Maurer, J., Puiseux Expansions for Space Curves, Manuscripta Math., 32 (1980), 91–100.CrossRefGoogle Scholar
Miller, J. L., Analogs of Gröbner Bases in Polynomial Rings over a Ring, J. Symb. Comp. 21 (1996), 139–153.Google Scholar
Miller, J. L., Effective Algorithms for Intrisic Computing SAGBI-Gröbner Base in Polynomial Rings over a Ring. In Buchberger, B., Winkler, F. (Eds.), Gröbner Bases and Application (1998) 421–433, Cambridge University Press.
Möller, H. M., On the Construction of Gröbner Bases Using Syzygies, J. Symb. Comp. 6 (1988), 345–359.Google Scholar
Montes, A., A New Algorithm for Discussing Gröbner Bases with Parameters, J. Symb. Comp. 33 (2002), 183–208.Google Scholar
Montes, A., Using Kapur–Sun–Wang Algorithm for the Gröbner Cover, Proc. EACA 2012 (2012), 135–138, Universidad de Alcalá de Henares.
Montes, A., Wibmer, M., Gröbner Bases for Polynomial Systems with Parameters, J. Symb. Comp. 45 (2010), 1391–1425.Google Scholar
Mosteig, E., Sweedler, M., Valuations and Filtrations, J. Symb. Comp. 34 (2002), 399–435.Google Scholar
Nabeshima, K., A Speed-up of the Algorithm for Computing Comprehensive Gröbner Systems, Proc. ISSAC'2007 (2007), 299–306. ACM.
Nordbeck, P., On Some Basic Applications of Gröbner Bases in Non-commutative Polynomial Rings. In: Buchberger, B., Winkler, F. (Eds.), Gröbner Bases and Application (1998) Cambridge University Press, 463–472.
Nordbeck, P., Canonical Subalgebra Bases in Non-commutative Polynomial Rings, Proc. ISSAC'98 (1998), 140–146, ACM.
Nordbeck, P., Canonical Bases for Subalgebras of Factor Algebras, Computer Science Journal of Moldavia 7 (1999), 63–79, ACM.
Norton, G. H., Sălăgean, A., Strong Gröbner Bases for Polynomials Over a Principal Ideal Ring, Bull. Austral. Math. Soc. 64 (2001), 505–528.Google Scholar
Norton, G. H., Sălăgean, A., Gröbner Bases and Products of Coefficient Rings, Bull. Austral. Math. Soc. 65 (2002), 147–154.Google Scholar
Norton, G. H., Sălăgean, A., Cyclic Codes and Minimal Strong Gröbner Bases Over a Principal Ideal Ring, Finite Fields and Their Applications 9 (2003), 237–249.Google Scholar
Ollivier, F., Canonical Bases: Relations with Standard Bases, Finiteness Conditions and Application to Tame Automorphisms, Progr. Math. 94 (1990), 379–400, Birkhäuser.Google Scholar
Ore, O., Linear Equations in Non-commutative Fields, Ann. Math. 32 (1931), 463–477.Google Scholar
Ore, O., Theory of Non-commutative Polynomials, Ann. Math. 34 (1933), 480–508.Google Scholar
Pan, L., On the D-bases of Polynomial Ideals Over Principal Ideal Domains, J. Symb. Comp. 7 (1988), 55–69.Google Scholar
Pauer, F., Gröbner Bases with Coefficients in Rings, J. Symb. Comp. 42 (2007), 1003–1011.Google Scholar
Pesch, M., Gröbner Bases in Skew Polynomial RingsDissertation, Passau (1997).
Pesch, M., Two-sided Gröbner Bases in Iterated Ore Extensions, Progr. Computer Sci. Appl. Logic 15 (1991), 225–243, Birkhäuser.Google Scholar
Pommaret, J. F., Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Brach (1978).
Pommaret, J. F., Haddak, A.Effective Methods for Systems of Algebraic Partial Differential Equations, Prog. Math. 94 (1990), 411–426, Birkhäuser.Google Scholar
Pfister, G., The Tangent Cone Algorithm and Some Applications to Local Algebraic Geometry, Progr. Math. 94 (1990), 401–410, Birkhäuser.Google Scholar
Pfister, G., Schönemann, H., Singularities with Exact Poincaré Complex but not Quasihomogeneous, Rev. Mat. Univ. Complutense Madrid 2 (1989), 161–174.Google Scholar
Pritchard, F. L., A Syzygies Approach to Non-commutative Gröbner Bases, Preprint (1994).
Pritchard, F. L., The Ideal Membership Problem in Non-commutative Polynomial Rings, J. Symb. Comp. 22 (1996), 27–48.Google Scholar
Rajee, S., Non-associative Gröbner Bases, J. Symb. Comp. v (2006), 887–904.Google Scholar
Renschuch, B., Roloff, H., Rasputin, G. G. et. al., Beiträge zur konstructiven Theorie des Polynomideal XXIII: Vergessene Arbeiten des Leningrader Mathematikers N.M. Gjunter on Polynomial Ideals, Wiss. Z. Pädagogische Hochschule Karl Liebknecht, Postdam, 31 (1987) 111–126. English translation (by M. Abramson) in ACM SIGSAM Bull. 37 (2003) 35–48.
Reichstein, Z., SAGBI Bases in Rings of Multiplicative Invariants, Comment. Math. Helv. 78, 185–202.
Reinert, B., On Gröbner Basis in Monoids and Group Rings, Dissertation, Kaiserslautern (1995).
Reinert, B., A Systematic Study of Gröbner Basis Methods, Habilitation, Kaiserslautern (2003).
Reinert, B., Gröbner Bases in Function Ring – A Guide for Introducing Reduction Relations to Algebraic Structures, J. Symb. Comp. 41 (2006), 1264–1294.Google Scholar
Richman, F., Constructive Aspects of Noetherian Rings, Proc. AMS 44 (1974), 436–441.Google Scholar
Riquier, C., De l'existence des intégrales dans un système differentiel quelconque, Ann. Éc. Norm. 3e série 10 (1893) 65–86.CrossRefGoogle Scholar
Riquier, C., Sur une questione fondamentale du Calcul intégral, Acta Mathematica 23 (1899), 203.Google Scholar
Riquier, C., Les systèmes d’équations aux dérivées partielles (1910), Gauthiers-Villars.
Riordan, J., Combinatorial Identities (1968), Wiley.
Ritt, J. F., Prime and Composite Polynomials. Trans. A.M.S. 23 (1922), 51–66.Google Scholar
Ritt, J. F., Differential Equations from the Algebraic Standpoint, A.M.S. Colloquium Publications 14 (1932).Google Scholar
Ritt, J. F., Differential Algebra, A.M.S. Colloquium Publications 33 (1950).Google Scholar
Robbiano, L., Sweedler, M., Subalgebra Bases, L. Math. 1430 (1988), 61–87, Springer.Google Scholar
Robinson, L. B., Sur les systémes d’équations aux dérivées partialles, C. R. Acad. Sci. Paris 157 (1913), 106–108.Google Scholar
Robinson, L. B.A new Canonical Form for Systems of Partial Differential Equations, Amer. J. Math. 39 (1917), 95–112.Google Scholar
Rosenmann, A., An Algorithm for Constructing Gröbner and Free Schreier Bases in Free Group Algebras, J. Symb. Comp. 16 (1993), 523–549.Google Scholar
Saito, T., Iwamoto, T., Kobayasli, Y., Kajitori, K., Strongly Compatible Total Orders on Free Monoids, Semigroup Forum 43 (1991), 357–366.Google Scholar
Saito, T., Katsura, M., Kobayasli, Y., Kajitori, K., On Totally Ordered Free Monoids. In: Words, Language and Combinatorics, World Scientific (1992), 454–479.
Salomaa, A., Jewels of Formal Language Theory, Pitmann (1981).
Saracino, D., Weispfenning, V., On Algebraic Curves Over Commutative Regular Rings, L. Math. 498 (1975), 307–383, Springer.Google Scholar
Sato, Y., Suzuki, A., Discrete Comprehensive Gröbner Bases, Proc. ISSAC 2001 (2001), 292– 296, ACM.
Sato, Y., Suzuki, A., An Alternative Approach to Comprehensive Gröbner Bases, J. Symb. Comp. 36 (2003), 649–667.Google Scholar
Sato, Y., Suzuki, A., A Simple Algorithm to Compute Comprehensive Gröbner Bases, Proc. ISSAC 2006 (2006), 326–331, ACM.
Schaller, S. C., Algorithmic Aspects of Polynomial Residue Class Rings, Thesis, University of Wisconsin at Madison (1975).
Schwartz, F., The Riquier–Janet Theory and its Applications to Nonlinear Evolution Equations, Physica 11D (1984), 243–251.Google Scholar
Schwartz, F., Reduction and Completion Algorithm for Partial Differential Equations, Proc. ISSA'92 (1992), 49–56, ACM.Google Scholar
Schwartz, F., Janet Bases for Symmetry Groups In: Buchberger, B., Winkler, F. (Eds.), Gröbner Bases and Application (1998), 221–234.
Shirayanagi, K., A Classification of Finite-dimensional Monomial AlgebrasProgr. Math. 94 (1990), 469–482, Birkhäuser.Google Scholar
Shirayanagi, K., Decision of Algebra Isomorphisms Using Gröbner Bases, Progr. Math. 109 (1993), 253–266, Birkhäuser.Google Scholar
Sit, W.Y., A Theory for Parametric Linear Systems, Proc. ISSAC'91 (1991), 112–121, ACM.
Sperner, E., Über einen kombinatorishen Satz von Macaulay und seine Anwerdungen auf die Theorie der Polynomideale, Abh. Math. Sem. Univ. Hamburg 7 (1930), 149–163.Google Scholar
Squier, C.C., Word Problems and a Homological Finiteness Condition for Monoids, J. Pure Appl. Algebra 49 (1987), 201–217.Google Scholar
Stillman, M., Tsai, H., Using SAGBA Bases for Computing Invariants, J. Pure Appl. Algebra 139 (1999), 285–302.Google Scholar
Szekeres, L., A Canonical Basis for the Ideals of a Polynomial Domain, Am. Math. Monthly 59 (1952), 379–386.Google Scholar
Sweedle, M., Ideal Bases and Valuation Rings, Manuscript (1986) available at http://math.usask.ca/fvk/Valth.html
Tamari, D., On a Certain Classification of Rings and Semigroups, Bull. A.M.S. 54 (1948), 153–158.Google Scholar
Thierry, N.M., Thomassé, S., Convex Cones and SAGBI Bases of Permutation Invariants. In: Invariant Theory in all Characteristics, CRM Proc. Lecture Notes, 35 (2004), 259–263, AMS.Google Scholar
Torstensson, A., Using Resultnats for SAGBI Basis Verification in the Univariate Polynomial Ring, J. Symb. Comp. 40 (2002), 1087–1105.Google Scholar
Torstensson, A., Ufnarovski, V., Öfverbeck, H., Canonical Bases for Subalgebras on Two Generators in the Univariate Polynomial Ring, Beiträge Algebra Geom. 43 (2005), 565–577.Google Scholar
Ufnarovski, V., A Growth Criterion for Graphs and Algebras Defined by Words, Math. Notes 31 (1983), 238–241.Google Scholar
Ufnarovski, V., On the use of Graphs for Computing a Basis, Growth and Hilbert Series of Associative Algebras, Math. Sb. 180 (1989), 1548–1560.Google Scholar
Ufnarovski, V., Combinatorial and Asymptotic Methods in Algebra. In: Kostrikin, A. I., Shafarevich, I. R. (Eds.), Algebra-VI (1995), Springer, 5–196.
Ufnarovski, V., Introduction to Noncommutative Gröbner Bases Theory. In: Buchberger, B., Winkler, F. (Eds.), Gröbner Bases and Application (1998), Cambridge University Press, 259–280.
Weispfenning, V., Gröbner Bases for Polynomial Ideals over Commutative Regular Rings, L. N. Comp. Sci. 378 (1987), 336–347, Springer.Google Scholar
Weispfenning, V., Comprehensive Gröbner Bases, J. Symb. Comp. 14 (1992), 1–29.Google Scholar
Weispfenning, V.Finite Gröbner Bases in Non-Noetherian Skew Polynomial Rings, Proc. ISSAC'92 (1992), 320–332, ACM.
Weispfenning, V., Canonical Comprehensive Gröbner Bases, J. Symb. Comp. 36 (2003), 669–683.Google Scholar
Weispfenning, V., Comprehensive Gröbner Bases and Regular Rings, J. Symb. Comp. 41 (2006), 285–296.Google Scholar
Wibmer, M.Gröbner Bases for Families of Affine or Projective Schemes, J. Symb. Comp. 42 (2007), 803–834.Google Scholar
Wiesinger-Widi, M.Gröbner Bases and Generalized Sylvester Matrices. PhD Thesis, Johannes Kepler University, Institute for Symbolic Computation, submitted 2014.
Zariski, O., Samuel, P., Commutative Algebra, Van Nostrand (1958).
Zacharias, G., Generalized Gröbner Bases in Commutative Polynomial Rings, Bachelor's Thesis, MIT (1978).
Zarkov, A., Solving Zero-dimensional Involutive Systems, Progr. Math. 143 (1996), 389–399, Birkhäuser.Google Scholar
Zarkov, A., Blinkov, Y., Involution Approach to Investing Polynomial Systems, Math. Comp. Simul. 42 (1996), 323–332.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • Teo Mora, University of Genoa
  • Book: Solving Polynomial Equation Systems IV
  • Online publication: 05 April 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316271902.015
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • Teo Mora, University of Genoa
  • Book: Solving Polynomial Equation Systems IV
  • Online publication: 05 April 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316271902.015
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • Teo Mora, University of Genoa
  • Book: Solving Polynomial Equation Systems IV
  • Online publication: 05 April 2016
  • Chapter DOI: https://doi.org/10.1017/CBO9781316271902.015
Available formats
×