Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-14T01:53:32.091Z Has data issue: false hasContentIssue false

23 - A New Perspective on Einstein's Philosophy of Cosmology

from Part V - Methodological and Philosophical Issues

Published online by Cambridge University Press:  18 April 2017

Cormac O'raifeartaigh
Affiliation:
Waterford Institute of Technology, Waterford, Ireland
Khalil Chamcham
Affiliation:
University of Oxford
Joseph Silk
Affiliation:
University of Oxford
John D. Barrow
Affiliation:
University of Cambridge
Simon Saunders
Affiliation:
University of Oxford
Get access

Summary

Introduction

It has recently been discovered that Einstein once attempted – and subsequently abandoned – a ‘steady-state’ model of the expanding universe (Nussbaumer, 2014a; O'Raifeartaigh, 2014; O'Raifeartaigh et al., 2014). An unpublished manuscript on the Albert Einstein Online Archive (Einstein, 1931a) demonstrates that Einstein explored the possibility of a universe that expands but remains essentially unchanged due to a continuous formation of matter from empty space (Figure 23.1). Several aspects of the manuscript indicate that it was written in the early months of 1931, during Einstein's first trip to California, and the work therefore probably represents Einstein's first attempt at a theoretical model of the cosmos in the wake of emerging evidence for an expanding universe (Nussbaumer, 2014a; O'Raifeartaigh et al., 2014). It appears that Einstein abandoned the idea when he discovered that his steady-state model led to a null solution, as described below.

Many years later, steady-state models of the expanding cosmos were independently proposed by Fred Hoyle, Hermann Bondi and Thomas Gold (Bondi and Gold, 1948; Hoyle, 1948). The hypothesis formed a well-known alternative to ‘big bang’ cosmology for many years (Kragh, 1996, pp. 186–218; North, 1965, pp. 208–22; Nussbaumer and Bieri, 2009, pp. 161–3), although it was eventually ruled out by observations such as the distribution of the galaxies at different epochs and the cosmic microwave background (Kragh, 1996, pp. 318–80, 2007, pp. 201–6; Narlikar, 1988, p. 219).While it could be argued that steady-state cosmologies are of little practical interest now, we find it most interesting that Einstein conducted an internal debate between steady-state and evolving models of the cosmos decades before a similar debate engulfed the cosmological community. In particular, the episode offers several new insights into Einstein's cosmology, from his view of the role of the cosmological constant to his attitude to the question of cosmic origins. More generally, Einstein's exploration of steady-state cosmology casts new light on his philosophical journey from a static, bounded cosmology to the dynamic, evolving universe, and is indicative of a pragmatic, empiricist approach to cosmology.

Historical Context

Following the successful formulation of his general theory of relativity (Einstein, 1915, 1916), Einstein lost little time in applying his new theory of gravity, space and time to the universe as a whole.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arrhenius, S., 1908. World in the Making; the Evolution of the Universe. (transl. H., Borns). Michigan: Harper.
Associated Press. 1931. Prof. Einstein begins his work at Mt. Wilson. New York Times, Jan 3, p. 1.
Barrow, J. 2005. Worlds without end or beginning. In Gough, J, ed. The Scientific Legacy of Fred Hoyle.. Cambridge: Cambridge University Press.
Bartusiak, M. 2009. The Day We Found the Universe. New York: Vintage Books.
Bondi, H. and Gold, T. 1948. The steady-state theory of the expanding universe Mon. Not. Roy. Ast. Soc.. 108, 252–70.Google Scholar
Brown, H. 2014. The behaviour of rods and clocks in general relativity, and the meaning of the metric field. To be published in the Einstein Studies Series. ArXiv preprint 0911.4440. http://arxiv.org/abs/0911.4440.
de Sitter, W. 1917. On Einstein's theory of gravitation and its astronomical consequences. Month. Not. Roy. Astron. Soc., 78, 3–28.Google Scholar
de Sitter, W. 1930a. On the distances and radial velocities of the extragalactic nebulae, and the explanation of the latter by the relativity theory of inertia. Proc. Nat. Acad. Sci.. 16, 474–88.Google Scholar
de Sitter, W. 1930b. The expanding universe. Discussion of Lemaître's solution of the equations of the inertial field. Bull. Astron. Inst. Neth., 5(193), 211–18.Google Scholar
de Sitter, W, 1932. Kosmos: A Course of Six Lectures on the Development of our Insight into the Structure of the Universe, Delivered for the Lowell Institute in Boston in November 1931. Cambridge, MA: Harvard University Press.
Eddington, A. S. 1923. The Mathematical Theory of Relativity. Cambridge: Cambridge University Press.
Eddington, A. S. 1930. On the instability of Einstein's spherical world. Month. Not. Roy. Astron. Soc.. 90, 668–78.Google Scholar
Eddington, A. S. 1931. The recession of the extra-galactic nebulae. Mon. Not. Roy. Astr. Soc.. 92, 3–6.Google Scholar
Einstein, A. 1905a. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Annal. Physik. 17, 132–48. Available in English translation in CPAE 2 (Doc. 14).Google Scholar
Einstein, A. 1905b. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annal. Physik. 17, 549–60. Available in English translation in CPAE 2 (Doc. 16).Google Scholar
Einstein, A. 1905c. Zur Elektrodynamik bewegter Körper. Annal. Physik. 17, 891–921. Available in English translation in CPAE 2 (Doc. 23).Google Scholar
Einstein, A. 1915. Die Feldgleichungen der Gravitation. Sitzungsb. König. Preuss. Akad., 844–7. Available in English translation in CPAE 6 (Doc. 25).Google Scholar
Einstein, A. 1916. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Physik., 49, 769–822. Available in English translation in CPAE 6 (Doc. 30).Google Scholar
Einstein, A. 1917a. Letter to de Sitter, March 12th. Available in English translation in CPAE 8 (Doc. 311).
Einstein, A. 1917b. Kosmologische Betrachtungen zur allgemeinen Relativitätstheorie. Sitzungsb. König. Preuss. Akad., 142–52. Available in English translation in CPAE 6 (Doc. 43).Google Scholar
Einstein, A. 1918a. Prinzipielles zur allgemeinen Relativitätstheorie. Ann. Physik. 55, 241–44. Available in English translation in CPAE 7 (Doc. 4).Google Scholar
Einstein, A. 1918b. Kritisches zur einer von Hrn. De Sitter gegebenen Lösung der Gravitationsgleichungen. Sitzungsb. König. Preuss. Akad., 270–2. Available in English translation in CPAE 7 (Doc. 5).
Einstein, A. 1918c. Bemerkung zu Herrn Schrödingers Notiz “Uber ein Lösungssystem der allgemein kovarianten Gravitationsgleichungen”, Physikalische Zeitschrift. 19, 165–6. Available in English translation in CPAE 7 (Doc. 3).Google Scholar
Einstein, A. 1919. Spielen Gravitationsfelder im Aufbau der materiellen Elementarteilchen eine wesentliche Rolle? Sitzungsb. König. Preuss. Akad., 349–56. Available in English transl. in CPAE 7 (Doc. 17).
Einstein, A. 1922. Bemerkung zu der Arbeit von A. Friedmannn “Über die Krümmung des Raumes”. Zeit. Phys.. 11, 326.Google Scholar
Einstein, A. 1923a. Notiz zu der Arbeit von A. Friedmannn “Über die Krümmung des Raumes”. Zeit. Phys.. 16, 228.Google Scholar
Einstein, A. 1923b. Notiz zu der Arbeit von A., Friedmannn “Über die Krümmung des Raumes”. The Albert Einstein Archives, Document 1–26. http://alberteinstein.info/ vufind1/Record/EAR000034026.
Einstein, A. 1931a. Zum kosmologischen Problem. Albert Einstein Archive Online, Document 2–112, http://alberteinstein.info/vufind1/Record/EAR000034354. Available in English translation in (O'Raifeartaigh et al., 2014).
Einstein, A. 1931b. Zum kosmologischen Problem der allgemeinen Relativitätstheorie. Sitzungsb. König. Preuss. Akad. 235–7. Available in English translation in (O'Raifeartaigh and McCann, 2014).
Einstein, A. 1933a. Sur la Structure Cosmologique de l'Espace (transl. M., Solovine). In ‘Les Fondaments de la Théorie de la Relativité Générale’. Hermann et Cie, Paris. Available in English translation in (O'Raifeartaigh et al., 2015).
Einstein, A. 1933b. On the Method of Theoretical Physics. The Herbert Spencer Lecture, Oxford, 10 June, 1933. Oxford: Clarendon Press. Reprinted in (Einstein, 1934).
Einstein, A. 1934. The World As I See It.. New York: Cocivi-Friede.
Einstein, A. 1945. On the cosmological problem. Appendix to The Meaning of Relativity. 2nd edn. Princeton: Princeton University Press. Also available in later editions.
Einstein, A. 1948. Letter to Lincoln Barnett. June 19th. Document no. 1–154, Einstein Online Archive.
Einstein, A. 1949. Autobiographical Notes. In P. A., Schilpp, ed. Albert Einstein: Philosopher-Scientist. The Library of Living Philosophers. VII, Ed. P. A., Schilpp. Wisconsin: George Banta Publishing, pp. 3–105.
Einstein, A. and de Sitter, W. 1932. On the relation between the expansion and the mean density of the universe. Proc. Nat. Acad. Sci.. 18, 213–14.Google Scholar
Einstein, A. and Mayer, W. 1930. Zwei strenge statische Lösungen der Feldgleichungen der einheitlichen Feldtheorie. Sitzungsb. König. Preuss. Akad., 110–20.
Einstein, A. and Mayer, W. 1931. Einheitliche Feldtheorie von Gravitation und Elektrizität. Sitzungsb. König. Preuss. Akad., 541–57.
Einstein, A. and Mayer, W. 1932. Einheitliche Feldtheorie von Gravitation und Elektrizität, 2. Abhandlung. Sitzungsb. König. Preuss. Akad., 130–7.
Farrell, J. 2005. The Day Without Yesterday: Lemaître, Einstein and the Birth of Modern Cosmology. New York: Thunder's Mouth Press.
Frank, P. 1948. Einstein: His Life and Times. London: Jonathan Cape.
Frank, P. 1949. Einstein, Mach and Logical Positivism. In Albert Einstein: Philosopher Scientist. The Library of Living Philosophers. VII, Ed. P. A., Schilpp. Wisconsin: George Banta Publishing, pp. 269–287.
Friedmann, A. 1922. Über die Krümmung des Raumes. Zeit. Physik.. 10, 377–86.Google Scholar
Friedmann, A. 1924. Über die Möglichkeit einer Welt mit konstanter negativer Krümmung des Raumes. Zeit. Physik., 21, 326–32.Google Scholar
Gamow, G. 1956. The evolutionary universe. Scientific American. 192, 136–154.Google Scholar
Gamow, G. 1970. My Worldline. New York: Viking Press.
Giulini, D. and Straumann, N. 2006. Einstein's impact on the physics of the twentieth century. Studies in History and Philosophy of Modern Physics. 37, 115–73.Google Scholar
Harvey, A. 2012. How Einstein discovered dark energy. http://arxiv.org/abs/1211.6338.
Heckmann, O. 1931. Über die Metrik des sich ausdehnenden Universums. Nach. Gesell. Wiss. Göttingen, Math.-Phys., Klasse: 1–5.
Heckmann, O. 1932. Die Ausdehnung derWelt in ihrer Abhängigkeit von der Zeit. Nach. Gesell. Wiss. Göttingen, Math.-Phys., Klasse: 97–106.
Hoyle, F. 1948. A new model for the expanding universe. Mon. Not. Roy. Ast. Soc., 108, 372–82.Google Scholar
Hoyle, F. 1994. Home Is Where The Wind Blows. Mill Valley, CA: University Science Books.
Hoyle, F. and Narlikar, J. 1962. Mach's principle and the creation of matter. Proc. Roy. Soc., 270, 334–41.Google Scholar
Hoyle, F. and Narlikar, J. 1966. A Radical Departure from the ‘Steady-State’ Concept in Cosmology. Proc. Roy. Soc., 290, 162–76.Google Scholar
Hoyle, F., Burbidge, G. and Narlikar, J. 1993. A quasi-steady state cosmological model with creation of matter. Ast. J., 410, 437–57.Google Scholar
Howard, D. 2014. Einstein and the development of twentieth century philosophy of science. In Janssen, M. and Lehner, C., eds. The Cambridge Companion to Einstein. Cambridge: Cambridge University Press, pp. 354–76.
Hubble, E. 1925. Cepheids in spiral nebulae. Observatory. 48, 139–42.Google Scholar
Hubble, E. 1929. A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci.. 15, 168–73.Google Scholar
Janssen, M. 2005. Of pots and holes: Einstein's bumpy road to general relativity. Ann. Physik. 14 (Suppl), 58–85.Google Scholar
Jeans, J. 1928. Astronomy and Cosmogony.. Cambridge: Cambridge University Press.
Kragh, H. 1996. Cosmology and Controversy. Princeton, NJ: Princeton University Press.
Kragh, H. 2007. Conceptions of Cosmos. Oxford: Oxford University Press.
Kuhn, T. 1962. The Structure of Scientific Revolutions. Cambridge: Cambridge University Press.
Lehmkuhl, D. 2014. Why Einstein did not believe that general relativity geometrizes gravity. Studies in History and Philosophy of Modern Physics. 46, 316–26.Google Scholar
Lemaître, G. 1925. Note on de Sitter's universe. J. Math. Phys.. 4, 188–92.Google Scholar
Lemaître, G. 1927. Un univers homogène de masse constant et de rayon croissant, rendant compte de la vitesse radiale des nébeleuses extra-galactiques. Annal. Soc. Sci. Brux. Série A. 47, 49–59.
Lemaître, G. 1931a. A homogeneous universe of constant mass and increasing radius, accounting for the radial velocity of the extra-galactic nebulae. Mon. Not. Roy. Astr. Soc.. 91, 483–90.Google Scholar
Lemaître, G. 1931b. The beginning of the world from the point of view of quantum theory. Nature,. 127, 706.Google Scholar
Lemaître, G. 1931c. L'expansion de l'espace. Rev. Quest. Sci.,. 17, 391–440.Google Scholar
Lemaître, G. 1958. Recontres avec Einstein. Rev. Quest. Sci.,. 129, 129-132.Google Scholar
Liddle., A. R. 1999. An Introduction to Cosmological Inflation. In Masiero, A., Senjanovic, G. and Smirnov, A., eds. High Energy Physics and Cosmology. Singapore: World Scientific Publishers.
Linde, A. 1986a. Eternal chaotic inflation. Mod. Phys. Lett. A. 1(02), 81–85.Google Scholar
Linde, A. 1986b. Eternally existing self-reproducing chaotic inflationary universe. Phys. Lett. B.. 175, 395–400.Google Scholar
Livio, M. 2013. Brilliant Blunders: from Darwin to Einstein. Simon & Schuster. MacCrea, W. H. 1951. Relativity theory and the creation of matter. Proc. Roy. Soc. 206, 562–75.Google Scholar
MacMillan, W. D. 1918. On stellar evolution. Astrophys. J., 48, 35–49.Google Scholar
MacMillan, W. D. 1925. Some mathematical aspects of cosmology. Science. 62: 63–72, 96–9, 121–7.Google Scholar
Millikan, R. 1928. Available energy. Science. 68, 279–84.Google Scholar
Mitton, S. 2005. Fred Hoyle: A Life in Science. London: Aurum Press.
Narlikar, J. 1988. The Primeval Universe. Oxford: Oxford University Press.
Narlikar, J. 2005. Alternative ideas in cosmology. In Gough, J, ed. The Scientific Legacy of Fred Hoyle.. Cambridge: Cambridge University Press.
Nernst, W. 1928. Physico-chemical considerations in astrophysics. J. Franklin Inst. 206, 135–42.Google Scholar
North, J. D. 1965. The Measure of the Universe: A History ofModern Cosmology. Oxford: Oxford University Press.
Nussbaumer, H. 2014a. Einstein's aborted model of a steady-state universe. To appear in the volume “In memoriam Hilmar, W. Duerbeck”, Acta Historica Astronomiae. Ed. W.Dick, R. Schielicke and C., Sterken. http://arxiv.org/abs/1402.4099.
Nussbaumer, H. 2014b. Einstein's conversion from his static to an expanding universe. Eur. Phys. J (H). 39(1), 37–62.Google Scholar
Nussbaumer, H. and Bieri, L. 2009. Discovering the Expanding Universe. Cambridge: Cambridge University Press.
O'Raifeartaigh, C. 2014. Einstein's steady-state cosmology. Physics World. 27(9), 30–33.Google Scholar
O'Raifeartaigh, C. and McCann, B. 2014. Einstein's cosmic model of 1931 revisited; an analysis and translation of a forgotten model of the universe. Eur. Phys. J (H). 39(1), 63–85.Google Scholar
O'Raifeartaigh, C., McCann, B., Nahm, W. and Mitton, S. 2014. Einstein's steady-state theory: an abandoned model of the cosmos. Eur. Phys. J (H). 39(3), 353–67.Google Scholar
O'Raifeartaigh, C., O'Keeffe, M., Nahm, W. and Mitton, S. 2015. Einstein's cosmology review of 1933: a new perspective on the Einstein–de Sitter model of the cosmos. Eur. Phys. J. (H). 40(3), 301–35.Google Scholar
Peebles and Ratra. 2003. Rev. Mod. Phys.. 75(2), 559–606.
Reichenbach, H. 1949. The philosophical significance of the theory of relativity. In Schilpp, P. A., ed. Albert Einstein: Philosopher Scientist. The Library of Living Philosophers. VII. Wisconsin: George Banta Publishing, pp. 287–313.
Robertson, H. P. 1932. The expanding universe. Science. 76, 221–6.Google Scholar
Robertson, H. P. 1933. Relativistic cosmology. Rev. Mod. Phys., 5, 62–90.Google Scholar
Schrödinger, E. 1918. Uber ein Lösungssystem der allgemein kovarianten Gravitationsgleichungen. Physikalische Zeitschrift. 19, 20–22.Google Scholar
Slipher, V. M. 1915. Spectrographic observations of nebulae. Pop. Ast., 23, 21–4.Google Scholar
Slipher, V. M. 1917. Nebulae, Proc. Am. Phil. Soc.. 56, 403–9.Google Scholar
Smeenk, C. 2014. Einstein's role in the creation of relativistic cosmology. In Janssen, M. and Lehner, C., eds. The Cambridge Companion to Einstein. Cambridge: Cambridge University Press, pp. 228–70.
Stachel, J. 1977. Notes on the Andover Conference. In Earman, J. S., Glymour, C. N. and Stachel, J., eds. Foundations of Space-Time Theories, Minnesota Studies in the Philosophy of Science. VIII, pp. viii–xii.Google Scholar
Straumann, N. 2002. The history of the cosmological constant problem. In Brax, P., Martin, J. and Uzan, J. P., eds. On the Nature of Dark Energy: Proceedings of the 18th IAP Astrophysics Colloquium. Frontier Group. ArXiv preprint no. 0208027.Google Scholar
Tolman, R. 1929. On the astronomical implications of the de Sitter line element for the universe. Ast. J., 69, 245–74.Google Scholar
Tolman, R. 1930a. The effect of the annihilation of matter on the wave-length of light from the nebulae. Proc. Nat. Acad. Sci.. 16, 320–37.Google Scholar
Tolman, R.C. 1930b. More complete discussion of the time-dependence of the non-static line element for the universe. Proc. Nat. Acad. Sci.. 16, 409–20.Google Scholar
Tolman, R.C. 1931. On the theoretical requirements for a periodic behaviour of the universe. Phys. Rev.. 38, 1758–71.Google Scholar
Tolman, R.C. 1932. On the behaviour of non-static models of the universe when the cosmological term is omitted. Phys. Rev.. 39, 835–43.Google Scholar
Vilenkin, A. 1983. Birth of inflationary universes. Phys. Rev. D. 27, 2848–55.Google Scholar
Weyl, H. 1923. Zur allgemeinen Relativitätstheorie. Physik. Zeitschrift. 24, 230–32.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×