Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-21T23:20:00.586Z Has data issue: false hasContentIssue false

9 - The Combinatorial Clock Auction Formats

from Part II - Multi-Object Auction Design

Published online by Cambridge University Press:  08 December 2017

Martin Bichler
Affiliation:
Technische Universität München
Get access

Summary

Combinatorial clock auctions (CCAs) have been adopted in spectrum auctions (Bichler and Goeree, 2017) and in other applications for their simple price-update rules. There are single-stage and two-stage versions, which have been used in spectrum auctions worldwide. We devote a chapter to CCAs because of their practical relevance, as for chapter 6 on the SMRA. We will discuss both versions and a practical example of a market mechanism that includes a discussion of activity rules, which are sometimes ignored in theoretical treatments.

The Single-Stage Combinatorial Clock Auction

The single-stage combinatorial clock auction (SCCA) is easy to implement and has therefore found application in spectrum auctions and in procurement. In this section we provide a more detailed discussion of the SCCA, as introduced by Porter et al. (2003), and give an algorithmic description in algorithm 3.

Auction Process

In this type of action, prices for all items are initially zero or at a reserve price r. In every round bidders identify a package of items, or several packages, which they offer to buy at current prices. If two or more bidders demand an item then its price is increased by a fixed bid increment in the next round. This process iterates. The bids which correspond to the current ask prices are called standing bids, and a bidder is standing if she has at least one standing bid. In a simple scenario in which supply equals demand, the auction terminates and the items are allocated according to the standing bids.

If at some point there is an excess supply of at least one item and no item is overdemanded, the auctioneer determines the winners to find an allocation of items that maximizes his revenue by considering all submitted bids. If the solution displaces a standing bidder, the prices of items in the corresponding standing bids rise by the bid increment and the auction continues. The auction ends when no prices are increased and bidders finally pay their bid prices for the winning packages. We will analyze a version that uses an XOR bidding language.

Type
Chapter
Information
Market Design
A Linear Programming Approach to Auctions and Matching
, pp. 167 - 186
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×