Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-29T20:50:51.092Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  15 December 2016

Juane Li
Affiliation:
University of California, Davis
Shu Lin
Affiliation:
University of California, Davis
Khaled Abdel-Ghaffar
Affiliation:
University of California, Davis
William E. Ryan
Affiliation:
Zeta Associates, Colorado
Daniel J. Costello, Jr
Affiliation:
University of Notre Dame, Indiana
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abu-Surra, S., Divsalar, D., and Ryan, W.E. 2010 (Jan.). On the existence of typical minimum distance for protograph-based LDPC codes. Pages 1–7 of: Proc. IEEE Inf. Theory Applic. Workshop. San Diego, CA, USA, January 31–February 5 2010.
[2] Abu-Surra, S., Divsalar, D., and Ryan, W.E. 2011. Enumerators for protograph-based ensembles of LDPC and generalized LDPC codes. IEEE Trans. Inf. Theory, 57(2), 858–886.Google Scholar
[3] Ammar, B., Honary, B., Kou, Y., Xu, J., and Lin, S. 2004. Construction of low-density parity-check codes based on balanced incomplete block designs. IEEE Trans. Inf. Theory, 50(6), 1257–1269.Google Scholar
[4] Bahl, L., Cocke, J., Jelinek, F., and Raviv, J. 1974. Optimal decoding of linear codes for minimizing symbol error rate. IEEE Trans. Inf. Theory, 20(2), 284–287.Google Scholar
[5] Barnault, L., and Declercq, D. 2003 (Mar.). Fast decoding algorithm for LDPC over GF(2q). Pages 70–73 of: Proc. IEEE Inf. Theory Workshop. La Sorbonne, Paris, France, March 31–April 4, 2003.
[6] Batten, L.M. 1997. Combinatorics of Finite Geometries, 2nd ed. Cambridge, UK: Cambridge University Press.
[7] Bellorado, J., and Kavcic, A. 2010. Low-complexity soft-decoding algorithms for Reed–Solomon codes part I: An algebraic soft-in hard-out Chase decoder. IEEE Trans. Inf. Theory, 56(3), 945–959.Google Scholar
[8] Berlekamp, E.R. 1984. Algebraic Coding Theory. Laguna Hills, CA: Aegean Park Press.
[9] Bose, R.C. 1939. On the construction of balanced incomplete block designs. Ann. Eugenics, 9(4), 353–399.Google Scholar
[10] Bose, R.C. 1963. Strongly regular graphs, partial geometries and partially balanced designs. Pacific J. Math., 13(2), 389–419.Google Scholar
[11] Butler, B.K., and Siegel, P.H. 2010 (Jun.). On distance properties of quasi-cyclic protograph-based LDPC codes. Pages 809–813 of: Proc. IEEE Int. Symp. Inf. Theory. Austin, TX, USA, June 13–18, 2010.
[12] Cameron, P.J., and Van Lint, J.H. 1991. Designs, Graphs, Codes, and Their Links. Cambridge, UK: Cambridge University Press.
[13] Carmichael, R.D. 1956. Introduction to the Theory of Groups of Finite Orders. New York, NY: Dover.
[14] Chandrasetty, V.A., Johnson, S.J., and Lechner, G. 2013. Memory efficient decoders using spatially coupled quasi-cyclic LDPC codes. CoRR, arXiv:abs/1305.5625.
[15] Chang, B.Y., Dolecek, L., and Divsalar, D. 2011 (Nov.). EXIT chart analysis and design of non-binary protograph-based LDPC codes. Pages 566–571 of: IEEE Military Commun. Conf. (Milcom). Baltimore, MD, USA, November 7–10, 2011.
[16] Chang, B.Y., Divsalar, D., and Dolecek, L. 2012 (September 3–7). Non-binary protograph-based LDPC codes for short block-lengths. Pages 282–286 of: Proc. IEEE Inf. Theory Workshop. Lausanne, Switzerland, September 3–7, 2012.
[17] Chen, C.L., Peterson, W.W., and Weldon, E.J., Jr. 1969. Some results on quasi-cyclic codes. Inf. Control, 15(5), 407–423.Google Scholar
[18] Chen, J., and Fossorier, M. P. C. 2002. Near optimum universal belief propagation based decoding of low-density parity check codes. IEEE Trans. Commun., 50(3), 406–414.Google Scholar
[19] Chen, L., Xu, J., Djurdjevic, I., and Lin, S. 2004. Near Shannon-limit quasi-cyclic low-density parity-check codes. IEEE Trans. Commun., 52(7), 1038–1042.Google Scholar
[20] Chen, Y., and Parhi, K.K. 2004. Overlapped message passing for quasi-cyclic low-density parity check codes. IEEE Trans. Circuits Syst. I, 51(6), 1106–1113.Google Scholar
[21] Colbourn, C.J., and Dintz, J.H. 1996. The Handbook of Combinatorial Design. Boca Raton, FL: CRC Press.
[22] Costello, D.J., Jr., Dolecek, L., Fuja, T., Kliewer, J., Mitchell, D.G.M., and Smarandache, R. 2014. Spatially coupled sparse codes on graphs: Theory and practice. IEEE Commun. Mag., 52(7), 168–176.Google Scholar
[23] Davey, M.C., and MacKay, D.J.C. 1998. Low-density parity check codes over GF(q). IEEE Commun. Lett., 2(6), 165–167.Google Scholar
[24] Di, C., Proietti, D., Telatar, I.E., Richardson, T.J., and Urbanke, R.L. 2002. Finite-length analysis of low-density parity-check codes on the binary erasure channel. IEEE Trans. Inf. Theory, 48(6), 1570–1579.Google Scholar
[25] Diao, Q., Huang, Q., Lin, S., and Abdel-Ghaffar, K. 2011 (Feb.). A transform approach for analyzing and constructing quasi-cyclic low-density parity-check codes. Pages 1–8 of: Proc. IEEE Inf. Theory Applic. Workshop. La Jolla, CA, USA, February 6–11, 2011.
[26] Diao, Q., Huang, Q., Lin, S., and Abdel-Ghaffar, K. 2012a. A matrix-theoretic approach for analyzing quasi-cyclic low-density parity-check codes. IEEE Trans. Inf. Theory, 58(6), 4030–4048.Google Scholar
[27] Diao, Q., Zhou, W., Lin, S., and Abdel-Ghaffar, K. 2012b (Feb.). A transform approach for constructing quasi-cyclic Euclidean geometry LDPC codes. Pages 204–211 of: Proc. IEEE Inf. Theory Applic. Workshop. San Diego, CA, USA, February 5–10, 2012.
[28] Diao, Q., Tai, Y.Y., Lin, S., and Abdel-Ghaffar, K. 2013. LDPC codes on partial geometries: Construction, trapping set structure, and puncturing. IEEE Trans. Inf. Theory, 59(12), 7898–7914.Google Scholar
[29] Diao, Q., Li, J., Lin, S., and Blake, I.F. 2016. New classes of paritial geometries and their associated LDPC codes. IEEE Trans. Inf. Theory, 62(6) 2947–2965.Google Scholar
[30] Divsalar, D., Dolinar, S., and Jones, C. 2005a (Sep.). Low-rate LDPC codes with simple protograph structure. Pages 1622–1626 of: Proc. IEEE Int. Symp. Inf. Theory. Adelaide, SA, USA, September 4–9, 2005.
[31] Divsalar, D., Jones, C., Dolinar, S., and Thorpe, J. 2005b (Nov.). Protograph based LDPC codes with minimum distance linearly growing with block size. Page 5 of: Proc. IEEE Glob. Commun. Conf., vol. 3. St. Louis, MO, USA, November 28–December 2, 2005.
[32] Divsalar, D., Dolinar, S., and Jones, C. 2006 (Jul.). Construction of protograph LDPC codes with linear minimum distance. Pages 664–668 of: Proc. IEEE Int. Symp. Inf. Theory. Seattle, WA, USA, July 9–14, 2006.
[33] Divsalar, D., Dolinar, S., and Jones, C. 2007 (Oct.). Short protograph-based LDPC codes. Pages 1–6 of: IEEE Military Commun. Conf. (Milcom). Orlando, FL, USA, October 29–31, 2007.
[34] Divsalar, D., Dolinar, S., Jones, C.R., and Andrews, K. 2009. Capacity-approaching protograph codes. IEEE J. Sel. Areas Commun., 27(6), 876–888.Google Scholar
[35] Djurdjevic, I., Xu, J., Abdel-Ghaffar, K., and Lin, S. 2003. A class of low-density parity-check codes constructed based on Reed-Solomon codes with two information symbols. IEEE Commun. Lett., 7(7), 317–319.Google Scholar
[36] Dolecek, L., Divsalar, D., Sun, Y., and Amiri, B. 2014. Non-binary protograph-based LDPC codes: Enumerators, analysis, and designs. IEEE Trans. Inf. Theory, 60(7), 3913–3941.Google Scholar
[37] El-Khamy, M., and McEliece, R.J. 2006. Iterative algebraic soft-decision list decoding of Reed–Solomon codes. IEEE J. Sel. Areas Commun., 24(3), 481–490.Google Scholar
[38] Fan, J.L. 2000 (Sep.). Array codes as low-density parity-check codes. Pages 543–546 of: Proc. 2nd Int. Sym. on Turbo Codes and Related Topics. Brest, France, September 4–7, 2000.
[39] Fossorier, M.P.C. 2004. Quasi-cyclic low-density parity-check codes from circulant permutation matrices. IEEE Trans. Inf. Theory, 50(8), 1788–1793.Google Scholar
[40] Gallager, R.G. 1962. Low-density parity-check codes. IRE Trans. Inform. Theory, IT-8(Jan.), 21–28.
[41] Han, Y., and Ryan, W.E. 2009. Low-floor decoders for LDPC codes. IEEE Trans. Commun., 57(6), 1663–1673.Google Scholar
[42] Horn, R.A., and Johnson, C.R. 1985. Matrix Analysis. Cambridge, UK: Cambridge University Press.
[43] Hu, X.Y., Eleftheriou, E., and Arnold, D.M. 2001. Progressive edge-growth Tanner graphs. Pages 995–1001 of: Proc. IEEE Glob. Commun. Conf., vol. 2. San Antonio, TX, USA, November 25–29, 2001.
[44] Hu, X.Y., Eleftheriou, E., and Arnold, D.M. 2005. Regular and irregular progressive edge-growth Tanner graphs. IEEE Trans. Inf. Theory, 51(1), 386–398.Google Scholar
[45] Huang, J., Liu, L., Zhou, W., and Zhou, S. 2010. Large-girth nonbinary QC-LDPC codes of various lengths. IEEE Trans. Commun., 58(12), 3436–3447.Google Scholar
[46] Huang, Q., Diao, Q., Lin, S., and Abdel-Ghaffar, K. 2012. Cyclic and quasi-cyclic LDPC codes on constrained parity-check matrices and their trapping sets. IEEE Trans. Inf. Theory, 58(5), 2648–2671.Google Scholar
[47] Iyengar, A.R., Papaleo, M., Siegel, P.H., Wolf, J.K., Vanelli-Coralli, A., and Corazza, G.E. 2012. Windowed decoding of protograph-based LDPC convolutional codes over erasure channels. IEEE Trans. Inf. Theory, 58(4), 2303–2320.Google Scholar
[48] Jiang, J., and Narayanan, K.R. 2008. Algebraic soft-decision decoding of Reed–Solomon codes using bit-level soft information. IEEE Trans. Inf. Theory, 54(9), 3907–3928.Google Scholar
[49] Jimenez Felstrom, A., and Zigangirov, K.S. 1999. Time-varying periodic convolutional codes with low-density parity-check matrix. IEEE Trans. Inf. Theory, 45(6), 2181–2191.Google Scholar
[50] Kang, J., Huang, Q., Zhang, L., Zhou, B., and Lin, S. 2010. Quasi-cyclic LDPC codes: An algebraic construction. IEEE Trans. Commun., 58(5), 1383–1396.Google Scholar
[51] Kang, J., Huang, Q., Lin, S., and Abdel-Ghaffar, K. 2011. An iterative decoding algorithm with backtracking to lower the error-floors of LDPC codes. IEEE Trans. Commun., 59(1), 64–73.Google Scholar
[52] Karlin, M. 1969. New binary coding results by circulants. IEEE Trans. Inf. Theory, 15(1), 81–92.Google Scholar
[53] Kasami, T. 1974. A Gilbert-Varshamov bound for quasi-cycle codes of rate 1/2. IEEE Trans. Inf. Theory, 20(5), 679.Google Scholar
[54] Köetter, R., and Vardy, A. 2003. Algebraic soft-decision decoding of Reed–Solomon codes. IEEE Trans. Inf. Theory, 49(11), 2809–2825.Google Scholar
[55] Kou, Y., Lin, S., and Fossorier, M.P.C. 2000a (Sep.). Construction of low density parity check codes: A geometric approach. Pages 137–140 of: Proc. 2nd Int. Sym. on Turbo Codes and Related Topics. Brest, France, September 4–7, 2000.
[56] Kou, Y., Lin, S., and Fossorier, M.P.C. 2000b. Low density parity check codes based on finite geometries: A rediscovery. Page 200 of: Proc. IEEE Int. Symp. Inf. Theory. Sorrento, Italy, June 25–30, 2000.
[57] Kou, Y., Lin, S., and Fossorier, M.P.C. 2000c (Nov./Dec.). Low density parity check codes: Construction based on finite geometries. Pages 825–829 of: Proc. IEEE Glob. Commun. Conf., vol. 2. San Francisco, CA, USA, November 27–December 1, 2000.
[58] Kou, Y., Lin, S., and Fossorier, M.P.C. 2001. Low-density parity-check codes based on finite geometries: A rediscovery and new results. IEEE Trans. Inf. Theory, 47(7), 2711–2736.Google Scholar
[59] Kudekar, S., Richardson, T.J., and Urbanke, R.L. 2011. Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC. IEEE Trans. Inf. Theory, 57(2), 803–834.Google Scholar
[60] Kudekar, S., Richardson, T., and Urbanke, R.L. 2013. Spatially coupled ensembles universally achieve capacity under belief propagation. IEEE Trans. Inf. Theory, 59(12), 7761–7813.Google Scholar
[61] Kumar, S., and Pfister, H.D. 2015. Reed–Muller codes achieve capacity on erasure channels. CoRR, arXiv:abs/1505.05123.
[62] Laendner, S., and Milenkovic, O. 2005. Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes. Pages 630–635 of: Wireless Networks, Communications and Mobile Computing, 2005 International Conference on, vol. 1. Maui, HI, USA, June 13–16, 2005.
[63] Laendner, S., and Milenkovic, O. 2007. LDPC codes based on Latin squares: Cycle structure, stopping set, and trapping set analysis. IEEE Trans. Commun., 55(2), 303–312.Google Scholar
[64] Lan, L., Zeng, L., Tai, Y.Y., Chen, L., Lin, S., and Abdel-Ghaffar, K. 2007. Construction of quasi-cyclic LDPC codes for AWGN and binary erasure channels: A finite field approach. IEEE Trans. Inf. Theory, 53(7), 2429–2458.Google Scholar
[65] Lan, L., Tai, Y.Y., Lin, L., Behshad, M., and Honary, B. 2008. New constructions of quasi-cyclic LDPC codes based on special classes of BIBDs for the AWGN and binary erasure channels. IEEE Trans. Commun., 56(1), 39–48.Google Scholar
[66] Lentmaier, M., Sridharan, A., Zigangirov, K.S., and Costello, D.J., Jr. 2005 (Sep.). Terminated LDPC convolutional codes with thresholds close to capacity. Pages 1372–1376 of: Proc. IEEE Int. Symp. Inf. Theory. Adelaide, SA, USA, September 4–9, 2005.
[67] Lentmaier, M., Sridharan, A., Costello, D.J., Jr., and Zigangirov, K.S. 2010. Iterative decoding threshold analysis for LDPC convolutional codes. IEEE Trans. Inf. Theory, 56(10), 5274–5289.Google Scholar
[68] Li, J., Liu, K., Lin, S., and Abdel-Ghaffar, K. 2014a. Algebraic quasi-cyclic LDPC codes: Construction, low error-floor, large girth and a reduced-complexity decoding scheme. IEEE Trans. Commun., 62(8), 2626–2637.Google Scholar
[69] Li, J., Liu, K., Lin, S., and Abdel-Ghaffar, K. 2014b (Feb.). Decoding of quasi-cyclic LDPC codes with section-wise cyclic structure. Pages 1–10 of: Proc. IEEE Inf. Theory Applic. Workshop. San Diego, CA, USA, February 9–14, 2014.
[70] Li, J., Liu, K., Lin, S., and Abdel-Ghaffar, K. 2014c (Jun.). Quasi-cyclic LDPC codes on two arbitrary sets of a finite field. Pages 2454–2458 of: Proc. IEEE Int. Symp. Inf. Theory. Honolulu, HI, USA, June 29–July 4, 2004.
[71] Li, J., Lin, S., and Abdel-Ghaffar, K. 2015 (Jun.). Improved message-passing algorithm for counting short cycles in bipartite graphs. In: Proc. IEEE Int. Symp. Inf. Theory. Hong Kong, China, June 14–19, 2015.
[72] Li, Z., Chen, L., Zeng, L., Lin, S., and Fong, W.H. 2006. Efficient encoding of quasi-cyclic low-density parity-check codes. IEEE Trans. Commun., 54(1), 71–81.Google Scholar
[73] Lidl, R., and Niederreiter, H. 1997. Finite Fields. Cambridge, UK: Cambridge University Press.
[74] Lin, S., and Costello, D.J., Jr. 2004. Error Control Coding: Fundamentals and Applications, 2nd edition. Upper Saddle River, NJ: Prentice Hall.
[75] Lin, S., Kasami, T., Fujiwara, T., and Fossorier, M.P.C. 1998. Trellis and Trellis-Based Decoding Algorithm for Linear Block Codes. New York, NY: Springer-Verlag New York.
[76] Lin, S., Xu, J., Djurdjevic, I., and Tang, H. 2002 (Oct.). Hybrid construction of LDPC codes. Pages 1149–1158 of: Proc. 40th Annual Allerton Conf. Commun., Control, Computing. Monticello, IL, USA, October 1–3, 2002.
[77] Lin, S., Diao, Q., and Blake, I.F. 2014a (Aug.). Error floors and finite geometries. Pages 42–46 of: Proc. 8th Int. Sym. on Turbo Codes and Iterative Inf. Processing. Bremen, Germany, August 18–22, 2014.
[78] Lin, S., Liu, K., Li, J., and Abdel-Ghaffar, K. 2014b (Nov.). A reduced-complexity iterative scheme for decoding quasi-cyclic low-density parity-check codes. Pages 119–125 of: Proc. 48th Annual Allerton Conf. Commun., Control, Computing. Pacific Grove, CA, USA, November 2–5, 2014.
[79] Liu, K., Lin, S., and Abdel-Ghaffar, K. 2013. A Revolving iterative algorithm for decoding algebraic cyclic and quasi-cyclic LDPC codes. IEEE Trans. Commun., 61(12), 4816–4827.Google Scholar
[80] Liva, G., and Chiani, M. 2007 (Nov.). Protograph LDPC codes design based on EXIT analysis. Pages 3250–3254 of: Proc. IEEE Glob. Commun. Conf. Washington, DC, USA, November 26–30, 2007.
[81] MacKay, D.J.C. 1999. Good error-correcting codes based on very sparse matrices. IEEE Trans. Inf. Theory, 45(2), 399–431.Google Scholar
[82] MacKay, D.J.C., and Davey, M.C. 2001. Evaluation of Gallager codes for short block length and high rate applications. The IMA Volumes in Mathematics and its Applications, 123(Jun.), 113–130.Google Scholar
[83] MacKay, D.J.C., and Neal, R.M. 1996. Near Shannon limit performance of low density parity-check codes. Electro. Lett., 32(18), 1645–1646.Google Scholar
[84] Mann, H. 1949. Analysis and Design of Experiments. New York, NY: Dover.
[85] Mitchell, D.G.M., Smarandache, R., and Costello, D.J., Jr. 2014. Quasi-cyclic LDPC codes based on pre-lifted protographs. IEEE Trans. Inf. Theory, 60(10), 5856–5874.Google Scholar
[86] Mitchell, D.G.M., Lentmaier, M., and Costello, D.J., Jr. 2015. Spatially coupled LDPC codes constructed from protographs. IEEE Trans. Inf. Theory, 61(9), 4866–4889.Google Scholar
[87] NASA, Standards. 2008. GSFC-STD-9100. https://standards.nasa.gov/documents/ viewdoc/3315856/3315856. Accessed May 4, 2015.
[88] Nguyen, T.V., Nosratinia, A., and Divsalar, D. 2012. The design of rate-compatible protograph LDPC codes. IEEE Trans. Commun., 60(10), 2841–2850.Google Scholar
[89] Peterson, W.W., and Weldon, E.J., Jr. 1972. Error-Correcting Codes, 2nd edition. Cambridge, MS, USA: MIT Press.
[90] Pishro-Nik, H., and Fekri, F. 2004. On decoding of low-density parity-check codes over the binary erasure channel. IEEE Trans. Inf. Theory, 50(3), 439–454.Google Scholar
[91] Pishro-Nik, H., and Fekri, F. 2007. Results on punctured low-density parity-check codes and improved iterative decoding techniques. IEEE Trans. Inf. Theory, 53(2), 599–614.Google Scholar
[92] Pusane, A.E., Smarandache, R., Vontobel, P.O., and Costello, D.J., Jr. 2011. Deriving good LDPC convolutional codes from LDPC block codes. IEEE Trans. Inf. Theory, 57(2), 835–857.Google Scholar
[93] Reed, I.S., and Solomon, G. 1960. Polynomial codes over certain finite fields. J. Soc. Indust. Appl. Math., 8(2), 300–304.Google Scholar
[94] Richardson, T. 2003 (October 1–3). Error-floors of LDPC codes. Pages 1426–1435 of: Proc. 41st Annual Allerton Conf. Commun. Control, Computing. Monticello, IL, USA, October 1–3, 2003.
[95] Richardson, T., and Urbanke, R.L. 2008. Morden Coding Theory. Cambridge, UK: Cambridge University Press.
[96] Richardson, T.J., Shokrollahi, M.A., and Urbanke, R.L. 2001. Design of capacity-approaching irregular low-density parity-check codes. IEEE Trans. Inf. Theory, 47(2), 619–637.Google Scholar
[97] Ryan, W.E., and Lin, S. 2009. Channel Codes: Classical and Modern. NewYork, NY: Cambridge University Press.
[98] Ryser, H.J. 1996. Combinatorial Mathematics. New York, NY: Wiley.
[99] Sassatelli, L., and Declercq, D. 2010. Nonbinary hybrid LDPC codes. IEEE Trans. Inf. Theory, 56(10), 5314–5334.Google Scholar
[100] Song, S., Zhou, B., Lin, S., and Abdel-Ghaffar, K. 2009. A unified approach to the construction of binary and nonbinary quasi-cyclic LDPC codes based on finite fields. IEEE Trans. Commun., 57(1), 84–93.Google Scholar
[101] Tai, Y.Y., Lan, L., Zeng, L., Lin, S., and Abdel-Ghaffar, K. 2006. Algebraic construction of quasi-cyclic LDPC codes for the AWGN and erasure channels. IEEE Trans. Commun., 54(10), 1765–1774.Google Scholar
[102] Tang, H., Xu, J., Lin, S., and Abdel-Ghaffar, K. 2005. Codes on finite geometries. IEEE Trans. Inf. Theory, 51(2), 572–596.Google Scholar
[103] Tanner, R.M. 1981. A recursive approach to low complexity codes. IEEE Trans. Inf. Theory, 27(5), 533–547.Google Scholar
[104] Tanner, R.M., Sridhara, D., Sridharan, A., Fuja, T.E., and Costello, D.J., Jr. 2004. LDPC block and convolutional codes based on circulant matrices. IEEE Trans. Inf. Theory, 50(12), 2966–2984.Google Scholar
[105] Thorpe, J. 2003. Low density parity check (LDPC) codes constructed from protographs. JPL INP Progress Report, August 15, 42–154.
[106] Townsend, R., and Weldon, E. 1967. Self-orthogonal quasi-cyclic codes. IEEE Trans. Inf. Theory, 13(2), 183–195.Google Scholar
[107] Vasic, B., and Milenkovic, O. 2004. Combinatorial constructions of low-density parity-check codes for iterative decoding. IEEE Trans. Inf. Theory, 50(6), 1156–1176.Google Scholar
[108] Vellambi, H., and Fekri, F. 2007. Results on the improved decoding algorithm for low-density parity-check codes over the binary erasure channel. IEEE Trans. Inf. Theory, 53(4), 1510–1520.Google Scholar
[109] Xu, J., and Lin, S. 2003 (Jun.). A combinatoric superposition method for constructing low density parity check codes. Page 30 of: Proc. IEEE Int. Symp. Inf. Theory. Pacifico Yokohama, Yokohama, Japan, June 29–July 4, 2003.
[110] Xu, J., Lin, S., and Blake, I.F. 2003 (Mar.). On products of graphs for LDPC codes. Pages 6–9 of: Proc. IEEE Inf. Theory Workshop. La Sorbonne, Paris, France, March 31–April 4, 2003.
[111] Xu, J., Chen, L., Zeng, L., Lan, L., and Lin, S. 2005. Construction of low-density parity-check codes by superposition. IEEE Trans. Commun., 53(Feb.), 243–251.Google Scholar
[112] Xu, J., Chen, L., Djurdjevic, I., Lin, S., and Abdel-Ghaffar, K. 2007. Construction of regular and irregular LDPC codes: Geometry decomposition and masking. IEEE Trans. Inf. Theory, 53(1), 121–134.Google Scholar
[113] Zhang, L., Huang, Q., Lin, S., Abdel-Ghaffar, K., and Blake, I.F. 2010. Quasi-cyclic LDPC Codes: An algebraic construction, rank analysis, and codes on Latin squares. IEEE Trans. Commun., 58(11), 3126–3139.Google Scholar
[114] Zhang, L., Lin, S., Abdel-Ghaffar, K., Ding, Z., and Zhou, B. 2011. Quasi-cyclic LDPC codes on cyclic subgroups of finite fields. IEEE Trans. Commun., 59(9), 2330–2336.Google Scholar
[115] Zhang, Z., Dolecek, L., Nikolic, B., Anantharam, V., and Wainwright, M.J. 2008 (November 30–December 4). Lowering LDPC error floors by postprocessing. Pages 1–6 of: Proc. IEEE Glob. Commun. Conf. New Orleans, LO, USA, November 30–December 4, 2008.
[116] Zhou, B., Kang, J., Tai, Y.Y., Lin, S., and Ding, Z. 2009. High performance non-binary quasi-cyclic LDPC codes on Euclidean geometries. IEEE Trans. Commun., 57(5), 1298–1311.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×