Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-22T22:44:57.209Z Has data issue: false hasContentIssue false

3 - State equations, eigen-analysis and applications

Published online by Cambridge University Press:  05 February 2016

M. J. Gibbard
Affiliation:
University of Adelaide
P. Pourbeik
Affiliation:
Electric Power Research Institute, USA
D. J. Vowles
Affiliation:
University of Adelaide
Get access

Summary

Introduction

The description of the dynamics of large systems, such as power systems, by their transfer functions is unsatisfactory for a number of reasons. For example, for a system of order n, say 100, the characteristic polynomial has degree 100 and 101 coefficients of s. Moreover, such systems typically have more than one output variable and more than one input signal. modelling based on the multi-input multi-output state equations of the system is simpler and problems of loss of accuracy are reduced. Moreover, such modelling has a number of advantages and features some of which are described in the following sections. To illustrate the formation of the state equations of a plant or an electro-mechanical system, let us consider two examples.

Much of the material on linear systems analysis in the later sections is covered by [1].

Example 3.1.

Find a set of state and output equations for the simple RLC circuit shown in Figure 3.1. The voltage supplied by an ideal source is vs(t), and the required outputs are the capacitor voltage are vC(t) and iL(t) inductor current.

Loop voltages:

where p is the differential operator d/dt.

Current flow:

Note that each of the right-hand equations is a first-order differential equation with the derivative specifically sited on the left-hand side of the equation.

There are two independent energy storage elements, C and L. Because the instantaneous energy stored in C and L is and, respectively, the variables x1 = vC and x2 = iL are ‘natural’ selections for states. Hence, the state equations are formed as follows:

The two output equations required are y1= vC = x1 and y2= iL = x2.

The state and output equations can thus be written in matrix form as follows:

Where

Example 3.2

A drive system shown in Figure 3.2 consists of a DC motor driving an inertial load through a speed-reducing gearbox. The controlled DC supply voltage to the armature is supplied by a power amplifier. The motor field current is maintained constant (i.e. the flux/pole is constant). Write down the equations of motion for this system.

Type
Chapter
Information
Publisher: The University of Adelaide Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×