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We discuss the modelling framework of port-Hamiltonian descriptor systems and
their use in numerical simulation and control. The structure is ideal for automated
network-based modelling since it is invariant under power-conserving interconnection,
congruence transformations and Galerkin projection. Moreover, stability and passivity
properties are easily shown. Condensed forms under orthogonal transformations
present easy analysis tools for existence, uniqueness, regularity and numerical methods
to check these properties.
After recalling the concepts for general linear and nonlinear descriptor systems,

we demonstrate that many difficulties that arise in general descriptor systems can
be easily overcome within the port-Hamiltonian framework. The properties of port-
Hamiltonian descriptor systems are analysed, and time discretization and numerical
linear algebra techniques are discussed. Structure-preserving regularization proced-
ures for descriptor systems are presented to make them suitable for simulation and
control. Model reduction techniques that preserve the structure and stabilization and
optimal control techniques are discussed.

The properties of port-Hamiltonian descriptor systems and their use in modelling
simulation and control methods are illustrated with several examples from different
physical domains. The survey concludes with open problems and research topics that
deserve further attention.
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1. Introduction
Modern key technologies in science and technology require modelling, simulation
and optimization (MSO), or control of complex dynamical systems. Most real-world
systems are multi-physics systems, combining components from different physical
domains, and with different accuracies and scales in the components. To address
these requirements, there exist many commercial and open source MSO software
packages for simulation and control in all physical domains, e.g. Abaqus,1 Ansys,2
COMSOL,3 Dymola,4 FEniCS5 and Simulink.6 Several of these also have multi-
physics components, but all are still very limited when it comes to applications, such
as digital twins, which require a cross-domain evolutionary modelling process, the
coupling of different domain-specific tools, the incorporation of model hierarchies
consisting of coarse and fine discretizations and reduced-order models as well as
the incorporation of (optimal) control techniques. The latter point, in particular,
requires tools to be open to performing easy and automated model modifications.

Furthermore, flexible compromises between different accuracy levels and compu-
tational speed have to be possible to allow uncertainty quantification procedures,
as well as error estimates that balance model, discretization, optimization, approx-
imation or round-off errors, combined with sensitivity, stability and robustness
measures. Finally, with modern data science tools becoming increasingly powerful,

1 https://www.3ds.com/products-services/simulia/products/abaqus/
2 https://www.ansys.com/
3 https://www.comsol.com
4 https://www.3ds.com/products-services/catia/products/dymola/
5 https://fenicsproject.org
6 https://www.mathworks.com/products/simulink.html
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Figure 1.1. Sector coupling and the power-to-X concept.

it is necessary to have models and methods that allow pure data-based approaches
and have the flexibility to recycle and re-use components in different applications.
On top of all these requirements, the MSO tools cannot be separated from the
available computing environments, ranging from process controllers, data, sensor
and visualization interfaces, linked up with high-performance and cloud computing
facilities.
To address all these challenges in the future and in an increasingly digitized

world, a fundamental paradigm shift in MSO is necessary. For every scientific and
technological product or process, and the whole life cycle from the design phase
to waste recycling, it is necessary to build digital twins with multi-fidelity model
hierarchies or catalogues of several models ranging from very fine descriptions,
that help to understand the behaviour via detailed and repeated simulations, to very
coarse (reduced or surrogate) models, used for real-time control and optimization.
Furthermore, the MSO tools should, as far as possible, be open for interaction,
automated, and allow the linking of subsystems or numerical methods in a network
fashion. They should also allow combination with methods that deal with large
sets of real-time data that can and should be employed in a modelling or data
assimilation process. Because of all this, it is necessary for mathematical modelling,
analysis, numerics, control, optimization, model reduction methods and data science
techniques to work hand in hand.

To illustrate these general comments, let us consider a major societal application.
In order to reduce global warming, it is necessary to reduce the emissions arising
in the production of energy from fossil sources by increasing renewable energy
production, such as wind or solar energy. At the same time, it is essential to
allow energy-efficient multi-directional sector coupling, such as power-to-heat or
power-to-mobility; see Figure 1.1.
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The coupling of energy sectors includes the storage or transformation to another
energy carrier (e.g. hydrogen) of superfluous electrical energy, as well the layout and
operation of energy transportation networks; see e.g. Brown et al. (2018), Conejo,
Chen and Constante (2020) and Ramsebner, Haas, Ajanovic and Wietschel (2021).

On the mathematical/computational side, challenges arise because mathematical
models of different energy conversion processes and energy transport networks live
on very different time scales, such as gas transport networks or electrical power
networks. Furthermore, while most energy transport networks are currently operated
in a stationary regime, in the future dynamic approaches will be required that allow
control and optimization of energy production and transport in real time; see e.g.
Bienstock (2015) and Machowski, Lubosny, Bialek and Bumby (2020). These
further challenges lead to the following model class wish list for a new flexible
modelling, simulation, optimization and control framework.

• The model class should allow for automated modelling, in a modularized and
network-based fashion, including pure data-based models.
• The mathematical representation should allow the coupling of mathematical

models across different scales and physical domains in continuous and discrete
time.
• The mathematical models should be close to the real (open or closed) physical

system, and easily extendable if further effects have to be considered or when
singular limit situations are considered.
• Themodel class should have nice algebraic, geometric and analytical properties.
The models should be easy to analyse concerning existence, uniqueness,
robustness, stability, uncertainty, perturbation theory and error analysis.
• The class should be invariant under local variable (coordinate) transformations
(in space and time) to understand the local behaviour, for example via local
normal forms.
• The model class should allow for simple space and time discretization and
model reduction methods, as well as fast solvers for the resulting linear and
nonlinear systems of equations.
• The model class should be feasible for simulation, control, optimization and
data assimilation.

Can there be such a ‘Jack of all trades’? The main goal of this paper is to show
that even though many aspects are still under investigation, energy-based modelling
via the model class of dissipative port-Hamiltonian (pH) descriptor systems has
many great features and comes very close to being such a model class. Let us
emphasize that the field of pHDAE systems is a highly active research area with
many developments currently taking place. In this survey, we thus focus only
on selected topics and provide pointers to open problems throughout the paper.
In the spirit of the interdisciplinary setting of the port-Hamiltonian framework,
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we challenge and encourage the mathematical, natural sciences, computer science
and engineering communities to apply the conceptual ideas presented in this survey
to their applications, improve upon existing results, develop novel theories and
software packages, and extend the scope to further application domains.

Structure of the paper

The paper is organized as follows. We first review general nonlinear descriptor
systems and its solution theory in Section 2 and associated control theoretical results
in Section 3. Dissipative port-Hamiltonian (pH) descriptor systems are introduced in
Section 4 and illustrated with several examples from different application domains
in Section 5. Condensed forms are presented in Section 6. In Section 7 we start to
analyse pH descriptor systems in terms of our model class wish list by discussing the
inherent properties of pH descriptor systems. We then turn to structure-preserving
model order reduction in Section 8 and discuss time discretization and associated
linear system solves in Section 9. We conclude our presentation with a discussion of
control methods in Section 10 and a summary (including open problems and future
work) in Section 11. We emphasize that within this paper we mainly focus on finite-
dimensional problems. Nevertheless, the pH model class can be extended to the
infinite-dimensional setting, and we provide a brief discussion and an (incomplete)
list of references at the end of Section 11.

Notation

The setsN,N0, R andC denote natural numbers, non-negative integers, real numbers
and complex numbers, respectively. For a complex number I ∈ C we denote its real
part as Re(I). The set of = × < matrices with values in a field F is denoted by F=,<.
The symbol � is used for the identity matrix, whose dimension is clear from the
context. The rank and corank of a matrix " ∈ F=,< are denoted by rank" and
corank" , where the latter is defined as

corank" := = − rank". (1.1)

The transpose of a matrix and the conjugate transpose (if F = C) are denoted by
"> and "� , respectively. To indicate that a matrix " ∈ F=,= is positive definite or
positive semidefinite, we write" > 0 and" ≥ 0, respectively. TheMoore–Penrose
inverse of a matrix " ∈ F<,=, i.e. the unique matrix � satisfying "�" = ",
�"� = �, (�")� = �" and ("�)� = "�, is denoted by � = "†. A block
diagonal matrix with diagonal blocks �1, . . . , �: is denoted by diag(�1, . . . , �:),
and the span of a list of vectors E1, . . . , E: is denoted by span(E1, . . . , E:).

The spaces of continuous and :-times continuously differentiable functions (with
: ∈ N) from the time interval T to some Banach spaceX are denoted by C(T,X ) and
C:(T,X ), respectively. For a function 5 ∈ C1(T,X ) we write ¤5 := d/dC to denote
the (time) derivative. Similarly, we use the notation ¥5 for the second derivative and
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5 (:) for the :th derivative. The Jacobian of a function 5 : Rℓ → R= is denoted by
(m/mI) 5 (I).

Abbreviations

Throughout the paper, we use the following abbreviations.

DAE differential-algebraic equation
dHDAE dissipative Hamiltonian differential-algebraic equation
ECRM effort constraint reduction method
FCRM flow constraint reduction method
IRKA iterative rational Krylov algorithm

LTI linear time-invariant
LTV linear time-varying
MM moment matching

MSO modelling, simulation and optimization
MOR model order reduction
ODE ordinary differential equation
PDE partial differential equation

pH port-Hamiltonian
pHODE port-Hamiltonian ordinary differential equation
pHDAE port-Hamiltonian differential-algebraic equation

ROM reduced order model

2. The model class of descriptor systems
To allow network-based automated modularized modelling via interconnection,
constraint-preserving simulation, optimization, and control of dynamic models, it is
common practice in many application domains to use the class of (implicit) control
systems, called descriptor systems or differential-algebraic equation (DAE) systems,
of the form

�(C, I(C), ¤I(C), D(C)) = 0, (2.1a)
H(C) − �(C, I(C), D(C)) = 0, (2.1b)

on some time interval T := [C0, Cf] with
� : T × Dz × D¤z × Du → Rℓ and � : T × Dz × Du → R?,

with open domains, vector spaces or manifolds Dz,D¤z,Du. In the finite-dimensional
case of real systems, which is predominantly discussed in this paper, we assume for
ease of presentation that

� : T × R= × R= × R< → Rℓ and � : T × R= × R< → R? .
We refer to I, D and H as the state, input and output, respectively.
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Note that there can be very different roles of inputs in different applications,
for example to deal with control actions, interconnections or disturbances, and
different roles of outputs, for example for measurements, interconnection or ob-
server design. Also, the models typically have parameters or may have random
uncertain components such as unmodelled quantities, uncertainty in parameters, or
disturbances.

We remark that most of the results and methods we present also hold for complex
systems, but we restrict ourselves to the real case in this survey. In the following,
for the sake of a simpler presentation, we will also often omit the time or space
argument whenever this is appropriate or clear from the context.

2.1. Solution concept

It is clear that depending on the application, different solution concepts for (2.1) may
be necessary; see e.g. Brenan, Campbell and Petzold (1996), Kunkel and Mehrmann
(2006) and Lamour, März and Tischendorf (2013).

In the finite-dimensional setting we restrict ourselves to classical function spaces
of continuous or continuously differentiable functions. For control problems as in
(2.1) we often follow the behaviour framework (e.g. Polderman and Willems 1998)
in which a new combined state vector

b := [I> D> H>]> (2.2)

is introduced (or b := [I>, D>]> if only the state equation (2.1a) is considered).
The descriptor system (2.1) is then turned into an under-determined DAE (e.g.
Kunkel and Mehrmann 2001), that is, the meaning of the variables is no longer
distinguished.

Definition 2.1 (solution concept). Consider the DAE (2.1) on the time interval T
with open subsets Dz ⊆ R=, D¤z ⊆ R=, Du ⊆ R<.
(i) Let D : T→ R< be a given input. We call a function I ∈ C1(T,R=) a solution

of the DAE (2.1a) if it satisfies (2.1a) pointwise. It is called a solution of the
initial value problem (2.1) with initial condition

I(C0) = I0 ∈ R= (2.3)

if it furthermore satisfies (2.3).
(ii) An initial value I0 ∈ R= is called consistent with (2.1a) if the associated initial

value problem has at least one solution.
(iii) The control problem (2.1) is called consistent if there exists an inputD: T→ R<

such that the resulting DAE (2.1a) has a solution. It is called regular if, for
every sufficiently smooth input function D : T→ R<, the corresponding DAE
(2.1a) is solvable and the solution is unique for every consistent initial value.

(iv) We call b = [I>, D>, H>]> a behaviour solution of the descriptor system (2.1)
if I is a solution of the DAE (2.1a) for this D and b satisfies (2.1) pointwise.
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Let us emphasize that for DAE systems, typically, not every initial value is
consistent. This is due to the fact that in order to deal with algebraic constraints as
well as over- and under-determined systems, we allow the Jacobian (m/m ¤b)� to be
singular or even rectangular. We refer to Section 2.2 below for further details. For
inconsistent initial values and systems with jumps in the coefficients, one may still
obtain a solution using weaker solution concepts; see e.g. Kunkel and Mehrmann
(2006), Rabier and Rheinboldt (1996a,b) or Trenn (2013). However, for ease of
presentation, we will not cover these weaker solution concepts in this survey.

2.2. Solution theory for general nonlinear descriptor systems

In this subsection we recall the solution theory for general DAE systems

F(C, b(C), ¤b(C)) = 0, (2.4)

with F : T × Db × D ¤b → R! and open sets Db ,D ¤b ⊆ R# . Here b is the standard
state or an extended behaviour vector as in (2.2).
If the Jacobian (m/m ¤b)F is not square or singular, then a solution b of (2.4),

provided such a solution exists, may depend on derivatives of F . This is illustrated
in the following example.

Example 2.2. Consider a linear DAE of the form


1 0 0
0 0 0
0 0 0



¤I1(C)
¤I2(C)
¤I3(C)


=


0 1 0
1 0 0
0 0 0



I1(C)
I2(C)
I3(C)


+


51(C)
52(C)
53(C)


. (2.5)

We immediately notice that I3 does not contribute to the equations and hence can be
chosen arbitrarily. Moreover, the third equation dictates 53 ≡ 0, thus detailing that
a smooth function 5 = [ 51 52 53]> is not sufficient for a solution to exist. The
second equation yields I1(C) = − 52(C), and hence the only valid initial value for I1 is
determined by − 52(C0). Substituting I1(C) = − 52(C) into the first equation yields

I2(C) = − 51(C) − ¤52(C), (2.6)

showing that the solution depends on the derivative of 52. Moreover, we notice that
(2.6) constitutes another algebraic equation that is implicitly encoded in (2.5).

The difficulties arising with these differentiations are classified by so-called index
concepts; see Mehrmann (2015) for a survey. In this paper we mainly make use
of the strangeness index concept (Kunkel and Mehrmann 2006), which is, roughly
speaking, a generalization of the differentiation index (Brenan et al. 1996) to under-
and overdetermined systems. The strangeness index is based on the derivative array
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of level ` (Campbell 1987), defined by

F̃`(C, b, [) :=



F(C, b, ¤b)
d
dCF(C, b, ¤b)

...( d
dC
)̀
F(C, b, ¤b)


∈ R(`+1)! with [ :=



¤b
¥b
...

b(`+1)


∈ R(`+1)# . (2.7)

Since it is a priori not clear that the DAE (2.4) is solvable and that the dimension of
the solution manifold in terms of the algebraic variables C, b, . . . , b(`+1) is invariant
over time, we need to assume that the set

M` :=
{
(C, b, [) ∈ R(`+2)#+1 | F̃`(C, b, [) = 0

}
(2.8)

is non-empty and (locally) forms a manifold. For notational convenience we assume
that M` is a manifold of dimension (` + 2)# + 1 − A. The number A will later
correspond to the dimension of the regular part of the DAE. Following Kunkel and
Mehrmann (1998), we introduce the Jacobians

E` :=
[
mF̃`
m ¤b · · · mF̃`

mb(`+1)

]
∈ R(`+1)!,(`+1)# , (2.9a)

A` := −
[
mF̃`
mb

0 · · · 0
]
∈ R(`+1)!,(`+1)# . (2.9b)

In the following, we will make some constant rank assumptions, which in turn is the
basis for a (local) smooth full-rank decomposition as provided in the next theorem;
see Kunkel and Mehrmann (2006, Theorem 4.3).

Theorem 2.3. For open sets M ⊆ D ⊆ R: let � ∈ C`(D,Rℓ,=). Furthermore,
assume that rank �(I) ≡ A for all I ∈ M. Then, for every Î ∈ M, there exists a suffi-
ciently small neighbourhood V ⊆ D of Î, and matrix functions ) ∈ C`(V,R=,(=−A ))
and / ∈ C`(V,Rℓ,(ℓ−A )) with pointwise orthonormal columns such that

�(I))(I) = 0 and />(I)�(I) = 0 for all I ∈ V.
To analyse the nonlinear DAE (2.4) we now make the following assumption, taken

from Kunkel and Mehrmann (2001) and presented as in Unger (2020), to filter out
the regular part. Note that we use the term corank to denote the difference between
the size of a matrix and its rank; see also (1.1) for a formal definition.

Assumption 2.4. Assume that the set M` in (2.8) is a manifold of dimension
(` + 2)# + 1 − A and the Jacobians defined in (2.9) satisfy

rank[E` A`] = A onM`. (2.10)

Moreover, we have

corank[E` A`] − corank[E`−1 A`−1] = E on M` (2.11)

with the convention that corank m�−1/mb = 0.

https://doi.org/10.1017/S0962492922000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000083


404 V. Mehrmann and B. Unger

The quantity E in Assumption 2.4 measures the number of equations in the
original system that give rise to trivial equations 0 = 0, that is, it counts the number
of redundancies in the system. After the quantification of the regular and redundant
parts of the DAE (2.4), we use the next assumption to filter out the algebraic
equations.

Assumption 2.5. Suppose the DAE (2.4) satisfies Assumption 2.4. Then the
matrix E` defined in (2.9) satisfies

rank E` = A − 0 onM` . (2.12)

Assumption 2.5 together with Theorem 2.3 ensures (locally) the existence of a
smooth matrix function /a : M` → R(`+1)!,0 with pointwise maximal rank on
M`, that satisfies

/>a E` = 0 onM` . (2.13)

The (linearized) algebraic equations are thus encoded in the matrix function

/>a
mF̃`
mb

. (2.14)

To ensure that we are able to solve the algebraic equations for 0 unknowns requires
the matrix in (2.14) to have full rank. This is indeed the case, since (2.13) together
with Assumption 2.4 implies that

rank />a A` = rank /a
mF̃`
mb

= 0.

Again, Theorem 2.3 implies (locally) the existence of a smooth matrix function
)a : M` → R# ,#−0 with pointwise maximal rank satisfying

/>a
mF̃`
mb

)a = 0 on M` . (2.15)

The remaining differential equations must be contained in the original DAE (2.4) (in
contrast to the algebraic equations, which are contained in the derivative array), and
thus we make the following additional assumption.

Assumption 2.6. Let Assumptions 2.4 and 2.5 hold and let )a be constructed as
in (2.15). Define 3 := ! − 0 − E and assume that

rank
mF
m ¤b )a = 3 onM` .

Once again, we employ Theorem 2.3 to (locally) obtain a smooth matrix function
/d of size # × 3 with pointwise maximal rank that satisfies />d (mF/m ¤b))a = 3. The
matrix function /d will later be used to filter out the differential equations.
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To summarize the previous discussion, we make the following assumption, which
for historical reasons (Kunkel and Mehrmann 2001) and since in the linear case
it is actually a theorem, is referred to as a hypothesis. Note that due to the local
character of Theorem 2.3, all assumptions hold only in a suitable neighbourhood.

Hypothesis 2.7. There exist integers `, A, 0 and E such thatM` defined in (2.8)
is non-empty, and such that for every (C0, b0, [0) ∈M` there exists a (sufficiently
small) neighbourhood U in which the following properties hold.

(i) The set M` forms a manifold of dimension (` + 2)# + 1 − A .
(ii) We have rank[E` A`] = A on M` ∩ U .
(iii) We have corank[E` A`] − corank[E`−1 A`−1] = E on M` ∩ U (with the

convention corank[E−1 A−1] = 0).
(iv) We have rank E` = A − 0 on M` ∩ U , such that there exist smooth matrix

functions /a and )a of size (` + 1)! × 0 and # × (# − 0), respectively,
and pointwise maximal rank, satisfying />a E` = 0, rank />a A` = 0 and
/>a (m�̃`/mb))a = 0 on M` ∩ U .

(v) We have rank (mF/m ¤b))a = 3 := ! − 0 − E on M` ∩ U such that there exists
a smooth matrix function /d of size # × 3 and pointwise maximal rank,
satisfying rank />d (m�̃/m ¤b))a = 3.

Definition 2.8. Given the DAE (2.4), the smallest value ` such that F satisfies
Hypothesis 2.7 is called the strangeness index of (2.4). If ` = 0, then the DAE is
called strangeness-free.

Remark 2.9. Hypothesis 2.7 is invariant under a large class of equivalence
transformations (Kunkel and Mehrmann 2006, Section 4.1), which is why the
numbers `, A , 0, E and 3 are referred to as characteristic values for the DAE (2.4).

Following the discussion in Kunkel and Mehrmann (2001), we can use the matrix
functions /0 and /3 to construct the DAE

F̂(C, b, ¤b) :=
[
F̂d(C, b, ¤b)
F̂a(C, b)

]
(2.16)

with
�̂d(C, b, ¤b) := (/>d F)(C, b, ¤b) and �̂a(C, b) := (/>a F̃`)(C, b).

Note that although the matrix functions /a and /d depend on derivatives of b, it is
possible to show (Kunkel and Mehrmann 2001) that the reduced quantities F̂a and
F̂d are independent of higher derivatives of b. In addition, one can show that (2.16)
satisfies Hypothesis 2.7 with characteristic values ` = 0, A, 0 and E. In particular,
(2.16) is strangeness-free.

In the regular case, where # = ! and E = 0, we can simplify Hypothesis 2.7 as
follows; see also Kunkel and Mehrmann (1998).
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Hypothesis 2.10. There exist integers ` and 0 such that the set M` defined
in (2.8) is non-empty, and such that for every (C0, b0, [0) ∈ M` there exists a
(sufficiently small) neighbourhood U in which the following properties hold.

(i) We have rank E` = (` + 1)# − 0 on M` ∩ U such that there exists a smooth
matrix function /a of size (` + 1)# × 0 and pointwise maximal rank such that
/>a E` = 0 onM` ∩ U .

(ii) We have rank />a A` = 0 onM` ∩ U such that there exists a smooth matrix
function )a of size # × 3 with 3 := # − 0 and pointwise maximal rank,
satisfying />a (m�̃`/mb))a = 0 onM` ∩ U .

(iii) We have rank (mF/m ¤b))a = 3 := ! − 0 on M` ∩ U such that there exists
a smooth matrix function /d of size # × 3 and pointwise maximal rank,
satisfying rank />d (m�̃/m ¤b))a = 3.

The relation between the originalDAE (2.4) and the strangeness-free reformulation
(2.16) is given in the following theorem, taken from Kunkel and Mehrmann (2006,
Theorems 4.11 and 4.13). For ease of presentation we will focus on the regular case
using Hypothesis 2.10, and remark that a similar result is also available for the more
general setting described in Hypothesis 2.7; see Kunkel and Mehrmann (2001) for
further details.

Theorem 2.11. LetF as in (2.4) be sufficiently smooth and satisfyHypothesis 2.10
with characteristic values `, 0 and 3 := # − 0. Then the following statements hold.

(i) Every sufficiently smooth solution of (2.4) also solves the strangeness-free
DAE (2.16).

(ii) Suppose additionally that F satisfies Hypothesis 2.10 with characteristic
values `+1, 0 and 3. Then, for every (C0, b0, [0) ∈M`+1, the strangeness-free
problem (2.16) has a unique solution satisfying the initial condition b(C0) = b0.
Moreover, this solution locally solves the original problem (2.4).

Remark 2.12. The relation of the strangeness index concept as presented above
to other index concepts commonly used in the theory of DAEs, such as the
differentiation index (Campbell and Gear 1995), the perturbation index (Hairer
and Wanner 1996), the tractability index (Lamour et al. 2013), the geometric index
(Rheinboldt 1984, Reich 1990) and the structural index (Pantelides 1988, Pryce
2001), is discussed in Mehrmann (2015).

2.3. Linear time-varying DAE systems

If the DAE (2.4) is linear time-varying, i.e. of the form

�(C) ¤b(C) = �(C)b(C) + 5 (C), I(C0) = I0, (2.17)
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with smooth matrix functions �, � : T→ R!,# , then the analysis of the previous
subsection can be further simplified. In this case the Jacobians (2.9) are given by

(E`)8, 9 =
(
8
9

)
� (8− 9) − ( 8

9+1
)
�(8− 9−1), 8, 9 = 0, . . . , `,

(A`)8, 9 =

{
�(8) for 8 = 0, . . . , `, 9 = 0,
0 otherwise.

Since these matrix functions do not depend on the state variable I or its derivatives,
we can get rid of the local character of Hypothesis 2.7 (respectively Hypothesis 2.10)
by using the following simplified version of the smooth rank-revealing decomposition
(see Theorem 2.3); see e.g. Kunkel and Mehrmann (2006, Theorem 3.9).

Theorem 2.13. Let � ∈ C`(T,R!,# ), ` ∈ N0 ∪ {∞}, with rank �(C) = A for
all C ∈ T. Then there exist pointwise orthogonal functions * ∈ C`(T,R!,!) and
+ ∈ C`(T,R# ,# ) such that

*>�+ =
[
Σ 0
0 0

]

with pointwise nonsingular Σ ∈ C`(T,RA ,A ).

In general, we can now proceed as in Hypothesis 2.7 and construct the matrix
functions /a and /d. To avoid checking thatM` is non-empty, we further construct
a matrix function /v of size (`+1)# ×E with pointwise maximal rank that filters out
equations that do not depend on b and its derivatives. If this number of equations
is non-zero, we check whether the right-hand side vanishes as well. If this is the
case, then we omit these equations. If not, then M` = ∅ and the problem has to be
regularized; see Kunkel and Mehrmann (2006). Defining

6` :=
[
5 >

(
d
dC
5

)>
· · · ( 5 (`))>

]>
and

�̂1 := />d �, �̂1 := />d �, �̂2 := />a A`,

5̂1 := />d 5 , 5̂2 := />a 6`, 5̂3 := />v 6`,

we obtain the solution equivalent strangeness-free system

�̂1(C)

0
0


¤b(C) =


�̂1(C)
�̂2(C)

0


b(C) +


5̂1(C)
5̂2(C)
5̂3(C)


. (2.18)

Remark 2.14. In the behaviour case for a control system, where the state variable
is given by b = [I> D>]>, the matrix functions � and � have a block column
structure, where the second block column corresponds to the control. Since the
constructed coefficients �̂1 and �̂2 are obtained by transformations of the derivative
array from the left, the block column structure of � is retained in these matrices.
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Moreover, the strangeness-free reformulation does not depend on derivatives of the
control D.

If we further allow transformations of the solution space via a pointwise nonsin-
gular matrix function, then we can obtain the following solvability result for the
DAE (2.17).

Theorem 2.15. Under some constant rank assumptions the DAE (2.17) is equival-
ent, in the sense that there is a change of basis in the solution space via a pointwise
nonsingular matrix function, to a DAE of the form

¤b1(C) = �̂13(C)b3 + 5̂1(C),
0 = b2(C) + 5̂2(C),
0 = 5̂3(C),

where �13 ∈ C(T,R3,#−3−0) and 5̂1 ∈ C(T,R3), 5̂2 ∈ C(T,R0), 5̂3 ∈ C(T,RE ) are
determined from 6`.

(i) If 5 ∈ C`+1(T,R!), then (2.17) is solvable if and only if 5̂3 = 0.
(ii) An initial value is consistent if and only if in addition the condition

b2(C0) = − 5̂2(C0)

is implied by the initial condition.
(iii) The initial value problem is uniquely solvable if and only if in addition

# − 3 − 0 = 0.

2.4. Linear time-invariant DAE systems

In principle, we can perform the analysis for the linear time-varying case as well in
the case of general constant coefficient linear DAE systems

� ¤b(C) = �b(C) + 5 (C), b(C0) = b0, (2.19)

with matrices �, � ∈ R!,# , also referred to linear time-invariant (LTI) DAE systems.
However, in this setting it is common to work with an equivalence transformation
and a corresponding canonical form. For notational convenience, for the next result
we also allow complex-valued matrices in (2.19) and work in the field of complex
numbers.
We call the matrix pencils B�8 − �8 with �8 , �8 ∈ C!,# , 8 = 1, 2 (strongly)

equivalent if there exist nonsingular matrices ( ∈ C!,! and ) ∈ C# ,# such that

((_�1 − �1)) = _�2 − �2 for all _ ∈ C.
In this case we write _�1 − �1 ∼ _�2 − �2. The associated canonical form is given
by the Kronecker canonical form; see e.g. Gantmacher (1959).

https://doi.org/10.1017/S0962492922000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000083


Control of port-Hamiltonian DAEs 409

Theorem 2.16 (Kronecker canonical form). Let �, � ∈ C!,# . Then
_� − � ∼ diag

(
Ln1 , . . . ,Ln? ,L>[1 , . . . ,L

>
[@ ,J _1

d1 , . . . ,J
_A
dA ,Nf1 , . . . ,NfB

)
,

where the block entries have the following properties.

(i) Every entry Ln 9 is a bidiagonal block of size n 9 × (n 9 + 1), n 9 ∈ N0, of the form

_


1 0

. . .
. . .

1 0


−


0 1

. . .
. . .

0 1


.

(ii) Every entry L>[ 9 is a bidiagonal block of size ([ 9 + 1) × [ 9 , [ 9 ∈ N0, of the
form

_



1

0 . . .
. . . 1

0


−



0

1 . . .
. . . 0

1


.

(iii) Every entry J _ 9
d 9 is a Jordan block of size d 9 × d 9 , d 9 ∈ N, _ 9 ∈ C, of the form

_



1
. . .

. . .

1


−



_ 9 1
. . .

. . .

. . . 1
_ 9


.

(iv) Every entry Nf 9 is a nilpotent block of size f9 × f9 , f9 ∈ N, of the form

_



0 1
. . .

. . .

. . . 1
0


−



1
. . .

. . .

1


.

The Kronecker canonical form is unique up to permutation of the blocks.

Remark 2.17. If the matrices are real-valued and we want to stay within the field
of real numbers, then only real-valued transformation matrices (, ) may be used.
The corresponding canonical form is called the real Kronecker canonical form.
Here the blocks J _ 9

d 9 with _ 9 ∈ C \ R are in real Jordan canonical form instead, but
the other blocks are as in the complex case.

A value _0 ∈ C is called a (finite) eigenvalue of _� − � if

rank(_0� − �) < max
U∈C

rank(U� − �).

If zero is an eigenvalue of _�−� , then _0 = ∞ is said to be an eigenvalue of _� − �.
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The blocks Jd 9 correspond to finite eigenvalues and the blocks Nf 9 correspond
to the eigenvalue ∞. The size of the largest block Nf 9 is called the (Kronecker)
index a of the pencil _� − �, where, by convention, a = 0 if � is invertible. A
finite eigenvalue is called semisimple if the largest Jordan block Jd 9 associated
with this block has d 9 = 1. The pencil _� − � is called regular if # = ! and
det(_0� − �) ≠ 0 for some _0 ∈ C. For regular pencils _� − �, the Kronecker
canonical form simplifies to the Weierstrass canonical form.

Theorem 2.18 (Weierstrass canonical form). Assume that the pencil _� − �
with �, � ∈ C# ,# (�, � ∈ R# ,# ) is regular. Then

_� − � ∼ _
[
� 0
0 N

]
−

[
J 0
0 �

]
, (2.20)

where J and N are in Jordan (real Jordan) canonical form and N is nilpotent.

If the pencil is not regular then there may not exist a solution of (2.19) or it may
not be unique (see e.g. Example 2.2), while in the regular case we have the following
theorem; see Kunkel and Mehrmann (2006) for the complex case.

Theorem 2.19. Consider a regular matrix pencil _� − � of real square matrices
�, � and let ( and ) be nonsingular matrices which transform (2.19) to its real
Weierstrass canonical form (2.20), that is,

(�) =

[
� 0
0 N

]
, (�) =

[
J 0
0 �

]
, ( 5 =

[
51
52

]
,

where J ,N are in real Jordan canonical form and N is nilpotent of nilpotency
index a. Set

)−1b =

[
b1
b2

]
, )−1b0 =

[
b1,0
b2,0

]

with analogous partitioning. If 5 ∈ Ca(T,R# ), then the DAE (2.19) is solvable. An
initial value is consistent if and only if

b2,0 = −
a−1∑
8=0

N 8 5 (8)
2 (C0).

In particular, the set of consistent initial values b0 is non-empty, and every initial
value problem with consistent initial condition is uniquely solvable.

Remark 2.20. To clarify the difference between the (Kronecker) index and the
strangeness index, observe that if a regular LTI DAE system has (Kronecker) index
a > 0, then its strangeness index is ` = a − 1, and if a = 0, then also ` = 0; see also
Mehrmann (2015).
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3. Control concepts for general DAE systems
In this section we discuss different aspects related to control theory of general DAE
systems. Most of our discussion focuses on linear descriptor systems of the form

� ¤I = �I + �D, (3.1a)
H = �I, (3.1b)

with either

– matrices �, � ∈ R=,=, � ∈ R=,<, � ∈ R?,= for the LTI case, or
– matrix functions �, � : T→ R=,=, � : T→ R=,<,� : T→ R?,= for the linear

time-varying (LTV) case.

Remark 3.1. In general, the descriptor system (3.1)may also include a feedthrough
term, that is, the output equation (3.1b) is given by

H = �I + �D
with a suitable matrix or matrix function �. However, in the DAE context, we
can rewrite the descriptor system (3.1) without the feedthrough term, as follows.
Consider any decomposition � = �c�b and the extended system matrices or matrix
functions

�̂ :=
[
� 0
0 0

]
, �̂ :=

[
� 0
0 −�

]
, �̂ :=

[
�
�b

]
, �̂ := [� �c] .

Then the solution of the associated descriptor system contains the solution of the
descriptor system with feedthrough term.

3.1. Feedback regularization

As we have seen in Section 2, a DAE system may not be regular, that is, there may
not be any initial values such that the initial value problem has a solution, or a
solution for a consistent initial value may not be unique. To deal with this situation,
we first discuss how to regularize a descriptor system via instantaneous, proportional
(linear) state or output feedback, i.e. via feedback laws of the form

D = �1I + F or D = �2H + F, (3.2)

respectively, with suitable matrices or matrix functions �1 and �2. After applying
such a feedback, the closed-loop system matrices, respectively matrix functions, are
given by �̃ := � and

�̃1 := � + ��1 and �̃2 := � + ��2�,

respectively.
We start our analysis for the LTI case and recall important conditions for con-

trollability and observability. If the matrix � in (3.1) is nonsingular, then the
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well-known Hautus lemma (e.g. Dai 1989) asserts that the LTI descriptor system
(3.1) is controllable if and only if

rank[_� − � �] = = for all _ ∈ C. (3.3)

If � is singular, then the situation is more involved and we need the following
conditions, taken for instance from Dai (1989) or Bunse-Gerstner, Byers, Mehrmann
and Nichols (1999).

Definition 3.2. Consider the LTI descriptor system (3.1) and let (∞ be a matrix
with columns that span the kernel of � .

(i) The system (3.1) is called controllable at∞ or impulse controllable if

rank[� �(∞ �] = =. (3.4)

(ii) The system (3.1) is called strongly controllable if it is impulse controllable
and (3.3) is satisfied.

(iii) The system (3.1) is called strongly stabilizable if it is impulse controllable and
(3.3) holds for all _ ∈ C with Re(_) ≥ 0.

The corresponding dual conditions with respect to the output equation are given as

rank[_�> − �> �>] = =, (3.5)
rank[�> �>)∞ �>] = =, (3.6)

respectively, where )∞ is a matrix that spans the kernel of �>.

Definition 3.3. Consider the LTI descriptor system (3.1) and let )∞ be a matrix
with columns that span the kernel of �>.

(i) The system (3.1) is called observable at∞ or impulse observable if condition
(3.6) is satisfied.

(ii) The system (3.1) is called strongly observable if it is impulse observable and
if (3.5) holds for all _ ∈ C.

(iii) The system (3.1) is called strongly detectable if it is impulse observable and if
(3.5) holds for all _ ∈ C with Re(_) ≥ 0.

A system that satisfies conditions (3.3) and (3.5) is called minimal.

Conditions (3.5) and (3.6) are preserved under nonsingular equivalence trans-
formations as well as under state and output feedback. More precisely, if the system
satisfies (3.5) and (3.6), then for any nonsingular * ∈ R=,=, + ∈ R=,=, and any
�1 ∈ R<,= and �2 ∈ R<,?, the system with coefficients (�̃ , �̃, �̃, �̃) satisfies the
same condition for all of the following three choices:

�̃ = *�+, �̃ = *�+, �̃ = *�,

�̃ = �, �̃ = � + ��1, �̃ = �,

�̃ = �, �̃ = � + ��2�, �̃ = �.
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Analogous invariance properties hold for (3.5) and (3.6). Further details and
properties of LTI DAE systems are discussed in Berger and Reis (2013).

Note, however, that regularity or non-regularity of the pencil and the (Kronecker)
index are in general not preserved under state or output feedback, respectively. On
the contrary, feedback of the form (3.2) may be used to regularize the system, as
detailed in the following theorem taken from Bunse-Gerstner et al. (1999).

Theorem 3.4. Consider the LTI descriptor system (3.1).

(i) If (3.1) is impulse controllable, i.e. condition (3.4) is satisfied, then there exists
a suitable linear state feedback matrix �1 such that _� − (� + ��1) is regular
and of (Kronecker) index a ≤ 1.

(ii) If (3.1) is impulse controllable and impulse observable, i.e. conditions (3.4)
and (3.6) hold, then there exists a linear output feedback matrix �2 such that
the pencil _� − (� + ��2�) is regular and of (Kronecker) index a ≤ 1.

Remark 3.5. Although instantaneous feedback is a convenient theoretical ap-
proach, it may suffer from the fact that signals have to be measured first, and some
calculations have to be carried out, thus resulting in an intrinsically necessary time
delay. If this time delay cannot be ignored in the modelling phase, then for some
g > 0 the feedback takes the form

D(C) = �1I(C − g) + F(C) or D(C) = �2H(C − g) + F(C),

thus rendering the closed-loop system a delay DAE. However, the DAE can be
regularized with delayed feedback if and only if it can be regularized with instantan-
eous feedback; see Trenn and Unger (2019) and Unger (2020) for further details.
Nevertheless, we always assume that the feedback delay can be ignored in the
modelling phase within this survey.

For the feedback regularization in the LTV and nonlinear case, we followCampbell,
Kunkel and Mehrmann (2012) and use the behaviour approach as introduced in
(2.2). In more detail, for the LTV descriptor system (3.1), we form the (matrix)
functions

b :=
[
I
D

]
, E := [� 0], A := [� �] . (3.7)

Ignoring the fact that b is composed of parts that may have quite different orders
of differentiability, we form the derivative array (2.7) and follow the approach
presented in Section 2.3. In more detail, we construct matrices Ê1, Â1 and Â2, such
that the system 

Ê1(C)
0
0


¤b(C) =


Â1(C)
Â2(C)

0


b(C) (3.8)

is solution equivalent to (3.1) and strangeness-free. Since the matrix functions
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are obtained solely by transformations of the derivative array from the left, the
partitioning of the matrices as introduced in (3.7) is retained in (3.8); see also
Remark 2.14. In particular, the state I and the input function D are not mixed, such
that we can rewrite (3.8) as


�̂1(C)

0
0


¤I(C) =


�̂1(C)
�̂2(C)

0


I(C) +


�̂1(C)
�̂2(C)

0


D(C), (3.9)

with Ê1 = [�̂1 0], Â1 = [ �̂1 �̂1] and Â2 = [ �̂2 �̂2].
Remark 3.6. We have constructed (3.8) such that the system is strangeness-free
(with respect to the combined state variable b). Since (3.9) is simply obtained by
rewriting (3.8), it is also strangeness-free with respect to b. However, it may not be
strangeness-free with respect to the original state variable I (in the sense that we
assume D to be given). To distinguish this subtlety in the following, we say that a
descriptor system is strangeness-free as a free system if it is strangeness-free with
respect to I for given input D ≡ 0.

To theoretically analyse the regularizability via feedback control, we use the
following condensed form; see Kunkel, Mehrmann and Rath (2001).

Theorem 3.7. Consider the LTV descriptor system (3.1) and assume that the
corresponding behaviour system defined in (3.7) has a well-defined strangeness
index with strangeness-free form (3.8). Then, under some constant rank assumptions,
there exist pointwise nonsingular matrix functions (z ∈ C(T,R=,=), )z ∈ C(T,R=,=),
(y ∈ C(T,R?,?), )u ∈ C(T,R<,<) such that setting

I = )z
[
I>1 I>2 I>3 I>4

]>
, D = )u

[
D>1 D>2

]>
, H = (y

[
H>1 H>2

]>
,

and multiplying (3.9) by appropriate matrix functions from the left, yields a
transformed control system of the form

¤I1 = �13(C)I3 + �14(C)I4 + �12(C)D2, 3, (3.10a)
0 = I2 + �22(C)D2, 0 − q, (3.10b)
0 = �31(C)I1 + D1, q, (3.10c)
0 = 0, E, (3.10d)
H1 = I3, l, (3.10e)
H2 = �21(C)I1 + �22(C)I2, ? − l, (3.10f)

where the number at the end of each block equation denotes the number of equations
within this block.

Corollary 3.8. Let the assumptions be as in Theorem 3.7. Furthermore, let the
quantities q and l defined in (3.10) be constant. Then the following properties
hold.
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(i) The LTV system (3.1) is consistent. Equation (3.10d) describes a redundancy
in the system that can be omitted.

(ii) If q = 0, then for a given input function D, an initial value is consistent if and
only if it implies (3.10b). Solutions of the corresponding initial value problem
will generally not be unique.

(iii) The system is regular and strangeness-free (as a free system) if and only if
E = q = 0 and 3 + 0 = =.

Analogous to the constant coefficient case, we can use proportional feedback to
modify some of the system properties. However, the following result (Kunkel and
Mehrmann 2006, Theorem 3.80) states that some properties stay invariant.

Theorem 3.9. Consider the LTV descriptor system (3.1) and suppose that the
assumptions of Theorem 3.7 are satisfied. Then the characteristic values 3, 0 and E
are invariant under proportional state feedback and proportional output feedback.

The strangeness index (as a free system) as well as the regularity of the system
can, however, be modified by proportional feedback; see Kunkel et al. (2001).

Corollary 3.10. Let the assumptions of Corollary 3.8 hold.

(i) There exists a state feedback D = �I + F such that the closed-loop system

� ¤I = (� + ��)I + �F
is regular (as a free system) if and only if E = 0 and 3 + 0 = =.

(ii) There exists an output feedback D = �H + F such that the closed-loop system

� ¤I = (� + ���)I + �F
is regular (as a free system) if and only if E = 0, 3 + 0 = = and q = l.

A similar local result is also available for nonlinear descriptor systems of the
form (2.16); see Campbell et al. (2012) for details.

3.2. Stability

One of the key questions in control is whether a system can be stabilized via
feedback control. In this section we therefore recall the stability theory for ordinary
differential equations (ODEs) and discuss how these concepts are generalized to
DAE systems. The classical stability concepts for ODEs are as follows; see e.g.
Hinrichsen and Pritchard (2005). Consider an ODE of the form

¤I = 5 (C, I), C ∈ T∞ = [C0,∞] (3.11)

and denote the solution satisfying the initial condition I(C0) = I0 by I(·; C0, I0).
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Definition 3.11. We classify the solution I(·; C0, I0) of (3.11) as follows.
(i) A solution is stable if, for every Y > 0, there exists X > 0 such that, for all

Î0 ∈ R= with ‖ Î0 − I0‖ < X,
– the initial value problem (3.11) with initial condition I(C0) = Î0 is solvable
on T∞ and

– the solution I(C; C0, Î0) satisfies ‖I(C; C0, Î0) − I(C; C0, I0)‖ < Y on T∞.
(ii) A solution is asymptotically stable if it is stable and there exists r > 0 such

that, for all Î0 ∈ R= with ‖ Î0 − I0‖ < d,
– the initial value problem (3.11) with initial condition I(C0) = Î0 is solvable
on T∞ and

– the solution I(C; C0, Î0) satisfies limC→∞ ‖I(C; C0, Î0) − I(C; C0, I0)‖ = 0.
(iii) A solution is exponentially stable if it is stable and exponentially attractive,

that is, if there exist X > 0, ! > 0 and W > 0 such that, for all Î0 ∈ R= with
‖ Î0 − I0‖ < X,
– the initial value problem (3.11) with initial condition I(C0) = Î0 is solvable
on T∞ and

– the solution satisfies the estimate

‖I(C; C0, Î0) − I(C; C0, I0)‖ < !e−W(C−C0) on T∞.

If X does not depend on C0, then we say the solution is uniformly (exponentially)
stable.

By shifting the arguments we may assume that the reference solution is the trivial
solution I(C; C0, I0) = 0.

Remark 3.12. To analyse the stability of a given ODE systems (finite- or infinite-
dimensional) is analytically and computationally very challenging; see e.g.Adrianova
(1995), Dieci, Russell andVanVleck (1997), Dieci andVanVleck (2002), Hinrichsen
and Pritchard (2005) and La Salle (1976).

For DAE systems
�(C, I, ¤I) = 0, C ∈ T∞

the stability concepts in Definition 3.11 essentially carry over. However, when
perturbing a consistent initial value, it may happen that the perturbed initial value is
no longer consistent. Then the solution (if we allow discontinuities in the part of
the state vector that is not differentiated) has a discontinuous jump that transfers
the solution to the constraint manifold. For a strangeness-free DAE this would
not be a problem because such a jump does not destroy the stability properties.
If, however, the strangeness index is bigger than zero, then, due to the required
differentiations, the solution may only exist in the distributional sense; see e.g.
Kunkel and Mehrmann (2006), Rabier and Rheinboldt (1996a) and Trenn (2013).
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Example 3.13. Consider the homogeneous linear time-invariant DAE from Du,
Linh and Mehrmann (2013):

¤I1 = I2, 0 = −I1 − YI2.

If Y > 0 then the DAE is strangeness-free and has the solution

I1(C) = e−Y
−1C I1(0), I2(C) = −Y−1 e−Y

−1C I1(0).

With a consistent initial value I2(0) = −Y−1I1(0), the solution is asymptotically
stable but this limit would not exist for Y → 0 unless Y−1I1(C) is bounded for C → 0.
If Y = 0 then the DAE has strangeness index one, and for the solution I1 = 0,
I2 = ¤I1 = 0 the initial value I1(0) is restricted as well. For I1(0) = 1, I1 exists and
is the discontinuous function that jumps from 1 to 0 at C = 0 and I2 would only be
representable by a delta distribution. Finally, if Y < 0, then the solution is unstable.

The stability analysis and computational methods for DAE systems, therefore,
assume uniquely solvable strangeness-free systems. If the system is not strangeness-
free, then we first perform a strangeness-free reformulation, as discussed in Sec-
tion 2.2.
For a strangeness-free system, a solution of the system is called stable, asymp-

totically stable, (uniformly) exponentially stable, respectively, if it satisfies the
corresponding condition in Definition 3.11 for consistent perturbed initial values Î0.
Then many analytical results and computational methods can be extended to the
case of strangeness-free DAE systems; see Kunkel and Mehrmann (2007), Linh and
Mehrmann (2009, 2011, 2014) and Linh, Mehrmann and Van Vleck (2011).
For LTI ODE systems

¤I = �I, (3.12)

with � ∈ R=,=, it is well known (e.g. Adrianova 1995) that the system is asymptotic-
ally (and also uniformly exponentially) stable if all the eigenvalues are in the open
left half of the complex plane and stable if all the eigenvalues are in the closed left
half-plane and the eigenvalues on the imaginary axis are semisimple, that is, the
associated Jordan blocks have size at most one.

The stability analysis can also be carried out via the computation of a Lyapunov
function given by +(I) = 1

2 I
>-I, where for stability - = -> > 0 is a solution of

the Lyapunov inequality
�>- + -� ≤ 0, (3.13)

and for asymptotic stability it is a positive definite solution of the strict inequality
�>- + -� < 0; see e.g. Kailath (1980).
The spectral characterization of stability for ODE systems can be generalized to

LTI DAE systems
� ¤I = �I, (3.14)

with �, � ∈ R=,=; see e.g. Du et al. (2013).
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Theorem 3.14. Consider the DAE (3.14) with a regular pencil _� − � of (Kro-
necker) index at most one. The trivial solution I = 0 then has the following stability
properties.
(i) If all finite eigenvalues have non-positive real part and the eigenvalues on the

imaginary axis are semisimple, then the trivial solution I = 0 is stable.
(ii) If all finite eigenvalues have negative real part, then the trivial solution I = 0

is uniformly and thus exponentially and asymptotically stable.

For LTV ordinary differential equations

¤I = �(C)I, (3.15)

the different stability properties are characterized by means of the fundamental
solution Φ(·, C0) ∈ C1(T,R=,=) that satisfies

m

mC
Φ(C, C0) = �(C)Φ(C, C0), Φ(C0, C0) = �= (3.16)

such that I(C; C0, I0) = Φ(C, C0)I0; see e.g. Adrianova (1995).

Theorem 3.15. Consider the LTV ODE (3.15) with fundamental solution Φ as in
(3.16). The trivial solution of the LTV ODE (3.15)
(i) is stable if and only if there exists a constant ! > 0 with ‖Φ(C, C0)‖ ≤ ! on T;
(ii) is asymptotically stable if and only if ‖Φ(C, C0)‖ → 0 for C →∞;
(iii) is exponentially stable if there exist ! > 0 and W > 0 such that ‖Φ(C, C0)‖ ≤

! e−W(C−C0) on T.

To obtain the results that extend this characterization to LTV DAE systems

�(C) ¤I = �(C)I, (3.17)

assume again that the initial value problem associated with (3.17) has a unique
solution for every consistent initial value and is strangeness-free. If the system is
not strangeness-free then we first perform the transformation to strangeness-free
form as in Section 2.2.
For a regular strangeness-free system (3.17) there exist pointwise orthogonal

matrix functions ( ∈ C(T,R=,=), ) ∈ C1(T,R=,=) such that

(�) =

[
�11 0
0 0

]
, (�) − (� ¤) =

[
�11 �12
�21 �22

]
, (3.18)

with �11, �22 pointwise nonsingular, and I = +
[I1
I2

]
. Under the condition of a

bounded matrix function �−1
22 �21, we obtain the algebraic equation I2 = −�−1

22 �21I1
and the so-called inherent ODE associated with (3.17) given by

¤I1 = �
−1
11
(
�11 − �12�

−1
22 �21

)
I1. (3.19)

It is then clear that for the different stability concepts to extend to DAE systems it is
necessary that (3.19) satisfies the corresponding stability conditions.
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Remark 3.16. For ODE systems there is also a well-known extension of the
spectral stability analysis via the computation of Lyapunov, Bohl and Sacker-Sell
spectral intervals. These results have been extended to DAE systems; see Berger
(2012), Linh and Mehrmann (2009, 2012, 2014) and Linh et al. (2011). We will
not discuss this topic further, but just mention that it is computationally highly
expensive.

For general autonomous nonlinear ODE systems ¤I = 5 (I), the fundamental
approach to analyse the stability properties is to compute a Lyapunov function +(I)
such that ¤+(I) is negative definite in a neighbourhood of the solution I. If such
a Lyapunov function exists, then the equilibrium solution I = 0 is asymptotically
stable; see e.g. La Salle and Lefschetz (1961) and Adrianova (1995). This approach
can also be used for general strangeness-free DAE systems by reducing the system
to the inherent ODE.

3.3. Stabilization

Since, in physical systems, the stability of a solution is typically a crucial property, it
is important to know how a stable system behaves under disturbances or uncertainties
in the coefficients and how an unstable system can be stabilized with the help of
feedback control strategies. First let us consider this question for LTI control
problems of the form (3.1) and ask whether it is possible to achieve stability or
asymptotic stability via proportional state or output feedback.
We have seen in Theorem 3.4 that for a strongly stabilizable system there exists

an � ∈ R<,= such that the pair (�, � + ��) is regular and of (Kronecker) index at
most one. Moreover, for a strongly stabilizable and strongly detectable system, there
exists an � ∈ R<,? such that the pair (�, � + ���) is regular and of (Kronecker)
index at most one. In the construction of stabilizing feedbacks, we can therefore
assume that such a (preliminary) state or output feedback has been performed and
therefore that the pair (�, �) is regular and of (Kronecker) index at most one.
The calculation of stabilizing feedback control laws can then be performed via

an optimal control approach (see also Section 3.5 below), by minimizing the cost
functional

J (I, D) =
1
2

∫ ∞

C0

[
I
D

]> [
,z (
(> ,u

] [
I
D

]
dC (3.20)

subject to the constraint (3.1). We could also have used the output function H instead
of the state function I by inserting H = �I and modifying the weights accordingly.
The following results, which are based on the Pontryagin maximum principle, are
taken from Mehrmann (1991).

Theorem 3.17. Consider the optimal control problem to minimize (3.20) subject
to the constraint (3.1) with a pair (�, �) that is regular and of (Kronecker) index at
most one. Suppose that a continuous solution D★ to the optimal control problem
exists and let I★ be the solution of (3.1) with this input function. Then there exists
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a Lagrange multiplier function _ ∈ C1(T,R=) such that I★, D★ and _ satisfy the
boundary value problem


0 � 0
−�> 0 0

0 0 0



¤_
¤I
¤D


=


0 � �
�> ,z (
�> (> ,u



_
I
D


, (3.21)

with boundary conditions

�†�I(C0) = I0, lim
C→∞ �

>_(C) = 0, (3.22)

where �† denotes the Moore–Penrose inverse of � .

Theorem 3.18. Suppose that I★, D★ and _ satisfy the boundary value problem
(3.21), (3.22) and suppose, furthermore, that the matrix[

,z (
(> ,u

]

is positive semidefinite. Then

J (I, D) ≥ J (I★, D★)

for all I and D satisfying (3.1).

The solution of the optimality boundary value problem (3.21) with boundary
conditions (3.22) will yield the optimal control D and the corresponding optimal
state I. However, in many real-world applications we would like the optimal control
to be a state feedback. A sufficient condition for this to hold is that the matrix
pencil associated with (3.21) is regular of (Kronecker) index at most one and has
no purely imaginary eigenvalue. If the matrix,u is positive definite and (�, �, �)
is strongly stabilizable, then this can be guaranteed (Mehrmann 1991) and we can
proceed as follows. Recall that we have assumed that the pair (�, �) is regular and
of (Kronecker) index at most one. Then the coefficients �, �, �,,z, (,,u can be
transformed such that (�, �) is in Weierstrass canonical form (2.20), that is,

%�& =

[
� 0
0 0

]
, %�& =

[
� 0
0 �

]
, %� =

[
�1
�2

]
,

with transformed cost function

&>,z& =

[
,11 ,12
,21 ,22

]
, &>( =

[
(1
(2

]
.

Setting

&−1I =:
[
I1
I2

]
, &−1_ =:

[
_1
_2

]
, &−1I0 =:

[
I1,0
I2,0

]

and reordering equations and unknowns, we obtain the transformed boundary value
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problem


0 � 0 0 0
−� 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





¤_1
¤I1¤_2
¤I2
¤D


=



0 � 0 0 �1
�> ,11 0 ,12 (1
0 0 0 � �2
0 ,>12 � ,22 (2

�>1 (>1 �>2 (>2 ,u





_1
I1
_2
I2
D


, (3.23)

with boundary conditions

I1(C0) = I1,0, lim
C→∞_1(C) = 0. (3.24)

Solving the third and fourth equation in (3.23) gives

I2 = −�2D and _2 = −,>12I1 −,22I2 − (2D.

Inserting these into the other equations gives the reduced optimality system


0 � 0
−� 0 0

0 0 0



¤_1
¤I1
¤D


=


0 � �1
�> ,11 (̃1
�>1 (̃>1 ,̃u



_1
I1
D


, (3.25)

with (̃1 = (1−,12�2, ,̃u = ,u−(>2 �2−�>2 (2+�>2,22�2 and boundary conditions
(3.24). This is the classical optimality condition associated with the ODE constraint
¤I1 = �I1 + �1D and the cost matrix

W̃ =

[
,11 (̃1
(̃>1 ,̃D

]
,

for which the standard theory for optimal control with ODEs constraints can be
applied; see e.g. Mehrmann (1991).
With an ansatz _1 = -I1 with - = ->, the optimal control takes the form of a

state feedback
D = �I1 = −,̃−1

u
(
�>1 - + (̃>1

)
I1.

Inserting _1 = -I1 into (3.25), we obtain the system

¤I1 =
(
� − �1,̃

−1
u
(
(̃1 + �>1 -

))
I1,

−- ¤I1 =
((
� − �1,̃

−1
u (̃>1

)>
- +,11 − (̃1,̃

−1
u (̃>1

)
I1,

0 = lim
C→∞ -I1(C).

A sufficient condition for this system to have a solution (Mehrmann 1991) is that we
can find a positive semidefinite solution - = -> to the algebraic Riccati equation

0 = ,11 + -� + �>- −
(
�>1 - + (̃>1

)>
,̃−1

u
(
�>1 - + (̃>1

)
.

If ,̃u is not invertible then there are further restrictions on the boundary conditions
that may defer the solvability of the boundary value problem; see Mehrmann (1991)
for details and Section 10.2 below.

https://doi.org/10.1017/S0962492922000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000083


422 V. Mehrmann and B. Unger

3.4. Passivity

Another important property of control systems is the concept of passivity. Let us
first introduce a passivity definition for general DAE control systems of the form
(2.1) with a state space Z , input space U and output space Y . See Byrnes, Isidori
and Willems (1991) for the definition for ODE systems.

To introduce this definition we consider a positive definite and quadratic storage
function H : Z → R as well as a supply function S : Y × U → R satisfying

S(0, D) = 0 for all D ∈ U ,
S(H, 0) = 0 for all H ∈ Y .

Definition 3.19. An autonomous DAE of the form (2.1) is called (strictly) dissip-
ative with respect to the storage functionH(I) and supply function S(H, D) if there
exists a positive semidefinite (positive definite) function Φ : X → R, such that for
any D ∈ U and for any C0 < C1 the equation

H(I(C1)) −H(I(C0)) =
∫ C1

C0

S(H(B), D(B)) −Φ(I(B)) dB (3.26)

holds for all (H, D) ∈ Y × U .
A (strictly) dissipative system is often called (strictly) passive if the particular

supply rate ((H, D) = H>D is used.

Equation (3.26) is called the storage energy balance equation and directly implies
that the dissipation inequality

H(I(C1)) −H(I(C0)) ≤
∫ C1

C0

S(H(B), D(B)) dB

holds for all (H, D) ∈ Y ×U . Note that for passive systems the storage energy balance
equation is typically called power balance equation.
For LTI ODE systems of the form

¤I = �I + �D,
H = �I + �D,

passivity can be characterized (Willems 1971) via the existence of a positive definite
solution - = -> of a linear matrix inequality, the Kalman–Yakubovich–Popov
inequality

,(-) :=
[−-� − �>- �> − -�
� − �>- � + �>

]
≥ 0. (3.27)

For strict passivity this inequality has to be strict. Note that (3.27) generalizes
the Lyapunov inequality (3.13), which is just the leading block, and hence (strict)
passivity directly implies (asymptotic) stability.
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The relationship between passivity and the linear matrix inequality (3.27) has
been extended to LTI DAE systems in Reis, Rendel and Voigt (2015) and Reis and
Voigt (2015). Since passive systems are closely related to port-Hamiltonian systems,
we will come back to this topic in Section 7.4.

3.5. Optimal control

An important task in control theory is the solution of optimal control problems that
minimize a cost functional subject to an ODE or DAE system. The optimal control
theory for general nonlinear DAE systems was presented in Kunkel and Mehrmann
(2008). In this section we recall these general results.

Consider the optimal control problem to minimize a cost functional

J (I, D) =M(Cf) +
∫ Cf

C0

K(C, I(C), D(C)) dC

subject to a constraint given by an initial value problem associated with a nonlinear
DAE system

�(C, I, D, ¤I) = 0, I(C0) = I0.

We can rewrite this problem in the behaviour representation (see the discussion in
Section 2.2) with b = [I> D>]>, and then study the optimization problem

J (b) =M(b(Cf)) +
∫ Cf

C0

K(C, b(C)) dC = min! (3.28)

subject to the constraint

�(C, b, ¤b) = 0, [�= 0]b(C0) = I0. (3.29)

If Hypothesis 2.7 holds, then for this system we have (locally via the implicit
function theorem) a strangeness-free reformulation (Kunkel and Mehrmann 2006)
given by

¤I1 = L(C, I1, D), I1(C0) = I1,0,

I2 = R(C, I1, D),
(3.30)

and the associated cost function reads

J (I1, I2, D) =M(I1(Cf), I2(Cf)) +
∫ Cf

C0

K(C, I1, I2, D) dC. (3.31)

For this formulation, the necessary optimality conditions in the space

W := C1(T,R3) × C(T,R0) × C(T,R<)

are presented in the following theorem. We refer to Kunkel and Mehrmann (2008)
for the original presentation and the proof.

Theorem 3.20. Let b be a local solution of (3.28) subject to (3.29) in the sense
that (I1, I2, D) ∈ W is a local solution of (3.31) subject to (3.30). Then there exist
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unique Lagrange multipliers (_1, _2, W) ∈ W such that (I1, I2, D, _1, _2, W) solves
the boundary value problem

¤I1 = L(C, I1, D), I1(C0) = I1,0,

I2 = R(C, I1, D),

¤_1 =
m

mI1
K(C, I1, I2, D)> − m

mI1
L(C, I1, I2, D)>_1 − m

mI1
RI1(C, I1, D)>_1,

_1(Cf) = − m

mI1
M(I1(Cf), I2(Cf))>

0 =
m

mI2
K(C, I1, I2, D)> + _2,

0 =
m

mD
K(C, I1, I2, D)> − m

mD
L(C, I1, D)>_1 − m

mD
R(C, I1, D)>_2,

W = _1(C0).

Theorem 3.20 is a local result based on the implicit function theorem that has
to be modified to turn it into a computationally feasible procedure (Kunkel and
Mehrmann 2008), and which can be substantially strengthened for the minimization
of quadratic cost functionals

J (I, D) =
1
2
I(Cf)>"I(Cf) + 1

2

∫ Cf

C0

(I>,zI + 2I>(D + D>,uD) dC, (3.32)

with ,z = ,>z ∈ C(T,R=,=), ,u = ,>u ∈ C(T,R<,<), ( ∈ C(T,R=,<) and
" = "> ∈ R=,=, subject to LTV DAE constraints

� ¤I = �I + �D + 5 , I(C0) = I0, (3.33)

with � ∈ C(T,R=,=), � ∈ C(T,R=,=), � ∈ C(T,R=,<), 5 ∈ C(T,R=), I0 ∈ R=,
D ∈ U := C(T,R<) and 5 ∈ C(T,R=). Using the property that for the Moore–
Penrose inverse �† of � we have

� ¤I = ��†� ¤I = � d
dC

(�†�I) − � d
dC

(�†�)I,

we interpret (3.33) as

�
d
dC

(�†�I) =
(
� + � d

dC
(�†�)

)
I + �D + 5 , (�†�I)(C0) = I0.

This allows the particular solution space (Kunkel and Mehrmann 1996)

Z := C1
�†� (T,R=) := {I ∈ C(T,R=) | �†�I ∈ C1(T,R=)},

which ensures that the differentiability of the state variable is only required in
this restricted space. Note that with this definition we slightly extend our solution
concept from Definition 2.1. Using the solution space Z, Kunkel and Mehrmann
(2008) derived the following necessary optimality condition.
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Theorem 3.21. Consider the optimal control problem (3.32) subject to (3.33)
with a consistent initial condition. Suppose that (3.33) is strangeness-free as a
behaviour system and that the range of " is contained in the cokernel of �(Cf).
If (I, D) ∈ Z × U is a solution to this optimal control problem, then there exists a
Lagrange multiplier function _ ∈ Z such that (I, _, D) satisfy the boundary value
problem

�
d
dC

(�†�I) =
(
� + � d

dC
(�†�)

)
I + �D + 5 , (3.34a)

�>
d
dC

(��†_) = ,zI + (D − (� + ��† ¤�)>_, (3.34b)

0 = (>I +,uD − �>_, (3.34c)
(�†�I)(C0) = I0, (��†_)(Cf) = −�†(Cf)>"I(Cf). (3.34d)

Remark 3.22. If we have an output equation, then we can also consider the cost
functional (3.32) with the state replaced by the output. This problem can be treated
analogously by inserting the output equation in the cost functional and renaming
the coefficients. The same approach with a modified cost functional can also be
used when we want to optimally drive the solution to a reference function Ĩ.

Kunkel and Mehrmann (2011) (see also Backes 2006, Kurina and März 2004)
demonstrated that it is generally not possible to drop the assumptions of Theorem 3.21
and instead consider the formal optimality system

� ¤I = �I + �D + 5 , I(C0) = I0,

d
dC

(�>_) = ,zI + (D − �>_, (�>_)(Cf) = −"I(Cf),
0 = (>I +,uD − �>_.

(3.35)

However, if this formal optimality system has a unique solution, then the state I
and the control D are correct but the optimal Lagrange multiplier may be different.
In this case, under some further assumptions, Kunkel and Mehrmann (2011) also
showed a sufficient condition in generalizing results from Backes (2006).

Theorem 3.23. Consider the optimal control problem (3.32) subject to (3.33) with
a consistent initial condition, and suppose that in the cost functional (3.32) we have
that the matrix functions

[
,I (
(> ,u

]
and " are (pointwise) positive semidefinite. If

(I★, D★, _) satisfies the formal optimality system (3.35), then for any (I, D) satisfying
(3.33) we have

J (I, D) ≥ J (I★, D★).

Numerically, the solution of the boundary value problem (which is always a DAE)
is a challenge, in particular for large-scale problems. For the case when � = � and if
,u is positive definite, which means that the optimality system is strangeness-free,
then a classical approach successfully employed in many applications is to resolve
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(3.34c) for D, and then to decouple the state equation (3.34a) and the adjoint equation
(3.34b) via the solution of a Riccati differential equation.

If some further conditions hold, then the Riccati approach can also be carried out
for DAE systems; see Kunkel and Mehrmann (2011). If the constraint system with
D = 0 is regular, strangeness-free, and � has constant rank, then, using Theorem 2.3,
there exist pointwise orthogonal % ∈ C(T,R=,=) and & ∈ C1(T,R=,=) such that

�̃ = %�& =

[
�11 0
0 0

]
, �̃ = %�& − %� ¤& =

[
�11 �12
�21 �22

]
,

�̃ = %� =

[
�1
�2

]
, ,̃z = &

>,z& =

[
,11 ,12
,21 ,22

]
, 5̃ = % 5 =

[
51
52

]
,

(̃ = &>( =
[
(1
(2

]
, I = &Ĩ =

[
I1
I2

]
, I0 = &Ĩ0 =

[
I0,1
I0,2

]
, (3.36)

with �11 ∈ C(T,R3,3) and �22 ∈ C(T,R0,0) pointwise nonsingular. Constructing
the formal optimality system associatedwith this transformed system and rearranging
the equations, the following theorem is proved in Kunkel and Mehrmann (2011).

Theorem 3.24. The DAE in (3.34) is regular and strangeness-free if and only if

,̂D =


0 �22 �2
�>22 ,22 (2

�>2 (>2 ,u


is pointwise nonsingular, where we used the notation of (3.36).

If ,̂D is pointwise nonsingular, then


−_2
I2
D


= −,̂−1

D





0 �21
�>12 ,21

�>1 (>1


[−_1
I1

]
+


52
0
0



.

The remaining equations can be written as
[

�11 ¤I1
d
dC
((−�>11

)
(−_1)

)
]
=

[
0 �11
�>11 ,11

] [−_1
I1

]
+

[
0 �12 �1
�>21 ,>21 (1

] 
−_2
I2
D


+

[
51
0

]
.

Defining

�1 := �−1
11
(
�11 − [0 �12 �1],̂−1

D

[
�>21 ,>21 (1

]>)
,

�1 := �−1
11 [0 �12 �1],̂−1

D [0 �12 �1]>�−>11 ,

�1 := ,11 −
[
�>21 ,>21 (1

]
,̂−1
D

[
�>21 ,>21 (1

]>
,

61 := �−1
11
(
51 − [0 �12 �1],̂−1

D

[
5 >2 0 0

]>)
,

ℎ1 := −[�>21 ,>21 (1
]
,̂−1
D

[
5 >2 0 0

]>
,
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we obtain the boundary value problem

¤I1 = �1I1 + �1
(
�>11_1

) + 61, I1(C0) = I0,1, (3.37a)
d
dC
(
�>11_1

)
= �1I1 − �>1

(
�>11_1

) + ℎ1,
(
�>11_1

)
(Cf) = −"11I1(Cf). (3.37b)

Making the ansatz �>11_1 = -11I1 + E1, one can solve the two initial value problems
¤-11 + -11�1 + �>1 -11 + -11�1-11 − �1 = 0, -11(Cf) = −"11,

and
¤E1 + -11�1E1 + �>1 E1 + -1161 − ℎ1 = 0, E1(Cf) = 0,

to obtain -11 and E1 and to decouple the solution of (3.37). In Kunkel andMehrmann
(2011), a Riccati approach is also obtained directly for the original optimality system
(3.34) by the modified ansatz

_ = -�I + E = -��†�I + E,
d
dC

(��†_) =
d
dC

(��†-)�I + (��†-) ¤��†�I + (��†-)�
d
dC

(�†�G) + d
dC

(�†�E),
(3.38)

where
- ∈ C1

��†(T,R
=,=), E ∈ C1

��†(T,R
=)

to fit to the solution spaces for I and _. If ,u is invertible, then introducing the
notation

� := � − �,−1
u (>, � := �,−1

u �>, � := , − (,−1
u (>

yields two initial value problems for the Riccati DAE

d
dC

(�>-�) + �>-� + �>-� + �>-�-� − � = 0,

(�>-�)(Cf) = −",
(3.39)

and
d
dC

(�>E) + �>-�E + �>E + �>- 5 = 0, (�>E)(Cf) = 0.

For this to be solvable, we must have " = �(Cf)>"̃�(Cf) with suitable "̃ and
� = �>�̃� with suitable �̃.
The major advantage of the ansatz via Riccati equations is that the resulting

control can be directly expressed as a feedback control, for example using (3.38),
we get

D = ,−1
u (�>_ − (>I) = ,−1

u (�>-��†� − (>)I + E.
A similar result is also obtained if the cost functional is formulated in terms of the
output and using output feedback.
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Note that in the LTI DAE case, further results have been obtained that allow the
use of efficient numerical techniques for the computation of the solutions to (3.39)
via eigenvalue methods; see Mehrmann (1991).

In this section we have recalled several properties for general descriptor systems.
In the following sections we study the special class of port-Hamiltonian descriptor
systems and show that the structure of the systems directly encodes many desirable
properties from our model wish list.

4. Port-Hamiltonian descriptor systems
To fulfil as many points on our wish list as possible, instead of general descriptor
systems we will use energy-based modelling within the class of (dissipative)
port-Hamiltonian (pH) systems and their generalization to descriptor systems.

4.1. Nonlinear (dissipative) port-Hamiltonian descriptor systems

We start our exposition by introducing the general model class of (dissipative)
pH descriptor systems, or pH differential-algebraic equation (pHDAE) systems,
introduced in Mehrmann and Morandin (2019).

Definition 4.1 (pH descriptor system, pHDAE). Consider a time interval T, a
state space Z ⊆ R= and an extended space S := T × Z . Then a (dissipative)
port-Hamiltonian descriptor system (pHDAE) is a descriptor system of the form

�(C, I) ¤I + A(C, I) = (�(C, I) − '(C, I))[(C, I) + (�(C, I) − %(C, I))D, (4.1a)
H = (�(C, I) + %(C, I))>[(C, I) + (((C, I) − #(C, I))D, (4.1b)

with state I : T→ Z , input D : T→ R< and output H : T→ R<, where
A, [ ∈ C(S,Rℓ), � ∈ C(S,Rℓ,=), �, ' ∈ C(S,Rℓ,ℓ)
�, % ∈ C(S,Rℓ,<), (, # ∈ C(S,R<,<),

and an associated function H ∈ C1(S,R), called the Hamiltonian of (4.1). Further-
more, the following properties must hold.

(i) The matrix functions

Γ :=
[
� �
−�> #

]
∈ C(S,R(ℓ+<),(ℓ+<)), (4.2a)

, :=
[
' %
%> (

]
∈ C(S ,R(ℓ+<),(ℓ+<)), (4.2b)

called the structure matrix and dissipation matrix respectively, satisfy Γ = −Γ>
and, = ,> ≥ 0 in S.
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(ii) The Hamiltonian satisfies
m

mI
H(C, I) = �>(C, I)[(C, I) and

m

mC
H(C, I) = [>(C, I)A(C, I) (4.3)

in S along any solution of (4.1).

If the pH descriptor system has no inputs and outputs, that is, if �, % ≡ 0 and the
output equation is omitted, then we refer to (4.1) as a (dissipative) Hamiltonian
differential-algebraic equation (dHDAE).

Note that in the literature and also in this survey, the adjective dissipative is
typically omitted, and we follow this tradition even if the system has a dissipative
part '.

Remark 4.2. In many applications the coefficients of pHDAE systems do not
explicitly depend on time. This is not really a restriction, since we can always
make a system of the form (4.1) autonomous by introducing the combined state
Î := [I>, C]> and reformulating the pHDAE (4.1) as[

�(Î) A(Î)
0 1

]
¤̂I =

[
�(Î) − '(Î) 0

0 0

] [
[(Î)

0

]
+

[
�(Î) − %(Î) 0

0 1

] [
D
1

]
, (4.4a)

[
H
0

]
=

[
�(Î) + %(Î) 0

0 1

]> [
[(Î)

0

]
+

[
((Î) − #(Î) 0

0 0

] [
D
1

]
, (4.4b)

which is again a pHDAE, since

m

mÎ
H(Î) =

[
m
mIH(C, I)
m
mCH(C, I)

]
=

[
�(Î) A(Î)

0 1

]> [
[(Î)

0

]
.

Remark 4.3. For many properties of pHDAEs that we discuss later, it is sufficient
to require the properties (4.2) and (4.3) in Definition 4.1 to hold only along any
solution of (4.1), thus further extending the model class. Nevertheless, to simplify
the presentation, we work with the definition as presented here.

Remark 4.4. If � = �= is the identity matrix, A ≡ 0, and the coefficients do not
explicitly depend on time C, then Definition 4.1 reduces to the well-known classical
representation for ODE pH systems, called pHODEs in the following, as for instance
presented in van der Schaft and Jeltsema (2014).

Remark 4.5. In the literature, pH systems are often described via a Dirac structure
(van der Schaft and Jeltsema 2014), and this approach has also been extended to
descriptor systems; see Mehrmann and Morandin (2019), Mehrmann and van der
Schaft (2023), van der Schaft (2013), van der Schaft and Maschke (2018, 2020)
and Section 7.6 below. In this survey, however, we mostly focus on the dynamical
systems point of view, which is prevalent in the simulation and control context. For
LTI pHDAEs the exact relationship between these different approaches has recently
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been characterized inMehrmann and van der Schaft (2023), where a characterization
is also given when a general LTI DAE can be transformed to dHDAE form.

In many applications, additional properties of the Hamiltonian, such as convexity
or non-negativity, may strengthen the properties of pHDAEs further; see Section 7.
We thus make the following definition.

Definition 4.6. The Hamiltonian for a pHDAE of the form (4.1) is called non-
negative if

H(C, I(C)) ≥ 0 for all (C, I) ∈ S with I being a solution of (4.1).

Although satisfied inmany applications, it may seem artificial from amathematical
point of view to require the Hamiltonian to be non-negative. However, this is not a
restriction, since any Hamiltonian that is bounded from below can be recast as a
non-negative Hamiltonian by adding its infimum along any behaviour solution. In
the following we therefore always assume that the Hamiltonian is non-negative.

Remark 4.7. The particular structure of the ports with equal dimensions and
the described structure ensure that inputs and outputs are co-located or power-
conjugated. This enables easy power-conserving interconnection of pHDAE systems;
see Section 7.2 below. However, in many applications there are specific quantities
that can be observed and others that can be used for control, and these are not
necessarily co-located or power-conjugated. To allow classical control techniques
as well as interconnectability, one can extend the inputs and outputs to obtain
a power-conjugated formulation. Even if these variables are not explicitly used,
they typically have a physical meaning in the context of supplied energy. We will
demonstrate this with examples later on; see e.g. Sections 5.3 and 5.6.

There are different generalizations of Definition 4.1 to infinite-dimensional
systems. For example, one can formulate operator pHDAE systems via semigroup
theory, introduce formal Dirac structures, or follow a gradient flow approach. In
the final section we present an incomplete list of references discussing different
aspects of infinite-dimensional pHDAE systems. In this survey we focus mainly on
the finite-dimensional case. We assume that a space discretization via Galerkin
projection is performed for an infinite-dimensional case. For infinite-dimensional
examples we mimic the finite-dimensional properties, which are then preserved
under Galerkin projection (see Section 7.1 below). We refer to the examples in
Section 5 for further details.

4.2. Linear pHDAE systems

Important special subclasses of the general class of pHDAE systems are LTV and LTI
pHDAE systems. Such a general class with a quadratic Hamiltonian was introduced
in Beattie, Mehrmann, Xu and Zwart (2018).

https://doi.org/10.1017/S0962492922000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000083


Control of port-Hamiltonian DAEs 431

Definition 4.8 (linear pHDAE, quadratic Hamiltonian). A linear time-varying
descriptor system of the form

�(C) ¤I + �(C) (C)I = (�(C) − '(C))&(C)I + (�(C) − %(C))D, (4.5a)
H = (�(C) + %(C))>&(C)I + (((C) − #(C))D, (4.5b)

with

�,& ∈ C1(T,Rℓ,=), �, ',  ∈ C(T,Rℓ,ℓ), �, % ∈ C(T,Rℓ,<),
( = (>, # = −#> ∈ C(T,R<,<),

is called a linear pHDAE with quadratic Hamiltonian

H : T × R= → R, (C, I) ↦→ 1
2
I>&>(C)�(C)I (4.6)

if the following properties are satisfied.

(i) The differential operator

L := &>�
d
dC
− (&>�& −&>� ) : C1(T,R=)→ C(T,R=) (4.7)

is skew-adjoint, that is, we have &>� ∈ C1(T,R=,=) and for all C ∈ T
&>(C)�(C) = �>(C)&(C) and

d
dC

(&>(C)�(C)) = &>(C)[�(C) (C) − �(C)&(C)] + [�(C) (C) − �(C)&(C)]>&(C).

(ii) The matrix function

, :=
[
& 0
0 �<

]> [
' %
%> (

] [
& 0
0 �<

]
∈ C(T,R(=+<),(=+<)) (4.8)

is positive semidefinite, i.e.,(C) = ,>(C) ≥ 0 for all C ∈ T.
If the Hamiltonian is quadratic, and the coefficients do not depend explicitly on the

state I, then Definitions 4.1 and 4.8 are closely related. Starting from Definition 4.8,
we may set

A(C, I) := �(C) (C)I and [(C, I) := &(C)I.

Using the skew-adjointness of L in Definition 4.8(i), we then obtain
m

mI
H(C, I) = �>(C)&(C)I = �>[(C, I)

and
m

mC
H(C, I) = I>&>(C)�(C) (C)I − 1

2
I>&>(C)(�(C) + �>(C))&(C)I

= [>(C, I)A(C, I) − 1
2
I>&>(C)(�(C) + �>(C))&(C)I.
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Thus, if additionally � is skew-symmetric, i.e. �(C) = −�>(C), then the Hamiltonian
satisfies the requirements (4.3) from Definition 4.1. Similarly, we notice that the
positive semidefiniteness of the dissipation matrix function in Definition 4.8 is
slightly more general than its counterpart in Definition 4.1. On the other hand, the
requirement for the matrix functions � and & to be continuously differentiable is a
sufficient condition to obtain a continuously differentiable Hamiltonian as required
in Definition 4.1.
Another important special class is that of (LTI) pHDAE systems with quadratic

Hamiltonian, which is commonly used in closed-loop and data-based control
applications as well as linear stability analysis.

Definition 4.9 (LTI pHDAE, quadratic Hamiltonian). Adescriptor systemof the
form

� ¤I = (� − ')&I + (� − %)D, (4.9a)
H = (� + %)>&I + (( − #)D, (4.9b)

with matrices �,& ∈ Rℓ,=, �, ' ∈ Rℓ,ℓ , �, % ∈ Rℓ,< and (, # ∈ R<,<, is called a
linear time-invariant pHDAE with (quadratic) Hamiltonian

H : R= → R, I ↦→ 1
2
I>&>�I (4.10)

if �>& = &>� , and the matrices

Γ :=
[
� �
−�> #

]
∈ R(ℓ+<),(ℓ+<),

, :=
[
& 0
0 �<

]> [
' %
%> (

] [
& 0
0 �<

]
∈ R(=+<),(=+<)

satisfy Γ = −Γ> and, = ,> ≥ 0.

Remark 4.10. Note that in the LTI or LTV case with quadratic Hamiltonian we
will assume throughout the paper that the Hamiltonian is non-negative. This is
equivalent to H being uniformly bounded from below; see Beattie et al. (2018). A
sufficient condition is obtained by assuming �>& ≥ 0, which will be used later on.

Having introduced the general modelling concept of (dissipative) pH descriptor
systems, we now discuss two modelling simplifications, namely removing the &
factor in linear pHDAE systems and removing the feedthrough term (( − #)D.

4.3. Removing the & factor in linear pHDAE systems

In many applications (time-varying or time-invariant) we have that ℓ = = and& = �=
is the identity matrix in Definitions 4.8 and 4.9. In this case � is the Hessian of the
Hamiltonian. This representation has many advantages: all the coefficients appear
linearly in (4.9), which greatly simplifies the analysis and also the perturbation
theory. In many cases this also leads to a convexification of the representation
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(Egger 2019, Friedrichs and Lax 1971), and Kurula (2020) illustrates that such a
formulation even allows an improved solution theory. In the following we will show
how the factor & can be removed; see Beattie et al. (2018) and Mehl, Mehrmann
and Wojtylak (2021).
If & has pointwise full column rank in (4.5), then the state equation can be

multiplied with &> from the left, yielding a system with the same solution set
given by

&>� ¤I +&>� I = &>(� − ')&I +&>(� − %)D,
H = (� + %)>&I + (( − #)D.

Then, setting �̃ := &>� , �̃ := &>�&, '̃ := &>'&, �̃ := &>� and %̃ := &>%, the
transformed system

�̃ ¤I + �̃ I = (�̃ − '̃)I + (�̃ − %̃)D,
H = (�̃ + %̃)>I + (( − #)D

is again a pHDAE, but now has &̃ = �= and hence �̃ = �̃>.
If & is not of full rank then the situation is more complex. If & has constant

rank in T, then, using a smooth full-rank decomposition (Theorem 2.13), there exist
pointwise orthogonal matrix functions* : T→ Rℓ,ℓ and + : T→ R=,= of the same
smoothness as & such that

*>&+ =
[
&11 0

0 0

]
, *>�+ =

[
�11 �12
�21 �22

]
,

*>(� − ')* =

[
�11 − '11 �12 − '12
�21 − '21 �22 − '22

]
,

where the (1, 1) block in all three blockmatrices is square of size Â = rank(&) and&11
is pointwise invertible. Since &>� = �>&, we get &>11�11 = �>11&11 and �12 = 0,
and the transformed system, with

[
I>1 I>2

]>
= +>I and*>(� − %) =

[
�1−%1
�2−%2

]
, is

given by[
�11 0
�21 �22

] [ ¤I1
¤I2

]

=

([
(�11 − '11)&11 0
(�21 − '21)&11 0

]
−

[
�11 0
�21 �22

] [
 11  12
 21  22

])[
I1
I2

]
+

[
�1 − %1
�2 − %2

]
D,

where I1 is of size Â and I2 of size = − Â. By the pHDAE structure it then follows
that �11 12 = 0 and the resulting subsystem

�11 ¤I1 = ((�11 − '11)&11 − �11 11)I1 + (�1 − %1)D,
H = (�1 + %1)>&11I1 + (( − #)D

is a pHDAE with &11 square and nonsingular, which determines I1 independent of
I2. In particular, we can multiply by &>11 as discussed earlier.
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However, for given I1 and D, the remaining DAE system for I2,

�22 ¤I2 = [�21 �22]
[
 12
 22

]
I2 + (�21 − '21)&11I1

− [�21 �22]
[
 11
 21

]
I1 − �21 ¤I1 + (�2 − %2)D,

has no apparent structure. This is not a problem, since the variable I2 does not
contribute to the Hamiltonian. In fact, further equations, as well as state, input and
output variables, can always be added to a pHDAE system if they do not contribute
to the Hamiltonian; see also Mehrmann and van der Schaft (2023) for a discussion
of the extension of pHDAE systems by equations or removal of variables that do not
contribute to the Hamiltonian.

Remark 4.11. When & is not of full rank, even in the case of pHODE systems the
solution can grow unboundedly. Mehl, Mehrmann and Wojtylak (2018) presented
the Hamiltonian ODE system[ ¤I1

¤I2

]
= �&

[
I1
I2

]
=

[
0 −1
1 0

] [
1 0
0 0

] [
I1
I2

]
,

[
I1(0)
I2(0)

]
=

[
I1,0
I2,0

]

with HamiltonianH = 1
2 I

2
1. It has the solution I1 = I1,0, I2 = I2,0 + CI1,0 and thus

has linear growth and is not stable.
Here the first equation ¤I1 = 0 is a pHODE with Hamiltonian H = 1

2 I
2
1, while the

second equation ¤I2 = I1 has no specific structure and I2 does not contribute to the
Hamiltonian.

Remark 4.12. Egger (2019) presented a similar approach generating a repres-
entation without a & factor for nonlinear and even infinite-dimensional evolution
equations in a weak formulation. He discussed applications in linear generalized
gradient systems, for which, even for & = �, it may be more convenient to use a
representation that reverses the roles of � and � − '. Note that if in � ¤I = (� − ')I
both � and � − ' are (pointwise) invertible, then, multiplying by �−1 and setting
Ĩ = (� − ')I, (� − ')−1 = �̃ − '̃, the equivalent new system

(�̃ − '̃) ¤̃I = �̃ Ĩ
has '̃ ≥ 0 and �̃ > 0.

In view of the observations concerning the term &, we suggest one should avoid
introducing a term & in the representation on the modelling level and instead work
with an � in front of the derivative.

4.4. Removing the feedthrough term in linear pHDAE systems

In many pHDAE models there is no feedthrough term (( − #)D, and in this case, by
the semidefiniteness of the dissipation matrix, , also % = 0. If this is not the case,
then (under some constant rank assumptions) one can always remove the feedthrough
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term by extending the state space. However, the simple construction presented in
Remark 3.1 may destroy the pH structure. In this subsection we therefore discuss
how such an extension is possible while preserving the pHDAE structure.
Consider the linear time-varying or time-invariant pHDAE in (4.9) or (4.5),

respectively, and assume that � := ( − # has constant rank. Under this assumption,
by Theorem 2.13 there exists a pointwise orthogonal matrix function*� , such that

� = *�

[
�1 0
0 0

]
*>� ,

with �1 pointwise nonsingular. By construction, the symmetric part of �1 is
pointwise positive semidefinite. Setting

(� − %)*� = [�1 − %1 �2 − %2], *>�D =
[
D1
D2

]
, *>�H =

[
H1
H2

]
,

with analogous partitioning, the system can be written as

� ¤I = (� − ')I + (�1 − %1)D1 + (�2 − %2)D2, (4.11a)
H1 = (�1 + %1)>I + �1D1, (4.11b)
H2 = (�2 + %2)>I. (4.11c)

Using the positive semidefiniteness of the matrix (function), in Definitions 4.8
and 4.9, we immediately obtain %2 = 0. Let us introduce the new variable
I2 := �1D1 + %>1 I to obtain the extended system[

� 0
0 0

] [ ¤I
¤I2

]
=

[
� − ' 0
�−1

1 %>1 −�−1
1

] [
I
I2

]
+

[
�1 − %1

�

]
D1 +

[
�2
0

]
D2,

H1 =
[
�>1 �

] [ I
I2

]
,

H2 = �
>
2 I.

Note that by this extension the Hamiltonian and the output have not changed: they
are just formulated in different variables and the added variables do not contribute
to the Hamiltonian. Then, multiplying the state equation by the nonsingular matrix
(function)

[
� %1
0 �

]
from the left, we obtain the extended descriptor system

E ¤b = (J −R)b + GD,
H = G>b (4.12)

with extended state b =
[
I>, I>2

]> and matrices

E :=
[
� 0
0 0

]
, J :=

[
� + 1

2
(
%1�

−1
1 %>1 −

(
%1�

−1
1 %>1

)>) −%1�
−>
1

�−1
1 %>1 − 1

2
(
�−1

1 − �−>1
)
]
,

G :=
[
�1 �2
� 0

]
*>� , R :=

[
' − 1

2
(
%1�

−1
1 %>1 +

(
%1�

−1
1 %>1

)>) 0
0 1

2
(
�−1

1 + �−>1
)
]
.
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Theorem 4.13. Consider a linear time-varying or constant coefficient pHDAE
of the form (4.11) and the extended system (4.12). Then both systems have the
same input–output relation and Hamiltonian, and the extended system without
feedthrough is again a pHDAE.

Proof. It remains to show thatR is (pointwise) positive semidefinite. Since the
positive semidefiniteness of R is equivalent to the positive semidefiniteness of the
symmetric part of [

' − %1�
−1
1 %>1 0

0 �−1
1

]
,

the claim is an immediate consequence of the positive semidefiniteness of the
dissipation matrix (4.8) and the Schur complement. Note that due to the special
form of the coefficient of the derivative, the changes of basis do not introduce extra
derivative terms.

Thus, in the following we often assume that (, # = 0, which then also implies
% = 0. We should be aware, however, that the matrix �1 may be ill-conditioned
with respect to inversion, so from a numerical point of view the removal of the
feedthrough term may be not advisable.

Remark 4.14. The extension of the pHDAE system by algebraic equations and
variables that do not contribute to the Hamiltonian is the counterpart to Remark 4.11,
where equations that do not contribute to the Hamiltonian can be separated from
the system.

5. Applications and examples
In this section we illustrate the generality and wide applicability of the model class
of pHDAE systems introduced in Section 4 with several examples from different
application areas. For further examples we refer to Rashad, Califano, van der Schaft
and Stramigioli (2020) and the references therein.

5.1. Singularly perturbed mechanical systems

DAE models are very often obtained as the limiting situations of singularly perturbed
problems, where they are written in such a way that the limits can be taken without
changing the system representation. For an illustrative example, consider the simple
LTI model of a mass–spring–damper system[ ¤@

¤?
]
=

[ 0 1/<
−: −3/<

] [
@
?

]
,

with mass <, damping constant 3, spring constant : and Hamiltonian

H(@, ?) =
1
2
:@2 + ?2

2<
.
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Introducing new variables E := ?/< and F := :@ (see e.g. Mehrmann and van der
Schaft 2023), we can express this system as an LTI pHDAE[

1/: 0
0 <

] [ ¤F
¤E
]
=

[
0 1
−1 −3

] [
F
E

]
,

with Hamiltonian

H(F, E) =
1

2:
F2 + <E

2

2
.

Then we can take either or both of the limits < → 0 and : → ∞, corresponding
to neglecting the mass or replacing the spring connection with a rigid connection.
Taking < → 0 gives a DAE system of (Kronecker) index one if the damping 3
is non-zero, and of (Kronecker) index two if 3 = 0. The limiting Hamiltonian
H(F, E) = F2/(2:) no longer depends on E. For : →∞ this is a DAE of (Kronecker)
index two, regardless of the value of 3, with Hamiltonian H(F, E) = <E2/2 that no
longer depends on F. Taking both limits, this is an algebraic equation with zero
Hamiltonian and solution E = 0, F = 0.
In real-world structural mechanics models, the representing equations are large-

scale finite element models (Hughes 2012, Zienkiewicz and Taylor 2005), and it
is quite common to take such limits for some masses or stiffness constants or by
ignoring some small model components, with possibly very negative effects; see
Gräbner et al. (2016) and Kannan, Hendry, Higham and Tisseur (2014). See also
Sections 5.5 and 5.8.

5.2. RLC circuit

An RLC circuit can be modelled as a directed graph with incidence matrix

A = [AA A2 Aℓ AE A8]
conveniently partitioned into components associated with resistors, capacitors,
inductors, voltage sources and current sources; see Freund (2011) for further details.
Let+ denote the vector of voltages at the nodes (except for the ground node at which
the voltage is zero). Furthermore, let �ℓ , �E and �8 denote the vectors of currents
along the edges for the inductors, voltage sources and current sources, respectively,
while +E and +8 denote the vectors of voltages across the edges for the voltage
sources and current sources. Using Kirchhoff’s current and voltage law combined
with the so-called branch constitutive relations yields a pHDAE (in the spirit of
Definition 4.9 with & = �=, % = 0, ( = # = 0)

A2CA>2 0 0
0 L 0
0 0 0



¤+
¤�ℓ¤�E


=


−AAR−1A>A −Aℓ −AE

Aℓ 0 0
AE 0 0



+
�ℓ
�E


+


A8 0
0 0
0 −�


[−�8
+E

]
,

[
+8
−�E

]
=


A8 0
0 0
0 −�


> 
+
�ℓ
�E


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+
−

�G

'G

�G

! � 'L

'R

�R

�1+1

�1

�2 +2

�2

Figure 5.1. Simple DC power network example.

and Hamiltonian

H(+, �ℓ , �E ) = +>A2CA>2+ + �>ℓ L�ℓ ,

which is associated with the stored energy in the capacitors and inductors. Here the
positive definite matrices R, C and L are defined via the defining properties of the
resistors, capacitors and inductors. Note that in this case we have an LTI pHDAE
with a quadratic Hamiltonian, & = �, and no feedthrough term.

For general circuits, Nedialkov, Pryce and Scholz (2022) have recently suggested a
new pHDAE formulation that allows, in particular, for a structural index analysis and
for more efficient and structurally robust implementations than classical modified
nodal analysis. Another recent development is the formulation of dynamic iteration
schemes for coupled pHDAE systems and their use in circuit simulation in Günther,
Bartel, Jacob and Reis (2021).

5.3. Power networks

A major application of pHDAE modelling arises in power network applications.
Consider the following simple model of an electrical circuit in Figure 5.1, which
is presented in Mehrmann and Morandin (2019). In this model ! > 0 is an
inductor, �1, �2 > 0 are capacitors, 'G, 'L, 'R > 0 are resistances and �G a
controlled voltage source. This circuit can serve as a surrogate model of a DC
generator (�G,'G), connected to a load ('R with a transmission line and given
by �1, �2, !, 'L). In real-world power networks, one would have a large number
of generators (including wind turbines and solar panels) and loads representing
customers. With a quadratic Hamiltonian describing the energy stored in the
inductor and the two capacitors

H(�, +1, +2) =
1
2
!�2 + 1

2
�1+

2
1 +

1
2
�2+

2
2 , (5.1)
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a formulation as an LTI pHDAE has the form

� ¤I = (� − ')I + �D, (5.2a)
H = �>I, (5.2b)

with I = [� +1 +2 �G �R]>, D = �G, H = �G, � = diag(!, �1, �2, 0, 0) and
� = 44 = [0 0 0 1 0]>,

� =



0 −1 1 0 0
1 0 0 −1 0
−1 0 0 0 −1
0 1 0 0 0
0 0 1 0 0


, ' =



'L 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 'G 0
0 0 0 0 'R


.

If the generator is shut down (i.e. �G = 0), then the system approaches an equilibrium
solution for which (d/dC)H(I) = 0, so that � = �G = �R = 0, and then I = 0.
This system can also be considered as a control problem with the control task

that a consumer (represented by a resistance 'R) receives a fixed amount of power
% = 'R�

2
R. This can be achieved by controlling the voltage of the generator

�G, so that the solution converges to the values �R = −
√
%/'R, � = �G ≡ −�R,

+1 ≡ ('R + 'L)�R, +2 ≡ 'R�R and �G ≡ −('R + 'L + 'G)�R.

5.4. Stokes and Navier–Stokes equation

A classical example of a partial differential equation which, after proper space
discretization, leads to a pHDAE (e.g. Emmrich and Mehrmann 2013) is that of the
incompressible or nearly incompressible Navier–Stokes equations, describing the
flow of a Newtonian fluid in a domain Ω,

mE

mC
− aΔE + (E · ∇)E + ∇? = 5 in Ω × T,

∇>E = 0 in Ω × T,
together with suitable initial and boundary conditions; see e.g. Temam (1977).
When we linearize around a prescribed stationary vector field E∞, we obtain the
linearized Navier–Stokes equations

mE

mC
− aΔE + (E∞ · ∇)E + (E · ∇)E∞ + ∇? = 5 in Ω × T,

∇>E = 0 in Ω × T.
If E∞ is also constant in space, then (E · ∇)E∞ = 0 and we obtain the Oseen equations.
If the term (E∞ · ∇)E is also neglected, we obtain the Stokes equation. Performing
a finite element discretization in space (e.g. Layton 2008), a Galerkin projection
leads to a dHDAE of the form[

" 0
0 0

] [ ¤E
¤?
]
=

([
�( �
−�> 0

]
−

[−�� 0
0 −�

])[
E
?

]
+

[
5
0

]
, (5.3)
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where " = "> > 0 is the mass matrix, �( = −�>( and −�� = −�>� ≥ 0 are the
skew-symmetric and symmetric parts of the discretized and linearized convection-
diffusion operator, �> is the discretized divergence operator, which we assume to
be normalized so that it is of full row rank, and −� = −�> > 0 is a stabilization
term, typically of small norm, that is needed for some finite element spaces; see
e.g. Rannacher (2000). The variables E and ? denote the discretized velocity and
pressure, respectively, and 5 is a forcing or control term.

This becomes a pHDAE by adding an output equation H = 5 >E and an appropriate
Hamiltonian; see Altmann and Schulze (2017). Other possible inputs and outputs
that are not necessarily co-located can be chosen, for example by different boundary
conditions (added to the system via the trace operator and suitable Lagrange
multipliers) or measurement points for the velocities or pressures.

5.5. Multiple-network poroelasticity

Biot’s poroelasticity model for quasi-static deformation (Biot 1941) describes
porous materials fully saturated by a viscous fluid. Typical applications include
geomechanics (Zoback 2010) and biomedicine (Sobey, Eisenträger, Wirth and
Czosnyka 2012). The effect of different fluid compartments can be accounted
for by the theory of multiple-network poroelasticity (Bai, Elsworth and Roegiers
1993). For instance, in the investigation of cerebral oedema (Tully and Ventikos
2011), we distinguish different blood cycles (arterial, arteriole/capillary, venous)
and cerebrospinal fluid, giving a total of < = 4 fluid compartments. The complete
model is given by a coupled system of (nonlinear) PDEs

−∇ · (f(D)) +
<∑
8=1
∇(U8?8) = 5 , (5.4a)

m

mC

(
U8∇ · D + 1

"
?8

)
− ∇ ·

(
^8(∇ · D)
a8

∇?8
)
−

∑
9≠8

V8 9(?8 − ? 9) = 68 , (5.4b)

with unknown displacements D, unknown pressure variables ?8 (8 = 1, . . . , <) for
the different fluid compartments, the Biot–Willis fluid–solid coupling coefficients
U8, Biot modulus ", fluid viscosities a8, (nonlinear) hydraulic conductivities
^8 = ^8(∇ · D), network transfer coefficients V8 9 , volume-distributed external forces
5 and injection 68 . The stress–strain relation is given by

f(D) := 2` Y(D) + _ (∇ · D) I, Y(D) :=
1
2

(∇D + (∇D)>)

with the Lamé coefficients ` and _ and the identity tensor I. For simplicity, we
consider the system with Dirichlet boundary conditions

D = Db and ?8 = ?8,b on T × mΩ. (5.4c)
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Following Altmann, Mehrmann and Unger (2021) (see also Egger and Sabouri
2021), a pHDAE of the mixed finite-element discretization of (5.4) is given by


0 0 0 0 0
0  u 0 0 0
0 0 "p 0 0
0 0 0 0 0
0 0 0 0 0





¤Fℎ
¤Dℎ
¤?ℎ¤_u,ℎ¤_p,ℎ


=



0 − u �> �>u 0
 u 0 0 0 0
−� 0 − p(Dℎ) 0 �>p
−�u 0 0 0 0

0 0 −�p 0 0





Fℎ
Dℎ
?ℎ
_u,ℎ
_p,ℎ


+



5ℎ
0
6ℎ
¤Db,ℎ
?b,ℎ


,

with positive definite mass and stiffness matrices "p,  u and  p(Dℎ). Let us
emphasize that in this representation we may use the boundary conditions as
additional inputs (added to the system via the trace operator and suitable Lagrange
multipliers) such that the system may be controlled via its boundary.

5.6. Pressure waves in gas network

The propagation of pressure waves on acoustic time scales through a network of
gas pipelines is modelled in Brouwer, Gasser and Herty (2011) (see also Egger and
Kugler 2018, Egger et al. 2018) via a linear infinite-dimensional pHDAE system
on a finite directed and connected graph G = (V , E) with vertices E ∈ V and edges
4 ∈ E that correspond to the pipes of the physical network. Let ?4(C, G) denote the
pressure and 5 4(C, G) the mass flux in pipe 4, and consider the equations for the
conservation of mass and the balance of momentum

04
m

mC
?4 + m

mG
5 4 = 0 on 4 ∈ E , C > 0,

14
m

mC
5 4 + m

mG
?4 + 34@4 = 0 on 4 ∈ E , C > 0,

where the coefficients 04, 14 encode properties of the fluid and the pipe, and 34
models the damping due to friction at the pipe walls. The coefficients are assumed
to be positive and, for ease of presentation, constant on every pipe 4. To model the
conservation of mass and momentum at the junctions at inner vertices E ∈ V8 of the
graph, where several pipes 4 ∈ E(E) are connected, we require Kirchhoff’s law for
the flow as well as continuity of the pressure, that is,∑

4∈E(E)
=4(E) 5 4(E) = 0 for all E ∈ V8 , C > 0,

?4(E) = ?4
′
(E) for all 4, 4′ ∈ E(E), E ∈ V8 , C > 0.

Here =4(E) ∈ {+1,−1}, depending on whether the pipe 4 starts or ends at the
vertex E. The time-dependent quantities <4(E) and ?4(E) denote the respective
functions evaluated at the vertex E. At the boundary vertices E ∈ V1 = V \ V8, we
define co-located ports of the network by using the pressure

?4(E) = DE for E ∈ V1, 4 ∈ E(E), C > 0
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as input at E ∈ V1, and the mass flux

HE = −=4(E) 5 4(E), E ∈ V1, 4 ∈ E(E), C > 0

as output. We further define initial functions

?(0) = ?0, 5 (0) = 50 on E .

Note that typically gas is only inserted at some nodes of the network and extracted
at other ends. Thus one could also use different input and output variables at
the external nodes that may not necessarily be co-located. Nevertheless, this
formulation allows for an easy interconnection while the variables still have a
physical interpretation.
In Egger and Kugler (2018) several important properties were shown. These

include the existence of unique classical solutions for sufficiently smooth initial
data ?0, 50, as well as global conservation of mass, and that this system has pHDAE
structure. Space discretization via a structure-preserving mixed finite element
method leads to a block-structured linear time-invariant pHDAE system

� ¤I = (� − ')I + �D, I(C0) = I0, (5.5a)
H = �>I, (5.5b)

with

% := 0, ( − # := 0, � :=


0
�2
0


, I :=


I1
I2
I3


,

� :=

"1 0 0
0 "2 0
0 0 0


, � :=


0 −�12 0
�>12 0 �>32
0 −�32 0


, ' :=


0 0 0
0 '22 0
0 0 0


.

Here I1 : R → R=1 represents the discretized pressures and I2 : R → R=2 the
discretized fluxes, while I3 : R→ R=3 is a Lagrange multiplier vector introduced
to penalize the violation of the space-discretized constraints. The coefficients
"1 = ">1 , "2 = ">2 and '22 = '>22 are positive definite, the matrix �32 has full
row rank and

[
�>12 �>32

]
has full column rank. The discretized Hamiltonian is given

by H(I) = 1
2 I
>�I = 1

2 (I>1 "1I1 + I>2 "2I2). Note that the Lagrange multiplier does
not contribute to the Hamiltonian.

5.7. Multibody systems

Another natural class of applications arises in multibody dynamics. Hou (1994)
derived the model of a two-dimensional three-link mobile manipulator; see also
Bunse-Gerstner et al. (1999) for details. After linearizing around a stationary
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solution, we obtain a control system

" ¥? = −� ¤? −  ? + />_ + �1D,

0 = /?,

where ? is the vector of positions, /? = 0 is the linearized position constraint, its
violation is penalized by a Lagrange multiplier vector _, and �1D is the control
force applied at the actuators. The mass and stiffness matrices " = ">,  =  >

are positive definite and the damping matrix � = �> is positive semidefinite.
This DAE has the first and second time derivative of /? = 0 as hidden algebraic

constraints, and it is typically necessary to use a regularization procedure to make
the system better suited to numerical simulation and control; see e.g. Eich-Soellner
and Führer (1998), Kunkel and Mehrmann (2006), Rabier and Rheinboldt (2000)
and Simeon (2013). One possibility is to replace the original constraint with its time
derivative 0 = −/ ¤?. By adding a tracking output H = �>1 ¤? (e.g. Hou and Müller
1994) and transforming to first-order form by introducing

I =


I1
I2
I3


:=


¤?
?
_


,

we obtain a linear time-invariant pHDAE system of the form (4.9) with

� :=

" 0 0
0  0
0 0 0


, ' :=


� 0 0
0 0 0
0 0 0


, � :=


�1
0
0


,

& :=

� 0 0
0 � 0
0 0 �


, � :=


0 − />

 0 0
−/ 0 0


, % := 0, ( − # := 0.

The quadratic Hamiltonian (4.10) is given by

H(I) =
1
2

[
I1
I2

]> [
" 0
0  

] [
I1
I2

]
.

Note that the Lagrange multiplier does not contribute to the Hamiltonian.

5.8. Brake squeal

Disc brake squeal is a frequent and annoying phenomenon. Gräbner et al. (2016)
derived a very large finite element model of a brake system (see Figure 5.2) that
includes friction as well as circulatory and gyroscopic effects. This has the form

" ¥@ +
(
�1 + lref

l
�' + l

lref
��

)
¤@ +
(
 1 +  ' +

(
l

lref

)2
 �

)
@ = 5 ,

where @ is a vector of finite element coefficients; due to neglecting some small
rotational masses, " = "> ≥ 0 is a singular mass matrix;�1 = �>1 models material
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Figure 5.2. Finite element element model of disc brake.

damping; �� = −�>� models gyroscopic effects; �' = �>' models friction-induced
damping and is typically generated from measurements;  1 =  >1 ≥ 0 is a stiffness
matrix;  ' has no symmetry structure and models circulatory effects;  � =  >� is
a geometric stiffness matrix. One of many parameters is l, the rotational speed of
the disc scaled by a reference velocity lref .

Experiments indicate that there is a subcritical Hopf bifurcation (in the parameter
l), when eigenvalues of the associated quadratic parametric eigenvalue problem

(_(l)2" + _(l)(�(l) + �(l)) + ( (l) + #(l))E(l) = 0

cross the imaginary axis. Here

�1 + lref
l
�' + l

lref
�� = �(l) + �(l)

and

 1 +  ' +
(
l

lref

)2
 � =  (l) + #(l)

are split into their symmetric and skew-symmetric parts.
By writing the system in first-order formulation, it can be expressed as a perturbed

dHDAE system � ¤I = (� − 'D)I − 'NI, with

� =

[
" 0
0  

]
, � =

[ −� −( + 1
2#
)

(
 + 1

2#
>) 0

]
,

'D =

[
� 0
0 0

]
, 'N =

[
0 − 1

2#

−1
2#
> 0

]
.

Instability and squeal arise only from the perturbation term 'NI, which is associated
with the brake force restricted to the finite element nodes on the brake pad.
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Performing a linear stability analysis by solving the eigenvalue problem for
an industrial problem, incorporating the perturbation term 'N via a homotopy
parameter � ¤I = (� − 'D)I − U'NI, U ∈ [0, 1], Beckesch (2018) determined that
for U = 0 the spectral abscissa, i.e. the maximal real part of all eigenvalues, is
−5.04624 − 06 and for U = 0.1 it is already 2.03364 − 05, that is, the unperturbed
problem is already close to a problem with eigenvalues with positive real part. The
application task then is to design the brake in such a way (e.g. by including damping
devices, so-called shims) that the unperturbed problem � ¤I = (� − 'D)I is such that
the perturbation 'NI does not lead to eigenvalues in the right half-plane, or at least
make sure that they have a small real part.

6. Condensed forms for dHDAE and pHDAE systems
To analyse the solution behaviour of dHDAE or pHDAE systems, it is convenient to
study canonical or condensed forms and to reformulate the system by removing high
index and redundant parts, as was done for general DAE systems in Section 2.2. But
the general condensed forms do not reflect the structure and, in particular, canonical
forms such as the Kronecker or Weierstrass form (see Theorems 2.16 and 2.18) are
obtained under transformations that may be arbitrarily ill-conditioned.

In this section, to overcome some of these disadvantages, we present condensed
forms for LTI and LTV dHDAE and pHDAE systems under (pointwise) orthogonal
transformations that preserve the structure. The resulting condensed forms are close
to normal forms and display all the important information, but they are typically not
canonical.

6.1. Condensed forms for dHDAE systems

We first present a condensed form for LTV dHDAE systems of the form (leaving off
the argument C)

� ¤I = (� − ' − � )I, I(C0) = I0, (6.1)

which is a special case of the form for pHDAE systems presented in Scholz (2019).
In particular, we assume & = �= throughout this section; see Section 4.3.

Lemma 6.1. Under some constant rank assumptions, for a dHDAE system of the
form (6.1), there exists a pointwise real orthogonal matrix function / ∈ C(T,R=,=),
such that with Ǐ = />I and multiplying the system by /> from the left, the
transformed system

�̌ ¤̌I = (�̌ − '̌ − �̌  ̌)Ǐ, Ǐ(C0) = Ǐ0, (6.2)

with

�̌ := />�/, �̌ := />�/, '̌ := />'/,  ̌ := /> / − /> ¤/,
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is still a dHDAE system with matrix functions in the block form

�̌ =



�11 �12 0 0 0
�21 �22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, �̌ − '̌ =



�11 − '11 �12 − '12 �13 − '13 �14 0
�21 − '21 �22 − '22 �23 − '23 0 0
�31 − '31 �32 − '32 �33 − '33 0 0
�41 0 0 0 0
0 0 0 0 0


,

 ̌ =



 11  12 0 0 0
 21  22 0 0 0
 31  32  33  34  35
 41  42  43  44  45
 51  52  53  54  55


(6.3)

and block sizes =1 = =4, =2, =3, =5. (Note that blocks may be void.) The matrix
function

[�11 �12
�21 �22

]
is pointwise symmetric positive definite, the matrix functions

�33 − '33, where '33 ≥ 0 and �41 = −�>14 are pointwise nonsingular, and the block[
�11 �12
�21 �22

] [
 11  12
 21  22

]

is pointwise skew-symmetric.

Proof. We present a constructive proof that is similar to that for the constant
coefficient case in Achleitner, Arnold and Mehrmann (2021b) and can be directly
implemented as a numerical algorithm. The details are presented in Algorithm 1.
We make the following remarks on the algorithm. First, the smooth rank-revealing
decompositions can be computed using Theorem 2.13. Second, the zero block
structure in '̂ in Step 2 follows from the positive semidefiniteness of ' and the fact
that the second and third block rows in  ̂ do not destroy this structure since the
multiplication by �̂ puts zeros in these positions. Third, note that the transformed
matrix function  in Step 3 does not destroy the structure. The extra zeros in the
first two rows and the skew-symmetry of the extra term arising from the change
of basis follow from the skew-adjointness of the operator �̌(d/dC) − (�̌ − �̌  ̌) in
Definition 4.8 (for the case & = �).

From the condensed form we immediately obtain a characterization of existence
and uniqueness of solutions.

Corollary 6.2. Consider a dHDAE initial value problem of the form (6.1) in the
condensed form (6.3).
(i) The initial value problem (6.1) is uniquely solvable (for consistent initial

values) if and only if =5 = 0. If =5 ≠ 0, then I5 can be chosen arbitrarily.
(ii) The solution of the initial value problem is not unique (for consistent initial

values) if and only if the matrix functions �, �, ', � have a common kernel.
(iii) The strangeness index is 0 if and only if =1 = =4 = 0. Otherwise the strangeness

index is 1 if and only if =1 = =4 > 0.
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Algorithm 1 Staircase Algorithm for linear dHDAEs
Input: Pair of dHDAE matrix functions (�, � − ' − � )
Output: Matrix function / and condensed block form (6.3)

Step 1. Assume that � has pointwise constant rank =1 in T. Then perform a smooth
full-rank decomposition

� = /1

[
�̃11 0
0 0

]
/>1 , (6.4)

with /1 pointwise orthogonal and �̃11 pointwise positive definite of size
=̃1 × =̃1 (or =̃1 = 0). Set �̃ := />1 �/1, �̃ := />1 �/1, '̃ := />1 '/1 and
 ̃ := />1 ( /1 + ¤/1) with

�̃ =

[
�̃11 −�̃>21
�̃21 �̃22

]
, '̃ =

[
'̃11 '̃>21
'̃21 '̃22

]
,  ̃ =

[
 ̃11  ̃12
 ̃21  ̃22

]
.

Step 2. If =̃1 < = then, assuming constant rank of �̃22 − '̃22 in T, apply a full-rank
decomposition under pointwise orthogonal congruence,

/>22(�̃22 − '̃22)/22 =

[
Σ̃22 0
0 0

]
,

with Σ̃22 of size =̃2 × =̃2 pointwise invertible or =̃2 = 0. Define the matrix
functions /2 := diag(�, /22), �̂ := />2 �̃/2, �̂ := />2 �̃/2, '̂ := />2 '̃/2 and
 ̂ := />2  ̃/2 − />2 ¤/2 with

�̂ =


�̂11 −�̂>21 −�̂>31
�̂21 �̂22 0
�̂31 0 0


, '̂ =


'̂11 '̂>21 0
'̂21 '̂22 0
0 0 0


,  ̂ =


 ̂11  ̂12  ̂13
 ̂21  ̂22  ̂23
 ̂31  ̂32  ̂33


,

and �̂22 − '̂22 pointwise nonsingular.
Step 3. If =̃3 := = − =̃1 − =̃2 > 0 then, assuming that �̂31 has constant rank in T,

perform a pointwise full-rank decomposition

�̂31 = *31

[
Σ31 0
0 0

]
+>31,

with Σ31 of size =1 × =1 pointwise nonsingular (or =1 = 0). Set

/3 :=

+>31

�
*31


.

Then �̌ := />3 �̂/3, �̌ := />3 �̂/3, '̌ := />3 '̂/3,  ̌ = />3  ̃/3 − />3 ¤/3 have the
desired form with =2 := =̃1 − =1, =3 := =̃2, =4 = =1, =5 := =̃3 − =4.

Step 4. Set / := /1/2/3.
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Proof. We prove each item separately.
(i) Note that the last equation can be omitted and the variable I5 is arbitrary. So

the solution is unique if and only if =5 = 0.
(ii) This follows trivially from (i).
(iii) If =4 > 0, then the fourth equation states that I1 = 0 and the first equation

yields that I4 depends via the term �12 ¤I2 on the derivative of I2, and hence
if =4 ≠ 0 then the system has strangeness index 1. Finally, the separated
subsystem[
�22 0
0 0

] [ ¤I2
¤I3

]
=

([
�22 − '22 �23 − '23
�32 − '32 �33 − '33

]
−

[
�21 12 + �22 22 0

0 0

])[
I2
I3

]

has �22 positive definite and �33 − '33 invertible and hence is of strangeness
index 0.

Remark 6.3. In Algorithm 1 we have made several constant rank assumptions.
If these are not satisfied, then we can partition the time interval T into smaller
subintervals where the ranks are constants and record the points where these rank
changes happen. For a more detailed discussion of such hybrid DAE systems with
rank changes in the characteristic values; see Hamann and Mehrmann (2008) and
Kunkel and Mehrmann (2006, 2018).

In the linear time-invariant case (with  = 0, & = �), we have the following
corollary.

Corollary 6.4. For every LTI dHDAE system of the form

� ¤I = (� − ')I, (6.5)

with �, �, ' ∈ R=,=, � = −�>, ' = '> ≥ 0 and �> = � ≥ 0, there exists a real
orthogonal matrix / ∈ R=,= such that with

�̌ := />�/, �̌ := />�/, '̌ := />'/, Ǐ := />I,

the system �̌ ¤̌I = (�̌ − '̌)Ǐ is still a dHDAE with block matrices

�̌ =



�11 �12 0 0 0
�21 �22 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, �̌ − '̌ =



�11 − '11 �12 − '12 �13 − '13 �14 0
�21 − '21 �22 − '22 �23 − '23 0 0
�31 − '31 �32 − '32 �33 − '33 0 0
�41 0 0 0 0
0 0 0 0 0


(6.6)

and block sizes =1 = =4, =2, =3, =5. Note that some of the blocks may be void.
The matrix

[�11 �12
�21 �22

]
is symmetric positive definite, and the matrices �33 − '33 and

�41 = −�>14 are nonsingular.

Proof. The proof follows directly from the time-varying case and setting  = 0.
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If we do not restrict ourselves to congruence transformations with orthogonal
matrices, then the condensed form (6.6) can be simplified further.

Corollary 6.5. Consider a dHDAE of the form (6.5) with regular matrix pencil
_� − (� − ') in staircase form (6.6). Then there exist nonsingular matrices !1, !2
such that

!1�̌ !2 =



�̂11 0 0 0
0 �̂22 0 0
0 0 0 0
0 0 0 0


, !1(�̌ − '̌)!2 =



0 0 0 �
0 �̂22 − '̂22 0 0
0 0 −� 0
−� 0 0 0


. (6.7)

The blocks satisfy �̂22 = −�̂>22, �̂11 = �̂>11 > 0, �̂22 = �̂22 > 0 and '̂22 = '̂>22 ≥ 0.

Proof. The proof follows by block Gaussian elimination to create first the block
diagonal structure of �̂ , using the positive definite diagonal block �22. This is
followed by block Gaussian elimination using the nonsingular blocks �41 = −�>14
and �33 − '33 and then scaling these nonsingular blocks. Note that �̂22 = �22 with
�22 as in (6.6), and �̂22, '̂22 are the skew-symmetric and symmetric part of the
Schur complement obtained in this way, so the semidefiniteness of '̂22 follows from
a Schur complement-type argument. See Achleitner et al. (2021b) for details.

We also have the corresponding existence and uniqueness result formulated with
the (Kronecker) index.

Corollary 6.6. Consider a dHDAE initial value problem of the form (6.5) in the
staircase form (6.6).

(i) The initial value problem (6.5) is uniquely solvable (for consistent initial
values) if and only if =5 = 0. If =5 ≠ 0, then Ĩ5 can be chosen arbitrarily.

(ii) The pencil _� − (� − ') is non-regular if and only if the three coefficients
�, �, ' have a common kernel.

(iii) The (Kronecker) index is zero if and only if =1 = =4 = 0 and =3 = 0. It is one
if and only if =1 = =4 = 0 and =3 > 0, and otherwise the (Kronecker) index is
two if and only if =1 = =4 > 0.

Proof. The proof is as in the variable coefficient case (with  = 0), just observing
the different counting between the strangeness index and the Kronecker index; see
Mehrmann (2015).

Remark 6.7. The fact that the dHDAE system is not uniquely solvable if and
only if the coefficients have a common nullspace is remarkable. It has significant
importance in model evaluation, since it allows us to check this (pointwise) via
the singular value decomposition. Moreover, in the constant coefficient case, this
allows us to compute the distance to the nearest singular pencil; see Guglielmi and
Mehrmann (2022) and Mehl et al. (2021). For general pencils, and even for pencils
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with just the symmetry structure of a dHDAE system, this property does not hold.
Consider the pencil _� − � with

� = �> =

0 0 1
0 0 0
1 0 0


and � = −�> =


0 0 0
0 0 1
0 −1 0


.

The pencil is not regular, since det(_� − �) = 0 for any _ ∈ C. However, � and � do
not have a common nullspace. The problem here is that � = �> is not semidefinite.
In this case the singularity arises from higher-dimensional singular blocks in the
Kronecker form.

Remark 6.8. As the proof of Lemma 6.13 shows, the numerical computation of
the condensed forms (6.3) or (6.6) for a given dHDAE system requires a sequence
of three (smooth) full-rank decompositions. Unfortunately, these rank decisions
may be sensitive under perturbations; see e.g. Byers, Mehrmann and Xu (2007),
where the construction of general staircase forms and the challenges are discussed.
However, in contrast to general unstructured staircase forms, we see that for dHDAE
systems the number of steps is limited to three and often (as in all the examples
discussed in Section 5) the first step of performing a full-rank decomposition of �
is not necessary.
Note also that the maximal strangeness index is one (the maximal (Kronecker)

index of an LTI dHDAE is two), which is of great advantage in iterative solution
methods (see Güdücü, Liesen, Mehrmann and Szyld (2022) and Section 9.2), as
well as time discretization methods for DAE systems (see Hairer and Wanner (1996),
Kunkel and Mehrmann (2006) and Section 9.1).
Furthermore, for general LTI DAE systems it was shown in Mehl et al. (2021)

when they are equivalent to systems of the form (4.9) and in Mehrmann and van der
Schaft (2023) the same result was proved for an extended class of pHDAE systems.

Example 6.9. To illustrate the construction of the condensed forms, consider
the dHDAE resulting from the fluid flow example discussed in Section 5.4. In
more detail, consider an instationary incompressible fluid flow prescribed in terms
of velocity E : Ω × T → R2 and pressure ? : Ω × T → R on the spatial domain
Ω = (0, 1)2 with boundary mΩ for the time period T = [0, )], that is driven by
external forces 5 : Ω × T→ R2 and has dynamic viscosity a > 0; see Section 5.4.
The system is closed by non-slip boundary conditions and an appropriate initial
value E0 for the velocity. Spatial discretization by a finite difference method on a
uniform staggered grid with the semidiscretized velocity Eℎ(C) ∈ R=E and pressure
vectors ?ℎ(C) ∈ R=? , C ∈ T, leads to a pHDAE system for the state I =

[
E>ℎ ?>ℎ

]>
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given by [
� 0
0 0

] [ ¤Eℎ
¤?ℎ

]
=

([
�( �
−�> 0

]
−

[
�� 0
0 0

])[
Eℎ
?ℎ

]
+

[
�1
0

]
D,

H =
[
�>1 0

] [Eℎ
?ℎ

]
.

(6.8)

The matrix �> has full row rank if the freedom in the pressure is removed. The
initial conditions are Eℎ(0) = E0

ℎ and consistently ?ℎ(0) = ?0
ℎ. The input D with

input matrix �1 ∈ R=E×< results from the external forces. System (6.8) is an LTI
pHDAE of (Kronecker) index two. To obtain the condensed form we do not have to
carry out the first and second step of Algorithm 1 but only Step 3, i.e. the splitting of
the discrete divergence operator �>, by performing a Leray projection, for example,
as in Heinkenschloss, Sorensen and Sun (2008), or a full-rank decomposition,

�>+ = [�1 0],
with nonsingular matrix �1 and an orthogonal matrix + ∈ R=? ,=? . Performing a
congruence transformation, we get a system in condensed form,


� 0 0
0 � 0
0 0 0



¤I1
¤I2
¤I3


=





�11 �12 �1
−�>12 �22 0
−�>1 0 0


−


'11 '12 0
'>12 '22 0
0 0 0






I1
I2
I3


+


�1
�2
0


D,

H =
[
�>1 �>2 0

] 
I1
I2
I3


.

This yields I1 = 0 as �1 is invertible, and the first equation yields the (hidden)
algebraic constraint �1I3 = (−�12 + '12)I2 −�1D as well as a consistency condition
for the initial value which relates the initial condition for D and I2 to that for I3.

Example 6.10. Consider the multiple-network poroelasticity problem discussed
in Section 5.5. Ignoring the boundary terms and permuting the rows and columns,
we obtain a dHDAE system of the form


 u 0 0
0 "p 0
0 0 0



¤I1
¤I2
¤I3


=


0 0  u
0 − p −�
− u �> 0



I1
I2
I3


, (6.9)

with symmetric positive definite matrices "p,  u and  p. Thus Steps 1 and 2 of
Algorithm 1 are already done, and we see immediately that (6.9) is a pHDAE of
(Kronecker) index two. Notably, if we do not assume that the model is quasi-static,
then the (3, 3) block in the matrix on the left-hand side of (6.9) is nonsingular and
we end up with an implicit dissipative Hamiltonian ODE that can be viewed as a
singular perturbation of (6.9). This illustrates that small perturbations may change
the index within the pHDAE framework. Nevertheless, in contrast to general DAEs,
the (Kronecker) index may be at most two.
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Example 6.11. In the gas network example presented in Section 5.6, and more
precisely for the dHDAE obtained by setting D = 0 in (5.5), we know directly from the
structure what the constraints are, since the system is almost in the form that would
be obtained from the staircase algorithm. The first step and second step are already
performed, =3 = 0, and it remains to transform the matrix [0 −�32], which has full
row rank, by an orthogonal transformation *̂� to the form [0 −�32]*̂� = [�̂31 0],
with �̂31 square and nonsingular. Setting *� :=

[
*̂� 0
0 �

]
and forming �̂ = *>� �*� ,

�̂ = *>� �*� and '̂ = *>� '*� , we get a dHDAE system with =1 = =4 = rank �32,
=3 = =5 = 0 and =2 = = − 2=1.

The simplified construction of the condensed forms for the other examples
presented in Sections 5.7 and 5.8 is analogous.
Although for linear time-varying dHDAE systems we get a condensed form

under pointwise orthogonal congruence transformations, in contrast to the constant
coefficient case, we would need time-varying changes of basis. Such a coordinate
transformation requires derivatives of the basis transformation matrices, so a compu-
tational method needs to determine a smooth transformation. Such transformations
can be determined via methods such as a smooth singular value decomposition
(see Theorems 2.3 and 2.13) or a QR decomposition (e.g. Bunse-Gerstner, Byers,
Mehrmann and Nichols 1991, Dieci and Eirola 1999, Kunkel and Mehrmann
1991). However, these methods require the solution of matrix differential equations
(operating in the orthogonal group). This substantially increases the computational
costs.

6.2. Structure-preserving index reduction

Although pointwise condensed forms help a lot in the analysis, they are often
not practical in computational techniques. For general DAE systems we therefore
proceed differently and use derivative arrays (see Kunkel and Mehrmann (1996,
2006) and Section 2.2) to filter out a strangeness-free system by transformations that
act only on the equations and their derivatives and avoid changes of basis. However,
this approach will, in general, destroy the dHDAE structure.
An approach that achieves structure preservation on the basis of one smooth

change of basis has been proposed by Beattie et al. (2018) for the case of pHDAE
systems that include the factor &, using a technique that was introduced for self-
adjoint systems in Kunkel, Mehrmann and Scholz (2014) and skew-adjoint systems
in Kunkel and Mehrmann (2023). We present this approach here for the case
& = � and assume that the system has a well-defined strangeness index and a
unique solution for all consistent initial conditions. Under these assumptions (see
Section 2.2) from the (unstructured) derivative array, one can extract an algebraic
equation of the form �̂2I = 0 that contains all the explicit or hidden constraint
equations. Then there exists a pointwise orthogonal ) ∈ C1(T,R=,=) such that

�̂2 [)1 )2] = [0 �̂22],
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with �̂22 ∈ C(T,R0,0) pointwise nonsingular, so that the columns of the matrix
function )1 span the kernel of �̂22.

Using the same proof as in Kunkel et al. (2014) for self-adjoint DAE systems (see
also Kunkel and Mehrmann 2023), it follows that the matrix function consisting of
the first 3 = = − 0 rows and columns of )>�) is square nonsingular, and therefore
positive definite. With this in mind, the original dHDAE can be transformed
congruently with ) , so that the dHDAE structure is preserved, and with[

�11 �12
�21 �22

]
= )>�), I = )

[
I1
I2

]
,[

�11 �12
�21 �22

]
= )>(� − ')) − ()>�))()> ) − )> ¤)),

we obtain �22I2 = 0 and hence I2 = 0. Inserting this, the remaining part of the first
block equation

�11 ¤I1 = �11I1

is still a dHDAE but nowwith �11 positive definite, and the Hamiltonian is unchanged
since I2 = 0.

Remark 6.12. For nonlinear pHDAE systems satisfying Hypothesis 2.7 with
` > 0, the corresponding local result follows directly via linearization and the
implicit function theorem.

6.3. Condensed forms for pHDAE systems

In this section we extend the results presented in the previous section for dHDAE
systems to systems with inputs and outputs. For LTI pHDAEs of the form (4.9),
the extension of the condensed forms to pHDAE systems was presented in Beattie,
Gugercin and Mehrmann (2022a). For an LTV pHDAE system (4.5) this result
follows by a variation of the condensed form presented in Scholz (2019); see also
Kunkel and Mehrmann (2023).
Let us first consider the following result, which allows us to remove the non-

uniqueness part, if any exists. Note that we again consider the case& = �, (−# = 0
and % = 0; see Sections 4.3 and 4.4.

Lemma 6.13. For a pHDAE of the form (4.5) with & = �, ( − # = 0 and % = 0,
under some constant rank assumptions, there exists a pointwise orthogonal change
of basis +>I =: Ĩ =

[
Ĩ>1 Ĩ>2 Ĩ>3

]> such that the system has the form

�1 0 0
0 0 0
0 0 0



¤̃I1¤̃I2¤̃I3


=


�1 − '1 − �1 1 0 0

0 0 0
0 0 0



Ĩ1
Ĩ2
Ĩ3


+


�1
�2
0


D, (6.10a)

H =
[
�>1 �>2 0

] 
Ĩ1
Ĩ2
Ĩ3


, (6.10b)
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where the system �1 ¤I1 − (�1 − '1 − �1 1)I1 +�1D has a unique solution for every
sufficiently often differentiable D, and �2 has full row rank. Furthermore, the
subsystem [

�1 0
0 0

] [ ¤̃I1¤̃I2

]
=

[
�1 − '1 − �1 1 0

0 0

] [
Ĩ1
Ĩ2

]
+

[
�1
�2

]
D, (6.11a)

H =
[
�>1 �>2

] [Ĩ1
Ĩ2

]
, (6.11b)

obtained by removing the third equation and the variable Ĩ3, is still a pHDAE with
the same Hamiltonian.

Proof. The proof follows by computing, as in (6.4), a pointwise orthogonal matrix
+1 such that

+>1 (� − ' − � )+1 −
(
+>1 �+1

)
+>1 ¤+1 =

[
�1 − '1 − �1 1 0

0 0

]
,

+>1 �+1 =

[
�1 0
0 0

]
, +>1 � =

[
�1
�̃2

]
.

This +1 exists by the condensed form (6.3), by just combining the first four rows
and columns into one block. Then a row compression of �̃2 via a pointwise
orthogonal matrix +̃2 (assuming constant rank) and a congruence transformation
with +2 = diag(�, +̃2) is performed, so by a congruence transformation with
+ = diag(�, +2)+1 we obtain the zero pattern in (6.10). Updating the output equation
accordingly gives the desired form.

Remark 6.14. In practice, the constant rank assumptions that are required for the
derivation of (6.3) can be reduced by performing only the transformation that splits
off the common nullspace part of �, �, ', � .

Lemma 6.13 shows that we can remove redundant equations and variables that
do occur in the system. In the following we assume that this reduction has already
been performed. The next result presents a condensed form, which extends the form
that was obtained in Beattie et al. (2022a) for LTI pHDAE systems with  = 0 and
for LTV pHDAE systems in Scholz (2019).

Lemma 6.15. Consider an LTV pHDAE as in (6.11). Then, under some constant
rank assumptions, there exists a pointwise orthogonal basis transformation + in the
state space and* in the control space, such that in the new variables

Î =
[
Î>1 Î>2 Î>3 Î>4 Î>5 Î>6

]>
= +>

[
Ĩ>1 Ĩ>2

]> and

D̂ =
[
D>1 D>2 D>3

]>
= *>D,

the system has the form

�̂ ¤̂I = (�̂ − '̂ − �̂  ̂)Î + �̂D̂,
Ĥ = �̂> Î,
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with

�̂ :=



�11 �12 0 0 0 0
�21 �22 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, �̂ :=



�11 �12 �13
�21 �22 �23
�31 �32 �33

0 �42 �43
0 0 �53
0 0 �63


, (6.12a)

�̂ − '̂ :=



�11 − '11 �12 − '12 �13 − '13 �14 �15 0
�21 − '21 �22 − '22 �23 − '23 �24 0 0
�31 − '21 �32 − '32 �33 − '33 0 0 0
�41 �42 0 0 0 0
�51 0 0 0 0 0
0 0 0 0 0 0


, (6.12b)

 ̂ :=



 11  12  13  14 0 0
 21  22  23  24 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, (6.12c)

where �22, �33 − '33, �15, and �42 and �63 are pointwise invertible.

Proof. Starting from (6.11), in the first step (similarly as in (6.4)), we determine a
pointwise orthogonal matrix function +̃1 such that

+̃>1 �1+̃1 =

[
�̃11 0
0 0

]

with �̃11 > 0, and then perform a congruence transformation with the matrix
function +1 = diag(+̃1, �), yielding +̃>1 �1 =

[
�̃1
�̃2

]
and

+>1 (� − ' − � )+1 − (+>1 �+1)+>1 ¤+1 =

[
�̃11 − '̃11 − �̃11 ̃11 �̃12 − '̃12

�̃21 − '̃21 �̃22 − '̃22

]
.

Next, under the assumption of a constant rank, compute a smooth full-rank decom-
position

+̃>2 (�̃22 − '̃22)+̃2 =

[
�̂22 − '̂22 0

0 0

]
,

where �̂22 − '̂22 is invertible and '̂22 ≥ 0. Such a full-rank decomposition
exists, since �̃22 − '̃22 has a positive semidefinite symmetric part. Then, defining
+2 := diag(�, +̃2, �) and applying an appropriate congruence transformation with
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+̂ := +1+2 yields

+̂>�+̂ =



�̃11 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


, +̂>� =



�̂1
�̂2
�̂3
�̂4


,

+̂>(� − ' − � )+̂ =



�̂11 − '̂11 − �̃11 ̃11 �̂12 − '̂12 − �̃11 ̃12 �̂13 − �̃11 ̃13 0
�̂21 − '̂21 �̂22 − '̂22 0 0
�̂31 0 0 0
0 0 0 0


,

where �̂22 − '̂22 is invertible and �̂4 has full row rank. Note that there is no
contribution of ' in the third block column and row, which is due to the fact that
+̂>'+̂ is pointwise positive semidefinite.

Note also that the terms  ̃12 and  ̃13 arise due to the fact that the transformation
from the right operates in these block columns. Note further that �̂4 has full row
rank so it can be transformed by a change of basis to be of the form [0 �̄63] with
invertible �̄63. Combining this with a smooth full-rank decomposition of the block
�̂3, one can perform a smooth transformation

[
+̃>3 0
0 �

] [
�̂3
�̂4

]
* =


0 �̄42 �̄43
0 0 �̄53
0 0 �̄63


,

with �̄42 and �̄63 square and pointwise nonsingular, where the number of rows
in �̄63 is that of �̂4. Applying an appropriate congruence transformation with
+3 = diag(�, �, +̃3, �), we obtain block matrices



�̄11 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,



�̄11 �̄12 �̄13
�̄21 �̄22 �̄23

0 �̄42 �̄43
0 0 �̄53
0 0 �̄63


,



�̄11 − '̄11 − �̄11 ̄11 �̄12 − '̄12 − �̄11 ̄12 �̄13 − �̄11 ̄13 �̄14 − �̄11 ̄14 0
�̄21 − '̄21 �̄22 − '̄22 0 0 0
�̄31 0 0 0 0
�̄41 0 0 0 0
0 0 0 0 0


.

As a final step we compute a column compression of the full row rank matrix
function �̄41 and apply an appropriate congruence transformation. This yields the
desired form.

Since in the condensed form (6.12) the blocks �51, �42 and �63 are pointwise
invertible, it follows immediately that D3 = 0, and that Î1 = −�53D3 = 0 and Î5 is
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uniquely determined by the other variables and their derivatives. These parts are
associated with equations for which a regularization is necessary; see Section 6.4.

Example 6.16. The construction in Example 6.11 can also be used to derive the
condensed form for the LTI pHDAE, which yields a system of the form (6.12) in
which the third, fourth and sixth block rows and the corresponding block columns
do not occur. The system has (Kronecker) index two as a free system with D = 0.

Example 6.17. The power network from Section 5.3 is already in the condensed
form (6.12), where the first, fourth, fifth and sixth block rows and columns do not
occur, so the system has (Kronecker) index one as a free system with D = 0.

6.4. Regularization via output feedback

Consider a pHDAE system of the form (6.12) and denote the system that is obtained
by removing the variables Î1, Î4 and the corresponding first and fifth equations by

�̂ ¤̂I = (�̂ − '̂ − �̂  ̂)Î + �̂ D, (6.13a)
Ĥ = �̂> Î. (6.13b)

System (6.13) can be viewed as the subsystem that is controllable and observable
at∞ (see Definition 3.3), since we have the following corollary.

Corollary 6.18. For system (6.13) there exists an output feedback

D = −,̂ Ĥ + F
with ,̂ + ,̂> > 0, so that the resulting closed-loop system is a pHDAE system

�̂ ¤̂I = (�̂ − '̂ − �̂  ̂ − �̂,̂�̂>)Î + �̂F,
Ĥ = �̂> Î,

and is regular and strangeness-free as a free system with F = 0.

Proof. This follows directly from the structure of the system, and the fact that �̂ is
already in a form where the kernel of �̂ and �̂> can be directly read off.

Remark 6.19. The condensed form (6.12) is a structured pHDAE version of the
condensed forms in Byers, Geerts and Mehrmann (1997a) and Byers, Kunkel and
Mehrmann (1997b), which allow us to remove parts of the system that cannot be
made strangeness-free, uniquely solvable or of strangeness index zero ((Kronecker)
index at most one) via (output) feedback.

A similar process of removing parts from a system, and that cannot be made
strangeness-free by (output) feedback, has been discussed for general nonlinear DAE
systems by Campbell et al. (2012). The procedure can be applied directly to pHDAE
systems.
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7. Properties of pHDAE systems
In this section we discuss several general properties of the model class of pHDAE
systems and show why they are a very good candidate for our modelling wish list.

7.1. Invariance under transformations and projection

An essential property of the class of pHDAE systems is the invariance under different
equivalence transformations; see Beattie et al. (2018) and Mehrmann and Morandin
(2019).

Let us begin with general state space-transformations and consider Z̃ ⊆ R=̃ and
define S̃ := T× Z̃ with elements (C, Ĩ) ∈ S̃ . Let i ∈ C1(S̃,Z) and let* ∈ C(S̃,Rℓ,ℓ)
be invertible. Define

k : S̃ → S, (C, Ĩ) ↦→ (C, i(C, Ĩ))

and

�̃ := *>(� ◦ k)
m

mI
i, �̃ := *>(� ◦ k)*, '̃ := *>(' ◦ k)*,

�̃ := *>(� ◦ k), %̃ := *>(% ◦ k), [̃ := *>([ ◦ k),

(̃ := ( ◦ k, #̃ := # ◦ k, Ã := *>(A ◦ k) + (� ◦ k)
m

mC
i,

together with a transformed Hamiltonian

H̃ := H ◦ k. (7.1)

We have the following transformation result taken from Mehrmann and Morandin
(2019).

Theorem 7.1. Consider a pHDAE (4.1) together with the transformed descriptor
system

�̃(C, Ĩ) ¤̃I + Ã(C, Ĩ) = (�̃(C, Ĩ) − '̃(C, Ĩ))[̃(C, Ĩ) + (�̃(C, Ĩ) − %̃(C, Ĩ))D, (7.2a)
H = (�̃(C, Ĩ) + %̃(C, Ĩ))>[̃(C, Ĩ) + ((̃(C, Ĩ) − #̃(C, Ĩ))D, (7.2b)

and transformed Hamiltonian H̃ in (7.1). Then the following properties hold.

(i) The descriptor system (7.2) is a pHDAE.
(ii) If i(C, ·) is a local diffeomorphism for all C ∈ T, then to any behaviour solution

(Ĩ, D, H) of (7.2) there corresponds a behaviour solution (I, D, H) of (4.1) with
I(C) = i(C, Ĩ(C)).

(iii) If i(C, ·) is a global diffeomorphism for all C ∈ T, then there is a one-to-one
correspondence between a behaviour solution (Ĩ, D, H) of (7.2) and a behaviour
solution (I, D, H) of (4.1) with I(C) = i(C, Ĩ(C)).
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Proof. The transformed DAE system is obtained from (4.1) by setting I = i(C, Ĩ),
pre-multiplying by *> and inserting**−1 in front of I in the first equation. It is
clear that if (Ĩ, D, H) is a solution of (7.2) then (I, D, H) is a behaviour solution of
the original system, and if i(C, ·) is a global diffeomorphism then we can apply
the inverse transformation to get a behaviour solution (Ĩ, D, H) for any behaviour
solution (I, D, H) of the original system.
To show that (7.2) is still a pHDAE, we must check the defining conditions. By

substitution, we get

,̃ =

[
'̃ %̃
%̃> (̃

]
=

[
*>(' ◦ i)* *>(% ◦ i)
(% ◦ i)>* ( ◦ i

]

=

[
* 0
0 �

]>
(, ◦ i)

[
* 0
0 �

]
≥ 0,

since positive semidefiniteness is invariant under congruence. We also get

m

mĨ
H̃(C, Ĩ) =

(
m

mĨ
i

)>( m

mI
H ◦ i

)
=

(
m

mĨ
i

)>
(�>I ◦ i)

=

(
m

mĨ
i

)>
(�> ◦ i)**−1(I ◦ i) = �̃> Ĩ,

and
mH̃
mC

(C, Ĩ) =
mH(C)
mC
◦ i +

(
m

mI
H ◦ i

)> mi
mC

= I>A ◦ i + (I>� ◦ i)
mi

mC

= (I ◦ i)>
(
A ◦ i + (� ◦ i)

mi

mC

)
= Ĩ>*>*−>Ã = Ĩ>Ã .

For linear pHDAE systems with quadratic Hamiltonian, this invariance takes the
following form; see Beattie et al. (2018).

Theorem 7.2. Consider a linear pHDAE system of the form (4.5) with quadratic
Hamiltonian (4.6). Let* ∈ C(T,Rℓ,ℓ) and+ ∈ C1(T,R=,=) be pointwise nonsingular
in T. Then the transformed DAE

�̃ ¤̃I = [(�̃ − '̃)&̃ − �̃  ̃] Ĩ + (�̃ − %̃)D,
H = (�̃ + %̃)>&̃Ĩ + (( + #)D,

with

�̃ := *>�+, &̃ := *−1&+, �̃ := *>�*,
'̃ := *>'*, �̃ := *>�, %̃ := *>%,
 ̃ := +−1 + ++−1 ¤+, I = +Ĩ,

is still a pHDAE system with the same quadratic Hamiltonian

H̃(Ĩ) :=
1
2
Ĩ>&̃>�̃ Ĩ = H(I).
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Proof. The transformed DAE system is obtained from the original DAE system
by setting I = +Ĩ, pre-multiplying by *> and inserting **−1 in front of &. The
transformed operator corresponding to L in (4.7) is given by

L+ := &̃>�̃
d
dC
− &̃>(�̃&̃ − �̃  ̃).

Because

&̃>�̃ = +>&>�+, &̃> �̃&̃ = +>&>�&+, &̃>�̃+−1 ¤+ = +>&>� ¤+,
we see that L+ is again skew-adjoint. It is then straightforward to show that
H̃(Ĩ) = H(I), and

,̃ =

[
&̃>'̃&̃ &̃>%̃
%̃>&̃ (

]
=

[
+ 0
0 �

]>
,

[
+ 0
0 �

]
,

where, is as defined in (4.8). Because,(C) is positive semidefinite for all C ∈ T,
so is ,̃(C).

Note that even if  = 0 in an LTV pHDAE systemwith quadratic Hamiltonian, after
the transformation given in Theorem 7.2 the extra term −�̃  ̃ with  ̃ = +−1 ¤+ will
appear, and if an orthogonal change of basis is carried out in a system with  = 0
then  ̃ = +−1 ¤+ is skew-symmetric. However, even if  ≠ 0, Beattie et al. (2018)
have shown that this term can be removed via a change of basis transformation that
does not change the quadratic Hamiltonian.

Lemma 7.3. Consider a pHDAE system

�̃ ¤̃I = [(�̃ − '̃)&̃ − �̃  ̃)] Ĩ + (�̃ − %̃)D,
H = (�̃ + %̃)>&̃Ĩ + (( − #)D

with Hamiltonian H̃(Ĩ) = 1
2 Ĩ
>&̃>�̃ Ĩ and  ̃ ∈ C(T,R=,=). If + ̃ ∈ C1(T,R=,=) is a

pointwise invertible solution of the matrix differential equation ¤+ = + ̃ with initial
condition +(C0) = �, then setting Ĩ = +−1

 I and defining

� := �̃+−1
 , & := &̃+−1

 , � := �̃, � := �̃, ' := '̃, % := %̃,

the system

� ¤I = (� − ')&I + (� − %)D,
H = (� + %)>&I + (( − #)D

is again a pHDAE with the same HamiltonianH(I) = H̃(Ĩ).

Proof. For a given matrix function  ̃, the system ¤+ = + ̃ always has a solution
+ that is pointwise invertible. The remainder of the proof follows by reversing the
proof of Theorem 7.2 with* = � and using ¤+ +−1

 = −+ (d/dC)(+−1
 ).
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Another important observation for linear pHDAE systems of the form (4.5) (with
& = �) that is important in the context of space discretization and model reduction
is that the pHDAE structure is invariant under Galerkin projection.

Corollary 7.4. Consider a pHDAE system of the form (4.5) with quadratic Hamilto-
nian (4.6) and assume that  = 0. If + ∈ R=,: for some : ∈ N, then the projected
system in the variable I = +Ĩ,

�̃ ¤̃I = (�̃ − '̃)Ĩ + (�̃ − %̃)D,
H = (�̃ + %̃)> Ĩ + (( − #)D,

with projected matrix functions

�̃ := +>�+, �̃ := +>�+, '̃ := +>'+, �̃ := +>�, %̃ := +>%,

is still a pHDAE with projected Hamiltonian H̃(Ĩ) = 1
2 Ĩ
>�̃ Ĩ.

Remark 7.5. Note that for LTV pHDAE systems with  ≠ 0, strictly speaking,
the invariance under Galerkin projection is violated, unless we incorporate a term
++> between � and  so that the projected coefficient  is approximated by
 ̃ = +>( − ¤+)+ .

The discussed invariance of a pHDAE system under transformations allows us to
simplify the representation further. These simplifications are discussed in Section 6
for LTI and LTV pHDAE systems.

7.2. Structure-preserving interconnection

Another key property of the pHDAE model class that is particularly important
for modularized, network-based modelling across physical domains is that it is
preserved under interconnection. To see this, consider two autonomous pHDAEs
(see Remark 4.2)

�8 ¤I8 = (�8 − '8)[8 + (�8 − %8)D8 ,
H8 = (�8 + %8)>[8 + ((8 − #8)D8 ,

of the form (4.1) with Hamiltonians H8, for 8 = 1, 2, and assume that inputs and
outputs satisfy a linear interconnection relation[

"11 "12
"21 "22

] [
D1
D2

]
+

[
!11 !12
!21 !22

] [
H1
H2

]
=

[
0
0

]
.

Then the interconnected system can be written as a pHDAE of the form

E ¤I = (J −R)[ + GD,
H = G>[,
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where

I =
[
I>1 I>2 I>3 I>4 I>5 I>6

]>
,

[ =
[
[>1 [>2 [>3 [>4 [>5 [>6 0 0

]>
,

with new state variables I3 := [3 := D1, I4 := [4 := D2, I5 := [5 := H1, I6 := [6 :=
H2, matrix functions

E =



�1 0 0 0 0 0
0 �2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, G =



0 0
0 0
0 0
0 0
� 0
0 �
0 0
0 0



,

J −R =



�1 − '1 0 �1 − %1 0 0 0 0 0
0 �2 − '2 0 �2 − %2 0 0 0 0

−�>1 − %>1 0 #1 − (1 0 � 0 −">11 −">21
0 −�2 − %>2 0 #2 − (2 0 � −">12 −">22
0 0 −� 0 0 0 −!>11 −!>21
0 0 0 −� 0 0 −!>12 −!>22
0 0 "11 "12 !11 !12 0 0
0 0 "21 "22 !21 !22 0 0



,

and combined HamiltonianH = H1 +H2. It is clear that the structural conditions
of the coefficients are still satisfied.
Unfortunately, due to the extension by extra state variables, the dimension

of the state space may substantially increase. However, if we assume that the
interconnection is power-preserving (e.g. if "D + !H = 0 defines a Dirac structure
for (H, D)) (see Section 7.6), then index reduction and removal of certain parts (see
Section 6) can usually be applied to make the system smaller.
If we restrict ourselves to linear pHDAEs of the form

�8 ¤I8 = (�8 − '8)I8 + �8D8 ,
H8 = �

>
8 I8

(see Sections 4.3 and 4.4), then we can achieve the interconnection in a more
condensed form. Assume an ouput feedback of the form D = �H + F with
aggregated variables D :=

[
D>1 D>2

]> and H :=
[
H>1 H>2

]>. Define I :=
[
I>1 I>2

]>,
� := diag(�1, �2), ' := diag('1, '2), � = diag(�1, �2). Then the coupled system
has the form

� ¤I = (� − ' + ���>)I + �F,
H = �>I,
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which is a pHDAE whenever ' − ��sym�
> is positive semidefinite, where

�sym :=
1
2

(� + �>).

A sufficient condition to retain the pH structure is thus to require that �sym is
negative semidefinite, corresponding to a potentially dissipative component of the
interconnection.

7.3. Storage energy balance equation and dissipation inequality

A key property of pHDAE systems that shows their strong roots in the underlying
physical principles is the storage energy balance equation and the associated
dissipation inequality; see also Section 3.4.

Theorem 7.6. The pHDAE (4.1) satisfies the storage energy balance equation

d
dC
H(C, I(C)) = −

[
[(C, I)
D

]>
,(C, I)

[
[(C, I)
D

]
+ H>D

along any behaviour solution of the pHDAE (4.1).

Proof. Let [I> D> H>]> be a behaviour solution of the pHDAE (4.1). Using
the structural properties of the pHDAE system, we obtain

d
dC
H(C, I) =

m

mC
H(C, I) +

(
m

mI
H(C, I)

)>
¤I = [(C, I)>(�(C, I) ¤I + A(C, I))

= [(C, I)>((�(C, I) − '(C, I))I + (�(C, I) + %(C, I) − 2%(C, I))D)

= −
[
[(C, I)
D

]> [
'(C, I) %(C, I)
%(C, I)> ((C, I)

] [
[(C, I)
D

]
+ H>D

= −
[
[(C, I)
D

]>
,(C, I)

[
[(C, I)
D

]
+ H>D.

Using the fact that , ≥ 0 along any solution of (2.1), we immediately obtain
that the pHDAE system satisfies the dissipation inequality

H(C1, I(C1)) −H(C0, I(C0)) ≤
∫ C1

C0

H(B)>D(B) dB. (7.3)

The storage energy balance equation and the dissipation inequality are obvious
in all the examples described in Section 5. In all cases the dissipation term ' is
positive semidefinite. In the disc brake for the unforced system, without applying
the brake force (see Section 5.8), this is also the case. The perturbation term which
moves eigenvalues to the right half-plane is due to the external force that can be
interpreted as a supplied energy via the term H>D.

https://doi.org/10.1017/S0962492922000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000083


464 V. Mehrmann and B. Unger

7.4. Stability and passivity of general dHDAE and pHDAE systems

In this subsection we show that for general dHDAE and pHDAE systems the stability
analysis is straightforward, since it will turn out that the associated Hamiltonian is a
Lyapunov function. To show this, we will use the storage energy balance equation
from Theorem 7.6 and for the passivity the dissipation inequality (7.3).
We have already seen in Section 7 that every pHDAE can be easily made

autonomous by turning it into the form (4.4a) without changing the Hamiltonian.
The dissipation inequality (7.3) then implies that the Hamiltonian H is locally
positive semidefinite in an equilibrium point I★ and henceH is a Lyapunov function.

Corollary 7.7. Consider an autonomous dHDAE obtained from the pHDAE (4.1)
by setting D = 0 and omitting the output equation. If the system is regular and
strangeness-free, then the part of the solution that is contributing to the Hamiltonian
(see Section 4.3) is stable. Furthermore, in this case a sufficient condition for the
system to be asymptotically stable is that '(C, I) > 0.

Remark 7.8. Note that in Corollary 7.7 we obtain (asymptotic) stability only for
the part of the system that contributes to the Hamiltonian. This is not specific for
descriptor pH systems, but already required for pHODEs; see Remark 4.11.

Remark 7.9. For the examples in Section 5 we immediately have asymptotic
stability for the circuit (5.2), whereas the multi-body systems in Section 5.7, the gas
network problem in Section 5.6, the poroelasticity problem in Section 5.5 and the
fluid-dynamics example in Section 5.4 are not strangeness-free, but (asymptotic)
stability is obtained after removing the algebraic parts that are associated with a
strangeness index that is greater than zero, or (Kronecker) index greater than one.
By an appropriate output feedback, the circuit example of Section 5.2 can be made
to have (Kronecker) index one.

The dissipation inequality directly implies that strangeness-free pHDAE systems
are passive.

Corollary 7.10. Consider an autonomous pHDAE of the form (4.1). If the system
is strangeness-free then it is passive. Furthermore, in this case a sufficient condition
for the system to be strictly passive is that,(C, I) > 0 for all (C, I) ∈ T × Z .

Example 7.11. The disc brake example in Section 5.8 is in general not stable, but
it may be stable if the perturbation term is small enough.

7.5. Stability

In this subsection we discuss in more detail the stability of pHDAE systems and,
conversely, show that an (asymptotically) stable system can typically be written as a
pHDAE system.
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Beginning with LTI ODE systems, an immediate consequence of the Lyapunov
characterization of stability is the existence of a dHDAE formulation of (asymp-
totically) stable LTI ODE systems; see Gillis, Mehrmann and Sharma (2018) and
Mehrmann and van der Schaft (2023).

Corollary 7.12. Consider the LTI ODE system (3.12) and suppose that - = -> > 0
is a solution of the Lyapunov inequality (3.13). Setting � := - , � := −1

2 (�>-−-�),
and ' := − 1

2 (�>- + -�) implies that

� ¤I = (� − ')I (7.4)

is a dHDAE system with ' ≥ 0. If the Lyapunov inequality is strict, then we have
' > 0.
Conversely, every dHDAE of the form (7.4) with � > 0, ' ≥ 0 (' > 0) is

(asymptotically) stable.

Proof. The proof follows trivially, since −2' = �>- + -�.
Remark 7.13. Note that if we consider an asymptotically stable linear system
(3.12) and split � = � − ' into its skew-symmetric and symmetric part, then in
general we do not have ' ≥ 0. Consider the example

� =

[
1 2

√
7

−2
√

7 −10

]
, � =

[
0 2

√
7

−2
√

7 0

]
, ' =

[
1 0
0 −10

]
,

where the matrix � has eigenvalues −3 and −6, but ' is indefinite.

Corollary 7.12 provides the sufficient condition ' > 0 for asymptotic stability.
Nevertheless, a system may also be stable for singular ' ≥ 0, as is shown by the
following characterization from Achleitner et al. (2021b).

Lemma 7.14. Consider the LTI system (3.12) with

� = � − ', � = −�>, 0 ≤ ' = '>.
Then the following conditions are equivalent.

(i) There exists a non-negative integer <� such that

rank[' �' · · · �<� '] = =.
(ii) There exists a non-negative integer <� such that

)<� :=
<�∑
9=0

� 9'(�>) 9 > 0.

(iii) No eigenvector of � lies in the kernel of '.
(iv) We have rank[_� − � '] = = for every _ ∈ C, in particular for every

eigenvalue _ of �.

Moreover, the smallest possible <� in (i) and (ii) coincide.
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Proof. See Achleitner et al. (2021b).

The smallest possible<� in (i) and (ii) of Lemma 7.14 is called the hypocoercivity
index of �, and we have the following corollary.

Corollary 7.15. Consider the LTI system (3.12) with

� = � − ', � = −�>, 0 ≤ ' = '>.
Then the system is asymptotically stable if and only if the hypocoercivity index is
finite.

Remark 7.16. Achleitner, Arnold and Carlen (2021a) showed that if the hypo-
coercivity index<� is finite, then for the fundamental solution e�C ∈ R=,= of (3.12),
the short-time decay in the spectral norm is given by

‖e�C ‖2 = 1 − 2C2<�+1 +$(C2<�+2) for C → 0+,
with a constant 2 > 0.

We now extend these result to the dHDAE setting, where � ≥ 0 is allowed to be
singular. We have the following stability characterizing spectral properties taken
from Mehl et al. (2018), where an extended result that deals with singular and high
index dHDAE systems is also provided.

Theorem 7.17. Consider an LTI dHDAE of the form (7.4) and suppose that the
pencil _� − (� − ') is regular and of (Kronecker) index at most one.

(i) If _0 ∈ C is an eigenvalue of _� − (� − '), then Re(_0) ≤ 0.
(ii) If l ∈ R and _0 = il is an eigenvalue of _� − (� − '), then _0 is semisimple.

Moreover, if the columns of + ∈ C=,: form a basis of a regular deflating
subspace of _� − (� − ') associated with the eigenvalue _0, then '+ = 0.

Proof.

(i) Let _0 ∈ C be an eigenvalue of _� − (� − ') and let E ≠ 0 be an eigenvector
associated with _0. Then we have _0�E = (� − ')E and thus

_0E
��E = E� �E − E�'E.

Considering the real parts of both sides of this equation, we obtain

Re(_0)E��E = −E�'E,
where we used the fact that � and ' are symmetric and � is skew-symmetric.
If �E = 0, then also (� − ')E = 0, which would imply that the pencil is
singular. Hence we have �E ≠ 0, and since � is positive semidefinite, we
obtain E��E > 0, which finally implies

Re(_0) = − E
�'E

E��E
≤ 0.
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(ii) We first prove the ‘moreover’ part. For this, let the columns of + ∈ C=,:
form a basis of a regular deflating subspace of _� − (� − ') associated with
the eigenvalue _0 = il, l ∈ R, that is, there exists a matrix, ∈ C=,: with
full column rank such that �+ = , and (� − ')+ = ,) , where ) ∈ C:,:
only has the eigenvalue il. Without loss of generality we may assume that
) = il�: + # is in Jordan canonical form, where # is strictly upper triangular.
Then +� (� − ')+ = +�,) , and taking the Hermitian part on both sides we
obtain

0 ≥ −2+�'+ = +�,) + )�,�+.

Since ' is positive semidefinite, it remains to show that +�'+ = 0, because
then we also have '+ = 0. For this, we show that

+�, = ,�+ > 0.

This follows, since first +�, = +��+ ≥ 0. If there exists G ≠ 0 such that
�+G = 0, then with H = +G = H1 + iH2, H1, H2 real, we have �H = 0. This
implies that �H1 = 0 and H2 = 0. Hence

H ∈ span(ker � ∪ ker(� − ')) ⊆ span
(⋃
_∈S

ker(_� − (� − '))
)
,

with S := (C ∪ {∞}) \ {_0}, which contradicts the fact that the columns of +
span a regular deflating subspace associated with _0.
If " is the inverse of the Hermitian positive definite square root of +�, ,

then
"(+�,) + )�+�,)" = "−1)" + ")�"−1 ≤ 0.

Moreover,

trace("−1)" + ")�"−1) = trace("−1)") + trace(")�"−1)
= trace() + )� ) = trace(# + #� ) = 0,

because # has a zero diagonal. But this implies

"−1)" + ")�"−1 = 0

and hence also −2+�'+ = 0, which finishes the proof of the ‘moreover’ part.
To show that il is a semisimple eigenvalue, it remains to show that thematrix

) = il�: + # is diagonal, i.e. # = 0. Since purely imaginary eigenvalues of
the system correspond to eigenvectors of the non-dissipative system (' = 0)
that are in the kernel of ' (Mehl, Mehrmann and Sharma 2016), with '+ = 0
we get �+ = , and �+ = ,) , which implies that +� �+ = +�,) . Then

"−1)" = "+�,)" = "+� �+"

implies that ) is similar to a matrix which is congruent to �, that is, ) is
similar to a skew-symmetric matrix, which implies that # = 0. Thus, il is a
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semisimple eigenvalue of _� − (� − ') and assertion (ii) is proved. See Mehl
et al. (2018) for further details.

Analogous to the ODE case, Theorem 7.17 implies that dHDAE systems with reg-
ular pencils of (Kronecker) index at most one are stable, but they are not necessarily
asymptotically stable. To characterize asymptotic stability, a hypocoercivity index
and the corresponding Lyapunov inequality for dHDAE systems is introduced in
Achleitner et al. (2021b) for the DAE case as well. For the precise statement and the
proof, we exploit the condensed form from Corollary 6.5 that preserves the dHDAE
structure. In more detail, we employ the fact that for any regular dHDAE system of
the form (7.4) there exist nonsingular matrices (, ) ∈ R=,= such that with

�̂ := (�) =



�̂11 0 0 0
0 �̂22 0 0
0 0 0 0
0 0 0 0


, �̂ − '̂ =



0 0 0 �
0 �̂22 − '̂22 0 0
0 0 −� 0
−� 0 0 0


, (7.5)

the system �̂ ¤̂I = (�̂ − '̂)Î is still a dHDAE and the matrices �̂11, �̂22 are symmetric
positive definite, �̂22 is skew-symmetric and '̂22 is symmetric positive semidefinite.
Assume now that the dHDAE system (7.4) is transformed into the form (7.5)

with transformed state vector Î =
[
Î>1 Î>2 Î>3 Î>4

]> partitioned according to
the block structure; then we immediately obtain that Î1 = 0, Î3 = 0 and Î4 = 0,
which gives restrictions in the initial values. Using the fact that �̂22 = �̂>22 > 0, the
hypocoercivity index of (7.4) is then defined in Achleitner et al. (2021b) as that of
the ODE

¤b2 = �̂
−1/2
22 (�̂22 − '̂22)�̂−1/2

22 b2, (7.6)

with b2 = �̂
1/2
22 Î2. We have the following characterization of asymptotic stability;

see Achleitner et al. (2021b).

Corollary 7.18. If a dHDAE system of the form (7.4) has a regular pencil _� −
(�−') with (Kronecker) index at most one (i.e. the first block-row and block-column
in (7.5) are not present), and non-trivial dynamics with a finite hypocoercivity index,
then for every consistent initial condition the solution is asymptotically stable.

Remark 7.19. Using the transformation to the condensed form (7.5) we see that
the short-time decay is as for the ODE case. This can be viewed as considering the
decay in a seminorm obtained by scaling the solution with the semidefinite matrix
� . To see this, let ) be the transformation matrix to the form (7.5), and let =8 denote
the size of Î8 for 8 = 1, . . . , 4. By assuming that the Kronecker index is at most
one, we have =1 = =4 = 0, and the solution b2(C) of (7.6) is asymptotically stable for
every initial value Î2(0). The solution of the original system is then I = )

[
b>2 0

]>,
hence for every consistent initial value

‖I(C)‖2 = ‖)b(C)‖2 ≤ ‖) ‖‖b2(0)‖2 e−2`C ≤ ^())‖b(0)‖2 e−2`C ,
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where ` > 0 is some exponential decay rate capturing the asymptotic stability
of (7.6), and ^()) = ‖) ‖‖)−1‖ is the condition number of ) . Note that b(0) can
be replaced with I(0) by carrying out a transformation of the second component
with �̂1/2

22 and then the coefficient gets an extra factor associated with the condition
number of �̂22.

The condensed form (7.5) also allows a characterization of (asymptotic) stability
via a generalized Lyapunov equation. The following theorem is a simplified and
real version of a result in Achleitner et al. (2021b).

Theorem 7.20. Consider a dHDAE of the form (7.4) with regular matrix pencil
_� − � (with � = � − ') of Kronecker index at most two and finite hypocoercivity
index. Then for every matrix, ∈ R=,= the generalized Lyapunov equation

�>-� + �>-� = −�>,� (7.7)

has a solution. For all solutions - of (7.7), the matrix �>-� is unique. Moreover, if
, is positive (semi)definite, then every solution - of (7.7) is positive (semi)definite
on the image of %ℓ , the spectral projection onto the left deflating subspace associated
with the finite eigenvalues of _� − �.
Proof. Due to Theorem 7.17, the eigenvalues are in the closed left half-plane, the
eigenvalues on the imaginary axis are semisimple, and the pencil is of Kronecker
index at most two. But since the pencil is regular and has a finite hypocoercivity
index, its finite spectrum lies in the open left half-plane.

For general linear DAE systems with regular matrix pencil _� − � of (Kronecker)
index at most two whose finite eigenvalues lie in the open left half-plane, the result
then follows from Stykel (2002).

Remark 7.21. For LTI DAE systems the characterization of stability via different
generalized Lyapunov equations and the relation to pHDAE systems has recently
been studied in different contexts, for example in a behaviour context in Gernandt
and Haller (2021), via generalized Kalman–Yakubovich–Popov inequalities in Reis
et al. (2015) and Reis and Voigt (2015), and via linear relations in Gernandt, Haller
and Reis (2021).

It is currently under investigation how to extend the results on hypocoercivity
to the LTV and nonlinear case to obtain a necessary and sufficient condition for
asymptotic stability.

7.6. Geometric description of pHDAE systems

Port-Hamiltonian systems are often described through differential geometric struc-
tures known as Dirac structures; see e.g. van der Schaft (2000) and van der Schaft
and Jeltsema (2014). This viewpoint is extremely helpful in bond-graph repres-
entations of dynamical systems (Breedveld 2008, Montbrun-Di Filippo, Delgado,
Brie and Paynter 1991, Paynter 1961) and also in understanding limiting situations

https://doi.org/10.1017/S0962492922000083 Published online by Cambridge University Press

https://doi.org/10.1017/S0962492922000083


470 V. Mehrmann and B. Unger

and the effect of constraints (Mehrmann and van der Schaft 2023, van der Schaft
and Maschke 2018, 2020). It is also very important in the construction of time
discretization methods; see Section 9.1.

Definition 7.22. Let F be a Euclidean vector space and E := F∗ its dual space.
Let 〈〈·, ·〉〉 be a bilinear form on F × E defined via

〈〈( 51, 41), ( 52, 42)〉〉 := 〈41 | 52〉 + 〈42 | 51〉,
where 〈· | ·〉 is the standard duality pairing. Then a linear subspace D ⊆ F × E ,
such that D = D⊥⊥ with respect to 〈〈· , ·〉〉, is called a Dirac structure on F × E . If
( 5 , 4) ∈ D, then 5 and 4 are called flow and effort, respectively.

In finite dimensions, we have a Dirac structure if dimD = dimF and

〈4 | 5 〉 = 0 for all ( 5 , 4) ∈ D
(van der Schaft and Jeltsema 2014).

The concept of a Dirac structure can also be generalized to vector bundles. For
this, let ⊕ denote the Whitney sum between vector bundles; see e.g. Lang (2012).

Definition 7.23. Consider a state space Z and a vector bundle V over Z with
fibres VI . A Dirac structure over V is a sub-bundle D ⊆ V ⊕ V∗ such that, for all
I ∈ Z , DI ⊆ VI × V∗I is a linear Dirac structure.
This definition generalizes the modulated Dirac structures (van der Schaft and

Jeltsema 2014), where V = )Z is the tangent bundle to Z . To associate a Dirac
structure to the pHDAE system (4.1), we assume that the system is autonomous
(see Remark 4.2) and first show the following lemma, which has been presented in
Mehrmann and Morandin (2019).

Lemma 7.24. Consider an autonomous pHDAE system (4.1) with skew-symmetric
� : Z → L(V∗I ,VI). If D ⊆ V ⊕ V∗ is a vector sub-bundle with fibres defined by

DI = {( 5 , 4) ∈ VI × V∗I : 5 + �(G)4 = 0}, (7.8)

then D is a Dirac structure.

Proof. For generic ( 5 , 4) ∈ DI and ( 5 ′, 4′) ∈ VI × V∗I , we have
〈〈( 5 , 4), ( 5 ′, 4′)〉〉 = 〈4 | 5 ′〉 + 〈4′ | 5 〉

= 〈4 | 5 ′〉 − 〈4′ | �4〉 = 〈4 | 5 ′ + �4′〉.
We show that ( 5 ′, 4′) ∈ DI if and only if 〈4 | 5 ′ + �4′〉 = 0 for all ( 5 , 4) ∈ DI . If
( 5 ′, 4′) ∈ DI , then 〈4 | 5 ′ + �4′〉 = 0 holds for any 4 ∈ E . If ( 5 ′, 4′) ∉ DI , then
5 ′ + �4′ ≠ 0 and so there exists 4 ∈ E such that 〈4 | 5 ′ + �4′〉 = 1, but ( 5 , 4) ∈ DI
with 5 = −�4.

A Dirac structure for general pHDAE systems is then constructed as follows; see
Mehrmann and Morandin (2019).
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Theorem 7.25. Consider an autonomous pHDAE system of the form (4.1). Define
the flow fibre VI := F s

I × Fp
I × Fd

I for all I ∈ Z , where

F s
I := �(I))IZ ⊆ Rℓ is the storage flow fibre,

Fp
I := R< is the port flow fibre, and

Fd
I := Rℓ+< is the dissipation flow fibre.

Let us partition 5 = ( 5s, 5p, 5d) ∈ V and 4 = (4s, 4p, 4d) ∈ V∗. Then the sub-bundle
D ⊆ V ⊕ V∗ with

DI =
{
( 5 , 4) ∈ VI × V∗z | 5 +

[
Γ(I) �ℓ+<
−�ℓ+< 0

]
4 = 0

}

is a Dirac structure over V . Furthermore, the system of equations

5s = −�(I) ¤I, 4s = [(I),
5p = H, 4p = D,

4d = −,(I) 53 , ( 5 , 4) ∈ DI
(7.9)

is equivalent to the original pHDAE, and 〈4 | 5 〉 = 0 represents the storage energy
balance equation.

Proof. Lemma 7.24 implies that D is a Dirac structure. Writing (4.1) in compact
form, [

�(I) ¤I
−H

]
= [(Γ(I) −,(I))]

[
[(I)
D

]
,

it follows that ( 5 , 4) ∈ DI can be written as[− 5s
− 5p

]
= Γ(I)4s + 4p, 5d = (4s, 4p).

Together with the conditions (7.9), this is equivalent to[
�(I) ¤I
−H

]
= (Γ(I) −,(I))

[
[(I)
D

]
,

5 =

{
−�(I) ¤I, H,

[
[(I)
D

]}
,

4 =

{
[(I), D, −,(I)

[
[(I)
D

]}
,

which is exactly the compact form of the pHDAE. Finally, note that the equation
〈4 | 5 〉 = 0 can be written as

0 = 〈[(I) | −�(I) ¤I〉 + 〈D | H〉 +
〈
−,(I)

[
[(I)
D

]
|
[
[(I)
D

]〉

=
d
dC
H(I) + H>D −

[
[(I)
D

]>
,(I)

[
[(I)
D

]
,
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which is the storage energy balance equation.

Note that if we conversely want to retrieve a pHDAE system from a Dirac structure,
then the additional conditions (7.9) and the definition ofH(I) are needed.

Remark 7.26. Since dHDAE systems generalize classical Hamiltonian systems,
an immediate question is whether the associated flow has a geometric structure,
such as symplecticity or generalized orthogonality when there is no dissipation;
see Hairer, Lubich and Wanner (2002). While for pHODE systems this is well
established (e.g. Celledoni and Høiseth 2017, van der Schaft and Jeltsema 2014),
for LTV dHDAE systems this has only been established recently in Scholz (2019),
and in a more general setting in Kunkel and Mehrmann (2023).

Remark 7.27. In the linear time-invariant case, an extension that addresses
different Lagrange and Dirac structures and their relation has been introduced in
van der Schaft and Maschke (2018). Ignoring the dissipation term as well as the
inputs and outputs, the corresponding equation has the form

 % ¤I = !(I,
where (, %, !, ( ∈ R=,= satisfy (>% = %>( with rank

[
(
%

]
= =, that is, the columns

of
[
(
%

]
form a Lagrangian subspace, and  >! = −!> with rank

[
 
!

]
= =, that is,

the columns of
[
 
!

]
are associated with a Dirac structure. A further generalization

is discussed in Gernandt et al. (2021), and the relation of different representations,
including the incorporation of dissipation as well as ports, is discussed in Mehrmann
and van der Schaft (2023).

Clearly, if  = ( = � then % = %> and ( = −(>, and we are in the case of dHDAE
systems with � = �> = %, ( = −(> = �, where the extra condition � ≥ 0 has to be
assumed. If  = % = � then we are in the classical case of pHODE systems with
( = (> = & and ! = −!> = �.
Remark 7.28. The representation of pHODE or pHDAE systems via a Dirac
structure is an extension of Tellegen’s theorem (e.g. Duindam, Macchelli, Stramigioli
and Bruyninckx 2009) and it also shows the relation to implicit Lagrange systems
(e.g. Yoshimura and Marsden 2006a,b) as well as gradient systems (e.g. Öttinger
and Grmela 1997, Öttinger 2006).

8. Model-order reduction
In this section we discuss structure-preserving model-order reduction (MOR)
methods for pHDAE systems. The main idea is to replace the potentially high-
dimensional pHDAE with a low-dimensional pHDAE surrogate model, such that
the output error approximation for a given input is below some given tolerance. A
standard approach in the MOR literature (e.g. Antoulas 2005a, Quarteroni, Manzoni
and Negri 2015, Hesthaven, Rozza and Stamm 2016, Benner, Cohen, Ohlberger and
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Willcox 2017, Antoulas, Beattie and Gugercin 2020) is to construct the surrogate
model via Galerkin or Petrov–Galerkin projection. In more detail, for a regular
descriptor-system of the form (2.1) (i.e. we assume ℓ = = within this section), the
projection-based surrogate is given by

�̂(C, Î(C), ¤̂I(C), D(C)) = 0, (8.1a)
Ĥ(C) − �̂(C, Î(C), D(C)) = 0, (8.1b)

with

�̂(C, Î, ¤̂I, D) := +>r �(C, +ℓ Î, +ℓ , ¤̂I, D), (8.2a)
�̂(C, Î(C), D(C)) := �(C, +r Î(C), D(C)) (8.2b)

for matrices +ℓ , +r ∈ R=,A . The task of MOR is (i) to construct suitable matrices
+ℓ , +r ∈ R=,A in a numerically stable way, and (ii) to ensure that �̂ and �̂ in (8.1)
can be evaluated efficiently (without the need to evaluate terms in the full model
dimension =). In addition, MOR strives to quantify the error of the reduced-order
model (ROM) (8.1) and preserve important properties (such as stability or passivity)
within the ROM.

For general DAE systems, even if the original system is of (Kronecker) index zero,
a Galerkin projection may change the index, the regularity or the stability properties
of the free system (with D = 0).

Example 8.1. Consider the implicit ODE system[
0 −1
−1 1

] [ ¤I1
¤I2

]
=

[
Y 1
1 0

] [
I1
I2

]
+

[
1
0

]
D.

Then with +>ℓ := +>r := [1 0] we obtain the ROM

0 = YI1 + D,
which now has (Kronecker) index 1 for Y > 0 and is even singular for Y = 0.

A key advantage of modelling with pHODE and pHDAE systems is that effects as
in Example 8.1 do not occur if the structure is not altered. Since pHDAE systems
are invariant under Galerkin projection (see Corollary 7.4), the model class is
ideal for projection-based discretization and MOR methods. This, together with
the invariance under interconnection, allows the construction of model hierarchies
ranging from fine models for simulation and parameter studies to very coarse or
surrogate models that can be used in control and optimization.

Remark 8.2. MOR for pHODEs is discussed for instance in Afkham andHesthaven
(2017, 2019), Beattie and Gugercin (2011), Borja, Scherpen and Fujimoto (2023),
Breiten and Unger (2022), Breiten, Morandin and Schulze (2022b), Buchfink,
Glas and Haasdonk (2021), Chaturantabut, Beattie and Gugercin (2016), Egger
et al. (2018), Fujimoto and Kajiura (2007), Gugercin, Polyuga, Beattie and van der
Schaft (2009, 2012), Ionescu and Astolfi (2013), Kawano and Scherpen (2018),
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Liljegren-Sailer (2020), Moser and Lohmann (2020), Polyuga and van der Schaft
(2011, 2012), Sato and Sato (2018), Scheuermann, Kotyczka and Lohmann (2019),
Schulze and Unger (2018), Schwerdtner and Voigt (2020), Wolf, Lohmann, Eid
and Kotyczka (2010) and Wu, Hamroun, Le Gorrec and Maschke (2014, 2018).
Let us emphasize that for LTI systems, any passive system can be recast as a pH
system; see Beattie, Mehrmann and Xu (2022b) and Beattie, Mehrmann and Van
Dooren (2019). Thus any passivity-preserving MOR method can also be used as a
structure-preserving MOR method for LTI pHODEs (with a potentially necessary
post-processing step to construct the low-dimensional pH representation). As an
example we mention positive-real balanced truncation (Desai and Pal 1984, Guiver
and Opmeer 2013, Ionescu and Scherpen 2007, Reis and Stykel 2010a,b) and
interpolation methods (e.g. Antoulas 2005b, 2008, Freund 2000, Ionutiu, Rommes
and Antoulas 2008, Sorensen 2005).

In the following we focus solely on LTI pHDAE systems, since structure-preserving
MOR methods for general pHDAE systems are still under investigation. Early results
are available in Liljegren-Sailer (2020) and Schulze (2023). In the following,
we discuss different MOR techniques. One important class is that of methods
related to the reduction of the underlying Dirac structure and the associated power
conservation. These are the effort and flow constraint reduction methods discussed
in Section 8.2. Another class includes the recent optimization-based methods
of Schwerdtner, Moser, Mehrmann and Voigt (2022) and Moser, Schwerdtner,
Mehrmann and Voigt (2022). Like Gillis et al. (2018) for dHDAE systems, these use
a parametrization of pHDAEs via Cholesky factors of the symmetric semidefinite
matrices �, ', the lower half of the skew-symmetric matrix � as well as the matrix�,
and perform an optimization to fit the transfer function sampled at a set of sampling
points. However, we will not discuss these methods here. Another major class of
MOR methods is that of (Galerkin) projection methods that operate in the classical
differential equation domain and ensure that the corresponding transfer functions in
the frequency domain are well approximated. These methods are the well-known
moment matching (Section 8.3) and tangential interpolation (Section 8.4). Before
we present these methods, we provide some general considerations in the next
subsection.

8.1. General considerations for LTI pHDAE systems

We assume that the pHDAE has been reformulated in such a way that the free system
(with D = 0) is of (Kronecker) index at most one (see Section 6.4), that & = � and
that the system has no feedthrough term (see Sections 4.3 and 4.4). This means that
the system has the form

� ¤I = (� − ')I + �D, (8.3a)
H = �>I, (8.3b)
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where the matrix pencil _� − (� − ') is regular and of (Kronecker) index at most
one, � = �> ≥ 0, ' = '> ≥ 0 and � = −�>. In view of Corollary 7.4 and the
general Petrov–Galerkin projection approach described above, a ROM is constructed
by choosing a suitable matrix + ∈ R=,A , setting +r := +ℓ := + , and constructing the
ROM matrices as

�̂ := +>�+ ∈ RA ,A , �̂ := +>�+ ∈ RA ,A , (8.4a)
'̂ := +>'+ ∈ RA ,A , �̂ := +>� ∈ RA ,<, (8.4b)

such that the structure-preserving surrogate (8.1) for (8.3) is given by

�̂ ¤̂I = (�̂ − '̂)Î + �̂D, (8.5a)
Ĥ = �̂> Î. (8.5b)

In particular, the ROM for the LTI case can be evaluated efficiently and independent
of the full model dimension = once the matrices in (8.4) are constructed.

Remark 8.3. Note that the techniques we describe below can also be extended
to the case & ≠ �. In this case we use a Petrov–Galerkin approach as described in
(8.2), i.e. different projection matrices from left and right. In more detail, if & is
nonsingular, then the choice +ℓ := &+A retains the pHDAE structure in the ROM.
This strategy is also prevailing in the context of pHODE systems (e.g. Chaturantabut
et al. 2016) and is even used to ensure stability preservation in the context of MOR
for switched systems (Schulze and Unger 2018).

Remark 8.4. Depending on the application at hand, the system matrices in (8.3)
may depend on additional parameters l. If these parameters are not fixed a priori
to a specific value, then we want to preserve this parametric dependency in the
ROM. A standard assumption in the MOR literature is that the system matrices are
available in a parameter-separable form, that is,

�(l) =
 ∑
8=1

W8(l)�8 , (8.6)

with scalar functions W8 and constant matrices �8 ∈ R=,= for 8 = 1, . . . , : (and
similarly for the other coefficient matrices). In this case the reduced matrices
are simply obtained by reducing each �8 separately. If the matrices are not in
parameter-separable form, or only with a very large : , then the (discrete) empirical
interpolation method can be used instead; see Barrault, Maday, Nguyen and Patera
(2004) and Chaturantabut and Sorensen (2010). For more details we refer to
Haasdonk (2017).

Remark 8.5. One advantage of the projection-based approach is that besides the
pH structure, the Hamiltonian is also approximated with the same ansatz space.
Thus the discussed general framework not only preserves the pH-structure but also
retains information about the original Hamiltonian. However, reformulating the
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pH system with a different Hamiltonian may be more amendable for MOR. This is
demonstrated in detail in Breiten et al. (2022b) and Breiten and Unger (2022) for
pHODEs and in Breiten and Schulze (2021) for pHDAEs. Similar results are also
achieved if the coefficients of the ROM matrices are directly obtained by minimizing
a suitable error function; see Schwerdtner and Voigt (2020) for further details.

Although this is not necessary in general, we often also perform another sim-
plification that allows us to clearly separate the dynamical part and the algebraic
constraints. These parts have to be treated in a slightly different way and the
reduction only takes place in the dynamical equations in order to ensure that the
model reduction does not violate the physical principles described by the constraints.
For this, let +0 be an invertible matrix such that

+>0 �+0 =

[
�11 0
0 0

]
, +>0 (� − ')+0 =

[
�11 − '11 �12 − '12
�21 − '21 �22 − '22

]
,

+>0 � =

[
�1
�2

]
,

[
I1
I2

]
= +−1

0 I,

that is, the transformed system is given by[
�11 0
0 0

] [ ¤I1
¤I2

]
=

[
�11 − '11 �12 − '12
−�>12 − '>12 �22 − '22

] [
I1
I2

]
+

[
�1
�2

]
D, (8.7a)

H =
[
�>1 �>2

] [I1
I2

]
. (8.7b)

The assumption that (8.3) is of (Kronecker) index at most one implies that �22 − '22
is nonsingular. The decomposition can be easily obtained by first computing a
full-rank factorization of the positive semidefinite matrix � using, for example, a
singular value decomposition

� = *0

[
Σ 0
0 0

]
+>0

with invertible diagonal matrix Σ, and then forming

+>0 �+0 =

[
�11 0
0 0

]
(8.8)

with �11 = �>11 > 0.

Remark 8.6. If a semi-explicit representation with �11 = � is required, then
one can compute the Cholesky factorization �11 = !11!

>
11 and perform another

congruence transformation with +̃0 := diag(!−1
11 , �). This yields, after renaming of
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the transformed matrices, the equivalent formulation[
� 0
0 0

] [ ¤I1
¤I2

]
=

[
�11 − '11 �12 − '12
�21 − '12 �22 − '22

] [
I1
I2

]
+

[
�1
�2

]
D, (8.9a)

H =

[
�1
�2

]> [
I1
I2

]
, (8.9b)

with �22 − '22 nonsingular. For many MOR techniques it is essential that the
semi-explicit form (8.9) is available. Fortunately, in many applications this can be
done directly by exploiting the structure of the equations coming from the physical
properties; see the examples in Section 5.

Performing a Laplace transformation for the system (8.3) yields the transfer
function

G(B) = �>(B� − � + ')−1�, (8.10)

which can be used to assess the approximation quality of the ROM via theH2- or
H∞-norm; see e.g. Antoulas et al. (2020). It is important to note that a singular �
implies that G may contain a polynomial term. In general, using the Weierstrass
canonical form (see Theorem 2.18), it is easy to see that the (Kronecker) index
minus one defines an upper bound for the degree of the polynomial. Measuring
the approximation error in the H2-norm thus requires the polynomial part to be
matched exactly, since otherwise the error is unbounded. The situation is analogous
for the H∞-norm, except that the constant term in the polynomial does not need to
be matched exactly.

For simplicity of the presentation, we will only describe the single-input, single-
output case, that is, we assume � ∈ R=,1. All the algorithmic approaches can be
easily extended to the multi-input multi-output case.

8.2. Power conservation based model order reduction

Two methods that carry out a MOR for the Dirac structure representation are the
effort and flow constraint reduction methods that were introduced for standard
pHODE systems in Polyuga and van der Schaft (2012) and extended to pHDAE
systems in Hauschild, Marheineke and Mehrmann (2019). The basic idea of these
approaches is to find a suitable transformation for the dynamic part of the state I1
that partitions the state into a part associated with the ROM, denoted by Î1, and
a part that does not contribute much to the input–output behaviour of the system,
denoted by Ĩ1. In more detail, we determine a matrix +1 with orthonormal columns
such that I1 = +1

[
Î>1 Ĩ>1

]>. Then we cut the interconnection between the part of
the energy storage port belonging to Ĩ1 and the Dirac structure, such that no power
is transferred. In this way, the power is exclusively exchanged via the energy storage
of Î1 and the part associated with Ĩ1 is omitted.
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In more detail, following the general discussion about Dirac structures in Sec-
tion 7.6, the relevant constitutive equations in terms of MOR are given by

− � ¤I = 5s, 4s = I. (8.11)

Remark 8.7. Recall that in general the constitutive equation for the effort variable
is 4s = [(I) in the nonlinear case, and 4s = &I in the linear case with quadratic
Hamiltonian; see Theorem 7.25 for further details. The methods that we will discuss
can also be formulated for the more general case (Hauschild et al. 2019), but for
ease of presentation we proceed here with & = � (see Section 4.3).

Using the semi-explicit formulation (8.9) and performing a congruence trans-
formation with + := diag(+1, �) transforms the constitutive equations (8.11) into the
form

−

� 0 0
0 � 0
0 0 0



¤̂I1¤̃I1
¤I2


=


5̂s,1
5̃s,1
5s,2


,


4̂s,1
4̃s,1
4s,2


=


Î1
Ĩ1
I2


. (8.12)

For the model reduction we have to identify the part that is influenced by the dissip-
ation (the resistive port). For this we apply a symmetric full-rank decomposition of
+>'+ to compute


'̂11

˜̂'11 '̂12
ˆ̃'11 '̃11 '̃12
'̂21 '̃21 '22


= [/ /̂]

[
'1 0
0 0

] [
/>

/̂>

]
= /'1/

>, (8.13)

with 0 < '1 = '>1 ∈ Rℓ,ℓ and / ∈ R=,ℓ . Plugging (8.13) into the transformed
system and introducing the associated flow and effort variables accordingly, that is,

5d = −'14d, 4d = /
>+>+−1I =

[
/̂>1 /̃>1 />2

] 
4̂s,1
4̃s,1
4s,2


,

yields a pHDAE with opened resistive port. Inserting the relations (8.12) and
introducing the external port variables ( 5p, 4p) = (H, D), where

H = (+�)>(+>+−1)I = (+�)>4s =
[
�̂>1 �̃>1 �>2

] 
4̂s,1
4̃s,1
4s,2


,
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we obtain the new representation

−



� 0 0
0 � 0
0 0 �
0 0 0
0 0 0




5̂s,1
5̃s,1
5s,2


=



�̂11
˜̂�11 �̂12

ˆ̃�11 �̃11 �̃12
�̂21 �̃21 �22
−�̂>1 −�̃>1 −�>2
−/̂>1 −/̃>1 −/>2




4̂s,1
4̃s,1
4s,2



+



/̂1
/̃1
/2
0
0


5d +



0
0
0
0
�


4d +



0
0
0
�
0


5p +



�̂1
�̃1
�2
0
0


4p. (8.14)

With these preparations we are now ready to formulate the energy-based MOR
methods. The main idea is to cut the interconnection

− ¤̃I1 = 5̃s,1, 4̃s,1 = Ĩ1 (8.15)

between the energy storage corresponding to Ĩ1 and the Dirac structure, in such
a way that no energy is transferred. The energy flow through the interconnection
(8.15) is set equal to zero by enforcing

4̃>s,1 5̃s,1 = 0 and Ĩ>1 ¤̃I1 = 0. (8.16)

This can be achieved in two canonical choices, leading to two different MOR methods
that are discussed in the remainder of this subsection.

In the effort constraint reduction method (ECRM), we set 4̃s,1 = 0, which implies
Ĩ1 = 0. This choice thus immediately yields (8.16). The reduced Dirac structure
is obtained by inserting this relation and removing the second row in (8.14). This
yields the reduced pHDAE model[

� 0
0 0

] [ ¤̂I1
¤I2

]
=

([
�̂11 �̂12
�̂21 �22

]
−

[
'̂11 '̂12
'̂21 '22

])[
Î1
I2

]
+

[
�̂1
�2

]
D, (8.17a)

H =
[
�̂>1 �>2

] [Î1
I2

]
, (8.17b)

It remains to show that (8.17) is indeed port-Hamiltonian, which is easily established
with Corollary 7.4, since (8.17) can be constructed via Galerkin projection.

Remark 8.8. Note that the ROM (8.17) is obtained by standard truncation, as
is common in balancing type methods; see for instance Gugercin and Antoulas
(2004). The situation is different if the pHDAE (8.9) features a &-term that is not
identical to the identity. In this case a simple truncation may destroy the pH structure.
Nevertheless, we can proceed as above and rewrite the reduced Dirac structure
(obtained by setting 4̃B,1 = 0 and removing the second block row) as a pHDAE. We
refer to Hauschild et al. (2019) for further details.
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In the flow constraint reduction method (FCRM), the energy transfer between the
energy-storing elements and the Dirac structure is cut by setting 5̃s,1 = 0, which
implies ¤̃I1 = 0, and thus also (8.16). Thus Ĩ1 is constant and can in particular be
chosen as Ĩ1 = 0. The second row in (8.14) is then an algebraic equation, which
can be resolved for 4̃s,1 if �̃11 is invertible, that is,

4̃s,1 = −�̃−1
11
( ˆ̃�114̂s,1 + �̃124s,2 + /̃1 5d + �̃14p

)
. (8.18)

Substituting (8.18) into (8.14) and removing the second block row yields

−


� 0
0 �
0 0
0 0


[
5̂s,1
5s,2

]
=



�̂11 − ˜̂�11 �̃
−1
11

ˆ̃�11 �̂12 − ˜̂�11 �̃
−1
11 �̃12

�̂21 − �̃21 �̃
−1
11

ˆ̃�11 �22 − �̃21 �̃
−1
11 �̃12

−�̂>1 + �̃>1 �̃−1
11

ˆ̃�11 −�>2 + �̃>1 �̃−1
11 �̃11

−/̂>1 + /̃>1 �̃−1
11

ˆ̃�11 −/>2 + /̃>1 �̃−1
11 �̃12



[
4̂s,1
4s,2

]

+



/̂1 − ˜̂�11 �̃
−1
11 /̃1

/2 − �̃21 �̃
−1
11 /̃1

�̃>1 �̃
−1
11 /̃1

/̃>1 �̃
−1
11 /̃1


5d +



0
0
0
�


4d +



0
0
�
0


5p +



�̂1 − ˜̂�11 �̃
−1
11 �̃1

�2 − �̃21 �̃
−1
11 �̃1

�̃>1 �̃
−1
11 �̃1

/̃>1 �̃
−1
11 �̃1


4p. (8.19)

The resulting ROM then is again a pHDAE system, but due to the elimination it now
has a feedthrough term (see the third block row in (8.19)). We do not present the
technical formulas here; for details we refer to Hauschild et al. (2019). In contrast
to the ECRM, we immediately conclude that the ROM obtained by the FCRM is not
obtained via projection.

The reduced models obtained by the ECRM and FCRM have similar properties but
also major differences. Both methods have the same number of reduced states. The
ROM in the FCRM has an extra feedthrough term and requires the skew-symmetric
matrix �̃11 to be invertible, which is impossible if it is a square matrix of odd size.
If �̃11 is singular then the procedure has to be modified, but a (rather technical)
construction is possible to deal with this case.
The question that remains to be answered is how to choose the coordinates Î1

and Ĩ2 in an optimal way, which in general is an open problem. Instead, we present
a balancing-inspired algorithm to perform the separation, which of course can also
be used to compute a (numerically) minimal realization for the pHODE. The details
are presented in Algorithm 2; see also Hauschild et al. (2019). We emphasize that
the resulting pHDAE is not balanced in the classical sense but only inspired by
standard balancing; see Breiten et al. (2022b) and Borja et al. (2023) for other pH
structure-preserving balancing approaches.

8.3. Moment matching

The moment matching (MM) method derives the ROM using a Galerkin projection in
such a way that the leading coefficients of the Taylor series expansion of the transfer
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Algorithm 2 Structure-preserving balancing for pHODEs
Input: pHDAE (8.9)
Output: Balanced-like pHDAE (8.12)

Step 1. Set �11 := �11 − '11.
Step 2. Compute solutions P11, O11 of the equations

�11P11P>11 + P11P>11�
>
11 + �1�

>
1 = 0,

�>11O11O>11 +O11O>11�11 + �1�
>
1 = 0.

Step 3. Compute the singular value decomposition *Σ,> = P>11O11, and a QR
decomposition +1R = %*.

Step 4. Partition +1 =
[
+̂1 +̂2

]
and perform a congruence transformation with

+ := diag(+1, �) to obtain the form (8.12).

function Ĝ at a given shift parameter B0 ∈ C ∪ {∞} of the reduced systems match
those of the full-order system G at B0. For details of the MM methods for LTI DAE
systems, we refer to Freund (2005) for B0 ∈ C and to Benner and Sokolov (2006)
for B0 = ∞. The adaptation of these methods for pHODE systems was developed in
Polyuga and van der Schaft (2010, 2011). Since the projection space that maps the
original to the reduced problem is typically a Krylov subspace constructed by using
an Arnoldi or Lanczos iteration (e.g. Bai 2002, Freund 2000, Grimme 1997), the
resulting MOR method is applicable to large-scale systems and numerically stable.
For a shift f0 ∈ C, a formal expansion of the transfer function G around B0

(Antoulas 2005a) leads to

G(B) =
∞∑
8=0

<8(f0 − B)8 . (8.20)

The generalized moments <8 can be written as <8 = �>E8 , with vectors E8 that are
determined recursively by solving the linear systems

(f0� − � + ')E0 = �, (8.21a)
(f0� − � + ')E8 = �E8−1, 8 ≥ 1, (8.21b)

and employing the Arnoldi process (Saad 2003) to generate an orthogonal basis
for this Krylov subspace V = span{E0, . . . , EA−1}. Let the columns of + denote
this orthonormal basis and construct the matrices for the ROM as in (8.4). It is
well known that in this way the moments are matched up to level A; see Freund
(2005) and Benner and Sokolov (2006). To ensure that the algebraic constraints
are preserved in the ROM, we exploit the semi-explicit form (8.9) and construct the
projection matrix only for the dynamic part, as in the following result taken from
Hauschild et al. (2019).
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Theorem 8.9. Consider the pHDAE (8.7). For given shift f0 ∈ C compute the
vectors E8 for 8 = 0, . . . , A − 1 as in (8.21), and construct a matrix

[
+>1 +>2

]>,
partitioned accordingly to (8.7) with orthonormal columns such that

span
[
+1
+2

]
= span{E0, . . . , EA−1}.

Then the ROM[
+>1 �11+ 0

0 0

] [ ¤̂I1
¤I2

]
=

[
+>1 (�11 − '11)+1 +>1 (�12 − '12)

(�21 − '21)+1 �22 − '22

] [
Î1
I2

]
+

[
+>1 �1
�2

]
D,

Ĥ =

[
�1+1
�2

] [
Î1
I2

]
(8.22)

retains the pH structure and matches the first A moments and the polynomial part of
the transfer function.

Remark 8.10. Theorem 8.9 presents a seemingly easy solution to structure-
preserving MOR of pHDAE systems of (Kronecker) index one. Nevertheless, this
may not be the maximal reduction that is possible, because redundant algebraic
conditions cannot be removed; see Mehrmann and Stykel (2005) for further details.

8.4. Tangential interpolation

A fourth and very successful MOR method for LTI ODE systems is the tangential
interpolationmethod; seeAntoulas et al. (2020) for the general theory and application.
In contrast to moment matching, the transfer function and its derivatives are not
interpolated at a single point but rather at multiple points. If the system has multiple
inputs and outputs, the interpolation is typically only enforced along so-called
tangential directions. The main motivation for this approach is the fact that an
H2-reduced model interpolates the full-order model at several interpolation points
along tangential directions; see Antoulas et al. (2020). For different classes of LTI
pHDAE systems, the method was introduced in detail in Beattie et al. (2022a). We
discuss the method for pHDAE systems of the form (8.3).
As in the previous section, we work with single-input single-output systems to

ease the presentation, i.e. we assume < = 1. All results can be extended to the
multi-input multi-output case. For a prescribed set of interpolation frequencies
f1, . . . , fA ∈ C, the goal is to construct a reduced pHDAE system whose transfer
function interpolates the transfer function of the original model at the prescribed
frequency points, that is, we want

G(f8) = Ĝ(f8) for 8 = 1, . . . , A . (8.23)

Following the moment matching approach from the previous subsection, we
immediately obtain the following result for LTI pHDAE systems of (Kronecker)
index one.
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Theorem 8.11. Consider a pHDAE (8.7) with (Kronecker) index one. For given
interpolation points {f1, . . . , fA } ⊆ C, construct a matrix

[
+>1 +>2

]> ∈ C=,A ,
partitioned accordingly, that satisfies

span
[
+1
+2

]
= span{(f1� − � + ')−1�, . . . , (fA� − � + ')−1�}.

Then the ROM (8.22) retains the pH structure, interpolates the original model at the
interpolation points, and matches the polynomial part.

As discussed in the previous subsection (see Remark 8.10), the construction in
Theorem 8.11 suffers from the fact that possible redundant algebraic equations
are not removed. We thus present an alternative approach in the next theorem.
Again, the main idea is to construct the ROM via Galerkin projection such that the
interpolation conditions (8.23) are satisfied. Since, in general, such a ROM will not
match the polynomial part of the transfer function, we follow a strategy from Mayo
and Antoulas (2007) (see also Gugercin, Stykel and Wyatt 2013) and modify the
feedthrough term without violating the interpolation conditions. The corresponding
result for pHDAE systems from Beattie et al. (2022a) is presented in the following
theorem.

Theorem 8.12. Consider a pHDAE (8.7) with (Kronecker) index at most one. For
given interpolation points {f1, . . . , fA } ⊆ C, construct a matrix+ :=

[
+>1 +>2

]> ∈
C=,A , partitioned accordingly, as in (8.11). Define the matrices

�̂ := +>1 �11+1, �̂ := −�>2 (�22 − '22)−1�2, �̂ := +>� + 1�̂,
�̂ := �>+ + �̂1>, �̂ := +>(� − ')+ − 1�̂1>, �̂ :=

1
2

(�̂ − �̂>),

'̂ := −1
2

(�̂ + �̂>), %̂ :=
1
2

(�̂> − �̂), �̂ :=
1
2

(�̂> + �),

(̂ :=
1
2

(�̂ + �̂>), #̂ := −1
2

(�̂ − �̂>),

with 1 := [1 · · · 1]> ∈ RA . Then the ROM

�̂ ¤̂I = (�̂ − '̂)I + (�̂ − %̂)D, (8.24a)
Ĥ = (�̂ + %̂)>I + ((̂ − #̂)D (8.24b)

satisfies the interpolation conditions (8.23) and matches the polynomial part of G.
If, in addition, the matrix

[
'̂ %̂
%̂> (̂

]
is positive semidefinite, then (8.24) is a pHDAE

system.

Remark 8.13. In general, the projection matrix + in Theorems 8.11 and 8.12 is
complex, and thus the matrices in the ROM are also complex-valued. Nevertheless,
if the interpolation points are closed under complex conjugation, then a state-space
transformation can be used to find a real-valued realization. In practice, this can
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be done a priori by choosing + appropriately. For details, we refer to Antoulas
et al. (2020). A similar approach also applies to the MM approach discussed in
Theorem 8.9.

Remark 8.14. It is possible to extend these results to the pHDAE systems of
(Kronecker) index two. Such a generalization is discussed in detail in Beattie et al.
(2022a).

The crucial question that remains to be answered is the choice of the interpolation
points f1, . . . , fA . It is well known (e.g. Antoulas et al. 2020) that anH2-optimal
reduced model interpolates the transfer function of the full-order model at the mirror
images of the poles of the ROM. In more detail, assume that the poles _8 ∈ C for
8 = 1, . . . , A of Ĝ are semisimple. If Ĝ is anH2-optimal approximation, then

G(−_8) = Ĝ(−_8) and G ′(−_8) = Ĝ ′(−_8) for 8 = 1, . . . , A, (8.25)

where G ′ denotes the derivative with respect to B. Since these poles are not known
a priori, they cannot be used as interpolation points in Theorems 8.11 and 8.12.
Instead, Gugercin, Antoulas and Beattie (2008) proposed a fixed-point iteration to
resolve this problem, which is known as the iterative rational Krylov algorithm
(IRKA). The main idea is to construct a ROM via Theorem 8.11 or Theorem 8.12,
compute the poles of the transfer function, and use its mirror images as the next set
of interpolation points. This is repeated until convergence. For general unstructured
descriptor systems, an Hermite interpolant can be constructed as in Theorems 8.11
and 8.12; see e.g. Gugercin et al. (2013). If, however, we preserve the pH-structure
as in Theorems 8.11 and 8.12, then in general only a subset of the interpolation
conditions (8.25) is satisfied, and hence the resulting ROM may not be optimal with
respect to the H2-norm. Indeed, as our forthcoming numerical examples show (see
Section 8.5), the approximation quality can be significantly improved if a different
Hamiltonian is used.
One way to achieve such a reformulation with a Hamiltonian that is particularly

amendable for MOR is to adapt the strategy for passive ODE systems discussed in
Breiten and Unger (2022) to the pHDAE setting as follows. First, consider only the
differential part of the pHDAE (8.7), i.e. the implicit pHODE

�11 ¤I1 = (�11 − '11)I1 + �1D, (8.26a)
H = �>1 I1. (8.26b)

If (8.26) is not (numerically) minimal, compute a structure-preserving minimal
realization, for instance via Algorithm 2 or via the method described in Breiten
et al. (2022b). For the sake of notation, we assume that this step has already been
done, that is, we assume that (8.26) is already (numerically) minimal. Second, set
�11 := (�11 − '11)�−1

11 , and compute the minimizing solution -11 = ->11 > 0 of the
algebraic Riccati equation

−�>11-11 − -11�11 −
(
�>11 − -11�11

)
�−1

11
(
�11 − �>11-11

)
= 0.
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Then construct the matrices

�̃11 := -−1
11 , �̃11 :=

1
2
(
�11-

−1
11 − -−1

11 �
>
11
)
,

'̃11 := −1
2
(
�11-

−1
11 + -−1

11 �
>
11
)
,

and perform structure-preserving MOR for the system[
�̃11 0
0 0

] [ ¤I1
¤I2

]
=

[
�̃11 − '̃11 �12 − '12
−�>12 − '>12 �22 − '22

] [
I1
I2

]
+

[
�1
�2

]
D, (8.27a)

H =
[
�>1 �>2

] [I1
I2

]
, (8.27b)

provided that the matrix [
'̃11 '12
'21 '22

]

is positive semidefinite. Alternatively, one may recast the (Kronecker) index one
pHDAE as a pHODE with modified feedthrough term.

Remark 8.15. Interestingly, a (generalized) state-space realization is not necessary
to construct an interpolatory ROM. As demonstrated in Mayo and Antoulas (2007)
and Antoulas, Lefteriu and Ionita (2017), the ROM can be constructed solely from
the interpolation points f8 and associated measurements of the transfer function G
and its derivative. Generalizations to models with structure are proposed in Schulze,
Unger, Beattie and Gugercin (2018), for instance. First attempts to use frequency
measurements to construct a low-dimensional pHDAE, i.e. to use interpolation or
least-squares approaches as a structure-inducing system identification framework,
are presented in Antoulas et al. (2017), Benner, Goyal and Van Dooren (2020),
Cherifi, Mehrmann and Hariche (2019), Schwerdtner and Voigt (2020), Schwerdtner
(2021) and Schwerdtner and Voigt (2021). First approaches that work with time-
domain data are presented in Sharma, Wang and Kramer (2022) and Morandin,
Nicodemus and Unger (2022). Methods to analyse whether the available data are
generated from a passive system are presented in Romer, Montenbruck and Allgöwer
(2017), Romer, Berberich, Köhler and Allgöwer (2019) and van Waarde, Camlibel,
Rapisarda and Trentelman (2022).

8.5. Numerical examples

To illustrate the performance of the discussed pHDAE structure-preserving MOR
methods, we present a numerical example using a multibody system as described in
Section 5.7. The reportedH2-norms are computed as in Stykel (2006), using the
M-M.E.S.S. Toolbox; see Saak, Köhler and Benner (2021).

A holonomically constrained mass–spring–damper system is a multibody problem
that describes the one-dimensional dynamics of 6 connected mass points in terms
of their positions @ : T → R6, velocities E : T → R6 and a Lagrange multiplier
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Figure 8.1. Damped mass–spring system with holonomic constraint, taken from
Mehrmann and Stykel (2005).

_ : T → R; see Figure 8.1. Here the 8th mass of the weight <8 is connected to
the (8 + 1)th mass by a spring and a damper with constants :8 > 0 and 38 > 0,
and also connected to the ground by a spring and a damper with the constants
^8 > 0 and X8 > 0, respectively. Furthermore, the first and last mass points
are connected by a rigid bar. The vibrations are driven by an external force
D : T → R, the control input, acting on the first mass point. The resulting
system has a mass matrix " = diag(<1, . . . , <6), symmetric positive definite
tridiagonal stiffness and damping matrices  , � ∈ R6,6, a constraint matrix
� = [1 0 · · · 0 −1] ∈ R1,6, and an input matrix �̃ = 41 ∈ R6,1. Since  and
� are symmetric positive definite, the problem can be formulated as a pHDAE of
(Kronecker) index two by replacing the algebraic constraint �@ = 0 with its first
derivative �E = 0, yielding the pHDAE


 0 0
0 " 0
0 0 0



¤@
¤E
¤_


=





0  0
− 0 −�>
0 � 0


−


0 0 0
0 � 0
0 0 0






@
E
_


+


0
�̃
0


D (8.28)

with I := [@> E> _>]> when adding an associated output equation H = �>I.
The structure of the equations allows an easy construction of the condensed

form required for the MOR methods. Performing a full-rank decomposition of �
as �+ = [�1 0] with �1 invertible and an orthogonal matrix + , a congruence
transformation yields the system



 0 0 0
0 "11 "12 0
0 ">12 "22 0
0 0 0 0





¤@
¤E1
¤E2¤_


=



0  1  2 0
− >1 −�11 −�12 −�>1
− >2 −�>12 −�22 0

0 �1 0 0





@
E1
E2
_


+



0
�1
�2
0


D.

The last equation �1E1 = 0 implies that E1 = 0. Differentiating this equation and
inserting it into the second equation yields the hidden constraint for the Lagrange
multiplier

�1
) _ = −"12 ¤E2 −  >1 @ − �12E2 + �1D,
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Table 8.1. Parameters for holonomically constrained mass–spring–damper system.

Parameter 6 <8 :8 38 ^8 X8 ^1 ^6 X1 X6
Value 1000 100 2 5 2 5 4 4 10 10

which imposes a consistency condition for the initial value. The underlying pHODE
of size =1 = 2(6 − 1) together with the output equation are given by[

 0
0 "22

] [ ¤@
¤E2

]
=

([
0  2
− >2 0

]
−

[
0 0
0 �22

])[
@
E2

]
+

[
0
�2

]
D, (8.29a)

H =
[
0 �>2

] [ @
E2

]
. (8.29b)

If we permute the columns and rows such that the pHODE (8.29) is in the leading
blocks, then we can also mimic the MOR strategies from the previous subsections for
the pHDAE systems of (Kronecker) index two, by only reducing the pHODE (8.29).
Note that the lower-right 2 × 2 block matrix has no skew-symmetric contribution
and hence the relevant submatrix for the FCRM is singular. We thus exclude the
FCRM in the following.
For our numerical example, we choose a setting similar to that of Hauschild

et al. (2019), with parameters as listed in Table 8.1. To compute a ROM with the
different methods, we pick A ∈ N and reduce only the pHODE (8.29) while the
algebraic part is not reduced, knowing that, in general, this is not optimal (see
Remark 8.10). Whenever we report a reduced dimension A, this means that we
have to add the number of algebraic equations to the dimension of the ROM. A
frequency sweep for the different ROMs with A = 10 is presented in Figure 8.2
and relative H2-norms for different values of A are reported in Figure 8.3. For
ROMs with A = 10 (see Figure 8.2), we observe that MM with shift B0 = ∞ and
B0 = 10−10 yields outstanding approximations (errors of order $(10−15)) for high
and low frequencies, respectively. In contrast, the ECRM and rational interpolation
with interpolation points computed via IRKA, as described in Section 8.4, provide
a uniformly good approximation quality of order $(10−3), independently of the
chosen frequency. As discussed earlier, the structure-preserving variant of IRKA
cannot satisfy all the necessary optimality conditions. To improve the situation, we
also present the error for tangential interpolation via structure-preserving IRKA with
a modified Hamiltonian, denoted by IRKA (mod. H) in the figures, as described in
(8.27), which yields a significant improvement over the original formulation. This
can also be seen in the relativeH2-errors displayed in Figure 8.3, where for A ≥ 6
the IRKA-reduced pHDAE with modified Hamiltonian yields an approximation that
is at least one order of magnitude better.
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Figure 8.2. Relative errors of reduced transfer functions with A = 10 plotted over
the frequency for the mass–spring–damper system in the formulation (8.28).
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9. Temporal discretization and linear system solvers
In this section we discuss the time discretization of dHDAE and pHDAE systems and
the associated linear system solves. The numerical solution of initial and boundary
value problems for general DAE systems of the form (2.1a) has been an important
research topic; see the monographs by Brenan et al. (1996), Hairer, Lubich and
Roche (1989), Hairer and Wanner (1996) and Lamour et al. (2013). Following the
approach discussed in Kunkel andMehrmann (2006, Chapter 6), we may assume that
the DAE is represented at every time-step in one of the strangeness-free forms (2.16)
or (2.18), and then it has been shown that many implicit one-step and multi-step
methods can be applied and have the same convergence order as for ODE systems.

9.1. Time discretization for pHDAEs

Most of the classical time discretization techniques do not respect a given dHDAE or
pHDAE structure in such a way that the time-discretized system still satisfies a storage
energy balance equation or dissipation inequality. To analyse for which approaches
this is guaranteed is an active research area that is proceeding in different directions.
One approach that is currently under investigation is that of partitioned Runge–Kutta
methods adapted to the pHDAE structure. Another very promising approach is the
discretization of pHDAE systems in such a way that the time-discrete system satisfies
a discrete version of the storage energy balance equation; see Celledoni and Høiseth
(2017), Kotyczka and Lefèvre (2018) and Kotyczka, Maschke and Lefèvre (2018)
for pHODE systems, and Mehrmann and Morandin (2019) for pHDAE systems.
Another class of methods, particularly for non-dissipative ODE methods, is based
on energy-preserving geometric integration; see e.g. Celledoni et al. (2009), Hairer
et al. (2002) and Quispel and McLaren (2008). The analysis and comparison of
these techniques is a topic in its own right, so we only briefly discuss the approach
based on collocation methods for pHDAEs of the form (4.1) in Mehrmann and
Morandin (2019).
Consider an autonomous pHDAE of the form (4.1) with a given input function

D : T → R<, a consistent initial value I(C0) = I0, and suppose that we want to
approximate the solution in a time interval (C0, Cf = C0 + g) by a polynomial Ĩ(C) of
degree at most B. For a collocation method, the polynomial Ĩ(C) is chosen such that
Ĩ(C8) = I(C8) satisfies the pHDAE (4.1) in the B collocation points C8 = C0 + gW8 with
W8 ∈ [0, 1] for 8 = 1, . . . , B.

Let ℓ8 denote the 8th Lagrange interpolation polynomial with respect to the nodes
W1, . . . , WB, that is,

ℓ8(C) :=
B∏
9=1
9≠8

C − W 9
W8 − W 9 .
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Then for collocation methods we require that

¤̃I(C0 + Cg) =
B∑
8=1
¤I8ℓ8(C), Ĩ(C0 + Cg) = I0 + g

B∑
9=1
¤I 9

∫ C

0
ℓ 9(f) df

for the values ¤I8 := ¤̃I(C8), and also

I8 := Ĩ(C8) = I0 + g
B∑
9=1
U8 9 ¤I 9 , I 5 := Ĩ(Cf) = I0 + g

B∑
9=1

V 9 ¤I 9 ,

where the coefficients

U8 9 :=
∫ W8

0
ℓ 9(f) df and V 9 :=

∫ 1

0
ℓ 9(f) df, 8, 9 = 1 . . . B

are the coefficients of the Butcher diagram of the associated Runge–Kutta method;
see Hairer et al. (2002).
To preserve the pHDAE structure we use the Dirac structure DI , as described in

(7.8), associated with the pHDAE (4.1), and define the Dirac structure associated
with the time discretization

DI8 =
{
( 5 8 , 48) ∈ VI8 × V∗I8 | 5 8 +

[
Γ(I8) �ℓ+<
−�ℓ+< 0

]
48 = 0

}
, 8 = 1, . . . , B

with 5 8 =
[
( 5 8s )> H>8 ( 5 8d )>

]> and 48 =
[
(48s)>, D>8 , (4

8
d)>

]>, where
5 8s = −�(I8) ¤I8 , 48s = [(I8),
48d = −,(I8) 5 8d , D8 = D(I8).

In this way we obtain a system that is equivalent to the approach of applying
the collocation method and then computing discrete inputs and outputs D8 , H8, for
8 = 1, . . . , B. This is done by introducing the associated collocation flows, efforts,
input and output as

5̃s(C0 + gC) =
B∑
8=1

5 8s ℓ8(C), 4̃s(C0 + gC) =
B∑
8=1

48sℓ8(C),

5̃d(C0 + gC) =
B∑
8=1

5 8dℓ8(C), 4̃d(C0 + gC) =
B∑
8=1

48dℓ8(C),

H̃(C0 + gC) =
B∑
8=1

H8ℓ8(C), D̃(C0 + gC) =
B∑
8=1

D8ℓ8(C).

Thus the discrete values are in DĨ in all collocation points C8 and the discretization
preserves the structure. To see this, let us consider the evolution of the Hamiltonian
H along the collocation polynomial Ĩ(C). For this, let H̃(C) := H(Ĩ(C)). Then we
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have

H̃(C) − H̃(C0) =
∫ C

C0

¤̃H(f) df,

and at the collocation points the storage power balance equation is satisfied, that is,

¤̃H(C8) =
m

mI8
H̃> ¤I8 = [(I8)>�(I8) ¤I8 = −

〈
48s | 5 8s

〉
=

〈
48d | 5 8d

〉 + 〈H8 | D8〉,
for 8 = 1, . . . , B. Applying the quadrature rule associated with the collocation
method to evaluate the integral, we get

H̃(Cf) − H̃(C0) = g
B∑
9=1

V 9
¤̃H(C 9) +$(g?+1) = −g

B∑
9=1

V 9
〈
4
9
s | 5 9s

〉 +$(g?+1)

= g
B∑
9=1

V 9
〈
4
9
d | 5

9
d
〉 + ℎ B∑

9=1
V 9 〈H 9 | D 9〉 + (g?+1),

where ? ∈ N is the approximation order of the quadrature rule. With the same
argument we get

g
B∑
9=1

V 9
〈
4
9
d | 5

9
d
〉
=

∫ Cf

C0

〈
4̃d(f) | 5̃d(f)

〉
df +$(g?+1), (9.1a)

g
B∑
9=1

V 9 〈H 9 | D 9〉 =
∫ Cf

C0

〈H̃(f) | D̃(f)〉 df +$(g?+1), (9.1b)

and hence

H̃(Cf) − H̃(C0) =
∫ Cf

C0

(〈4̃d(f) | 5̃d(f)〉 + 〈H̃(f) | D̃(f)〉) df +$(g?+1).

If ? ≥ 2B−2, then (9.1a) and (9.1b) are actually exact, and if V 9 ≥ 0 for 9 = 1, . . . , B,
as is the case for many collocation methods, we have

g
B∑
9=1

〈
4
9
d | 5

9
d
〉 ≤ 0,

and thus the discrete system satisfies the same qualitative behaviour as the continuous
problem.
If the HamiltonianH is quadratic, that is,

H(I) =
1
2
I>�I + E>I + 2,

for some � = �> ∈ R=,=, E ∈ R= and 2 ∈ R, then we find that H̃ = H(Ĩ) and ¤̃H are
polynomials of degree 2B and degree 2B−1, respectively. Using the well-known fact
(e.g. Hairer and Wanner 1996) that the maximum degree of exactness for quadrature
rules with B nodes is 2B − 1, and that it is attained only with Gauss–Legendre
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collocation methods, it follows that for these methods the integration of ¤̃H is exact,
that is,

H̃(Cf) − H̃(C0) = g
B∑
9=1

V 9
〈
4
9
d | 5

9
d
〉 + g B∑

9=1
V 9 〈H 9 | D 9〉

=
∫ Cf

C0

(〈4̃d(B) | 5̃d(B)〉 + 〈H̃(f) | D̃(f)〉) df.

Furthermore, since for these methods we have V 9 ≥ 0, it follows that the dissipation
term is always non-positive, and we obtain the discrete version of the dissipation
inequality

H̃(Cf) − H̃(C0) ≤ g
B∑
9=1

V 9 〈H 9 | D 9〉 =
∫ Cf

C0

〈H̃(f) | D̃(f)〉 df,

and hence for quadratic Hamiltonians the pHDAE structure is fully preserved.

Example 9.1. Consider the numerical solution of the strangeness-free dHDAE
system, given by the power network presented in Section 5.3. We use the artificial
constants �� = 0, ! = 2, �1 = 0.01, �2 = 0.02, 'L = 0.1, 'G = 6 and 'R = 3;
see Mehrmann and Morandin (2019). For the time integration we choose g = 0.01
and Cf = 1 and use the implicit midpoint rule, i.e. the Gauss–Legendre collocation
method with B = 1 stages and order ? = 2. The numerical result for the consistent
initial value

I0 =

√
10
'R

[
1 −'R − 'L −'R −'R − 'L

'R
−1

]>
is presented in Figure 9.1. We observe that after an initial phase the state converges
to zero and the Hamiltonian decreases monotonically.

9.2. Linear system solvers

In every step of an implicit time discretization method for a finite-dimensional
pHDAE system (directly for the LTV case or in each step of the nonlinear solve in
the general case), it is necessary to solve linear algebraic systems of the form

�G = (� + g(' − �))G = 1, (9.2)

where g is the time-step size. The matrix � can be split into its symmetric and
skew-symmetric part � = � + (, where � = 1

2 ((� + g')> + (� + g')) ≥ 0 and
( = 1

2 ((� + g')> − (� + g')). An analogous linear system structure occurs in
discretized linear time-varying and nonlinear pHDAE systems, in the construction
of reduced models (Egger et al. 2018), and by multiplying some equations by −1 in
optimization methods; see also Güdücü et al. (2022) and Manuoglu and Mehrmann
(2019).
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these methods the integration of ˙̃H is exact, i.e.

H̃(tf)− H̃(t0) = τ

s∑

j=1

βj

〈
ejd

∣∣∣ f jd
〉
+ τ

s∑

j=1

βj ⟨yj | uj⟩ =

=

∫ tf

t0

(〈
ẽd(s) | f̃d(s)

〉
+ ⟨ ỹ(σ) | ũ(σ)⟩

)
dσ.

Since furthermore, for these methods we have βj ≥ 0, it follows that the
dissipation term is always non-positive, and we obtain the discrete version of
the dissipation inequality

H̃(tf)− H̃(t0) ≤ τ
s∑

j=1

βj ⟨yj | uj⟩ =
∫ tf

t0

⟨ ỹ(σ) | ũ(σ)⟩ dσ,

hence for quadratic Hamiltonians the pHDAE structure is fully preserved.

Example 9.1. Consider the numerical solution of the strangeness-free
dHDAE system, given by the power network presented in Subsection 5.3. We
use the artificial constants EG = 0, L = 2, C1 = 0.01, C2 = 0.02, RL = 0.1,
RG = 6 and RR = 3, see Mehrmann and Morandin (2019). For the time
integration we choose τ = 0.01 and tf = 1 and use the implicit midpoint
rule, i.e., the Gauß-Legendre collocation method with s = 1 stages and order
p = 2. The numerical result for the consistent initial value

z0 =
√

10
RR

[
1 −RR −RL −RR −RR−RL

RR
−1

]T

is presented in Figure 9.7. One observes that after an initial phase the state
converges to zero and the Hamiltonian decreases monotonically.

5

0

−5

�

+1
+2
�G
�R
H

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 9.1. Evolution of state components (solid lines) and Hamiltonian (dashed).

The fact that the symmetric part � is positive semidefinite can be exploited in
direct or iterative solution methods. In the small and medium scale case we can
make use of the following staircase form (Achleitner et al. 2021b), which we present
here in the real case.

Lemma 9.2. Consider � = � +( ∈ R=,=, where � = �> ≥ 0 and ( = −(>. Then
there exist a real orthogonalmatrix* ∈ R=,=, and integers =1 ≥ =2 ≥ · · · ≥ =A−1 ≥ 0
and =A ≥ 0, such that

*>�* =

[
�11 0
0 0

]
, *>(* =



(11 (12 0

(21 (22
. . . 0

. . .
. . . (A−2,A−1

...
(A−1,A−2 (A−1,A−1 0

0 · · · · · · 0 (A ,A


, (9.3)

where �11 = �>11 ∈ R=1,=1 is positive definite, (88 = −(>88 ∈ R=8 ,=8 for 8 = 1, . . . , A,
and (8,8−1 = −(>8−1,8 = [Σ8,8−1 0] ∈ R=8 ,=8−1 with Σ8,8−1 being nonsingular for
8 = 2, . . . , A − 1.

Proof. We present the proof for completeness; see also Güdücü et al. (2022). The
result is trivial when � is nonsingular (and thus positive definite), since in this case
it holds with* = �, A = 2, =1 = = and =2 = 0.

Let � = �> ≥ 0 be singular. We consider a full-rank decomposition of � with a
real orthogonal* such that

*>1 �*1 =

[
�̂11 0
0 0

]
,

where we assume that �̂11 = �̂>11 ∈ R=1,=1 , with 0 ≤ =1 ≤ =, is void or positive
definite. Applying the same orthogonal congruence transformation to ( gives the
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matrix

(̂ = *>1 (*1 =

[
(̂11 (̂12
(̂21 (̂22

]
, (9.4)

where (̂11 ∈ R=1,=1 and (̂21 = −(̂>12, since ( is skew-symmetric. If �̂11 is void or
(̂21 = 0, then the proof is complete. Otherwise, let

(̂21 = ,2

[
Σ21 0
0 0

]
+>2

be a singular value decomposition, where Σ21 is nonsingular (and diagonal), and
,2 ∈ R=1,=1 , +2 ∈ R=−=1,=−=1 are real orthogonal. We define

*2 := diag(+2,,2) ∈ R=,=

and form

*>2 *
>
1 �*1*2 =

[
+>2 �̂11+2 0

0 0

]
,

where +>2 �̂11+2 ∈ R=1,=1 is void or symmetric positive definite, and

*>2 *
>
1 (*1*2 =

[
+>2 (̂11+2 +>2 (̂12,2
,>2 (̂21+2 ,>2 (̂22,2

]
=


(̃11 (̃12 0
(̃21 (̃22 (̃23
0 (̃32 (̃33


with (̃21 = [Σ21 0]. If (̃32 = 0 or is void, then the proof is again complete. Otherwise
we continue inductively, and after finitely many steps we obtain a decomposition of
the required form.

When the staircase form (9.3) has been computed, then the transformed linear
system (*>�*)(*>G) = *>1 can be solved using block Gaussian elimination.

Lemma 9.3. Consider the matrix *>�* in (9.3). Then there exist invertible
lower and upper block bidiagonal matrices !B, 'B, respectively, such that

!B*
>�*'B =



�11 + (11
S1

. . .

SA−2
SA ,A


,

with Schur complements S1, . . . ,SA−2 that have positive definite symmetric parts.

Proof. A constructive proof via a sequence of block Gaussian elimination steps is
given in Güdücü et al. (2022). It relies on the fact that in every step (except the last
one) the Schur complement has a symmetric part which is positive definite.
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Table 9.1. Brake squeal problem. Run times and iteration numbers.

g = 0.001 g = 0.0001
Method time [s] # of iterations time [s] # of iterations

Widlund 3.54 85 0.72 16
GMRES 31.10 65 10.51 13

The properties of the linear system resulting from the dHDAE structure also have
an immediate advantage in the context of iterative methods. If the symmetric part is
positive definite, then Widlund (1978) suggested solving, instead of �G = 1, the
equivalent system

(� +  )G = 1̂, where  = �−1(, 1̂ = �−11. (9.5)

This transformation is a left preconditioning of the original system with its positive
definite symmetric part, which defines the �-inner product

〈G, H〉� = H>�G.
This implies that one can construct optimal Krylov subspace methods based on
three-term recurrences for the system (9.5); see Rapoport (1978) and Widlund
(1978). If the symmetric part is semidefinite but singular, then we have to identify
the nullspace, which is actually easy in many applications. The advantages of this
approach, and the fact that we obtain a rigorous convergence analysis and optimality
conditions, are discussed in detail in Güdücü et al. (2022) and illustrated by several
numerical examples, including those discussed in Section 5.

Example 9.4. The finite element model of the disc brake discussed in Section 5.8
leads to a second-order DAE of the form

" ¥? + � ¤? +  ? = 5 ,

with ? the coefficient vector of displacements of the structure, with frequency-
dependent mass matrix " = "> > 0, damping matrix � = �> ≥ 0 and stiffness
matrix  =  > > 0 (Gräbner et al. 2016) evaluated for lref = 500. For 5 = 0, after
a first-order reformulation and discretization with the implicit mid-point rule, we
obtain a linear system with = = 9338 and a positive definite symmetric part.
As shown in Table 9.1 (Güdücü et al. 2022) a preconditioned GMRES method

(preconditionedwith the inverse of the symmetric part), despite using fewer iterations,
takes a significantly longer time than the method in Widlund (1978), due to the
full recurrences in the algorithm compared to three-term recurrences in Widlund’s
method. This effect becomes even more pronounced for smaller step sizes.
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10. Control methods for pHDAE systems
One of the main advantages to introducing pH descriptor systems is its direct base
in control theory. In this section we therefore discuss classical control applications
for pHDAE systems.

Consider a linear pHDAE system as in Definition 4.8, and a linear output feedback
D = �(C)H. Then we can write the system in behaviour form by introducing
b = [I> D> H>]> and new block matrices

E := diag(�, 0, 0), Q := diag(&, �, �), K := diag( , 0, 0),

as well as

J =


� � 0
−�> # �

0 −� 1
2 (� − �>)


, R =


' % 0
%> ( 0
0 0 − 1

2 (� + �>)


, (10.1)

which gives the closed-loop descriptor system

E ¤b = ((J −R)Q − EK)b. (10.2)

This is a dHDAE if and only if − 1
2 (� + �>) ≥ 0 pointwise.

Analogously, for the general nonlinear pHDAE structure in Definition 4.1, we
introduce

b := [I> D> H>]>, [̃ := [[> D> H>]>, Ã := [A> 0 0]>,
the Hamiltonian H̃(C, b) := H(C, I) and matrix functions E := diag(�, 0, 0), and J
andR as defined in (10.1). This gives the system in behaviour form

E ¤b + Ã = (J −R)[̃(b) (10.3)

satisfying (m/mb)H̃ = E>[̃ and (m/mC)H̃ = [̃>Ã pointwise, which is a pHDAE if and
only if 1

2 (� + �>) ≤ 0 pointwise.
In this way, using a parametrization via the output feedback matrix (function)

�, we can introduce control methods via the dHDAE systems (10.2) or (10.3),
respectively.

10.1. Robust stabilization/passivation

We have seen in Section 7.4 that for dHDAE systems, stability and passivity can be
easily characterized, while for asymptotic stability or strict passivity, in general, we
have only sufficient conditions.
Considering a linear pHDAE system of the form (4.5) with & = � that has no

feedthrough term (see Section 4.4), and using a linear output feedback D = �H + F,
we obtain the closed-loop system

� ¤I + � I = (� − ' + ���>)I + �F,
H = �>I.
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If � = �H + �S is chosen to have a negative semidefinite symmetric part �� , then
the new dissipation coefficient becomes '̂ = ' − ��H�

> and the skew-symmetric
part becomes � −��S�

>. If '̂ is positive definite then the system is asymptotically
stable. The same approach can also be applied in the general nonlinear case, if
an output feedback leads to a positive definite '(C, I) in (4.1). We only have this
sufficient condition to guarantee asymptotic stability; see Corollary 7.7. At present,
finding a necessary and sufficient condition guaranteeing that a pHDAE system can
be made asymptotically stable by output feedback is a problem under investigation.

The situation is much better understood in the case of LTI pHDAE systems, where
we have a characterization via the hypocoercivity index being finite in Corollary 7.15.
Then, in view of Theorem 7.17(ii), we have different options to obtain asymptotic
stability.
Again, if we can achieve '̂ = ' − ��H�

> > 0, then we have asymptotic
stability. But we can also use the skew part �S to change the eigenvectors of the pair
(�, � +��S�

>) in such a way that no eigenvector is in the kernel of '−��H�
>, or

we can use a combination of both. It is clear from the classical theory of unstructured
DAE systems (see Section 3.3) that if the system is strongly stabilizable and strongly
detectable, then such an output feedback exists and can be computed by ignoring
the structure and solving an optimal control problem.
In constructing an output feedback via optimal control methods, we have the

freedom to choose the cost functional (3.20) and, furthermore, we also have some
freedom in choosing the pHDAE representation, which is not unique (see e.g. the
discussion at the end of Section 8.4). This flexibility can be used to make the
resulting closed-loop system maximally robust against perturbations, which for
general LTI control systems has recently been an important research topic; see e.g.
Mehrmann and Xu (2000) and the references therein. For pHODE systems, this topic
has recently been of great importance by introducing measures such as the distance
to instability for the robustness of pHODE representations (Aliyev, Mehrmann and
Mengi 2020) and their optimization (Gillis et al. 2018, Gillis and Sharma 2017).
For pHDAE systems, this is currently an active research topic.
The analogous question arises in the context of passivity. We see that a regular

strangeness-free pHDAE system is passive but in general not necessarily strictly
passive, since, in (4.8) is only assumed to be positive semidefinite. To obtain strict
passivity, it is necessary to consider the system in the formulation with feedthrough
term, and similarly we can analyse how to obtain robust representations as is done
for pHODE systems in Bankmann, Mehrmann, Nesterov and Van Dooren (2020),
Beattie et al. (2019) and Mehrmann and Dooren (2020). For pHDAE systems, this
is again an active research topic.

10.2. Optimal control

Due to the many interesting properties of pHDAE systems, one may investigate
whether some extra advantages can be obtained also in the context of optimal control
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problems. Clearly one can just use the general results in Section 3.5 and obtain the
same optimality conditions. However, it has been observed in two recent papers
(Philipp et al. 2021, Faulwasser et al. 2022) that some surprising results arise for
optimal control problems with LTI pHODE and pHDAE, when as a very special cost
functional the supplied energy is minimized, that is,

1
2
I(Cf)>"I(Cf) + 1

2

∫ Cf

C0

2H>D dC =
1
2
I(Cf)>"I(Cf) + 1

2

∫ Cf

C0

2I>�>D dC, (10.4)

subject to the constraint

� ¤I = (� − ')I + �D, �†�I(C0) = I0 (10.5)

and the output equation is H = �>I. Note that in the cost functional (3.32) we then
have,z = 0,,u = 0 and ( = �>. Since we are in the LTI case, we can insert the
data into the optimality system (3.34) and obtain the following result.

Corollary 10.1. Consider the optimal control problem to minimize (10.4) subject
to the constraint (10.5). Assume that the pair (�, �−') is regular and of (Kronecker)
index at most one (as a free system with D ≡ 0) and that " is in cokernel � . If
(I, D) ∈ Z × U is a solution to this optimal control problem, then there exists a
Lagrange multiplier _ ∈ C1

�†� (T,R=), such that (I, _, D) satisfy the boundary value
problem 

0 � 0
−�> 0 0

0 0 0



¤_
¤I
¤D


=


0 � − ' �

(� − ')> 0 �
�> �> 0



_
I
D


, (10.6)

with boundary conditions

�†�I(C0) = I0, ��†_(Cf) = −(�†)>"I(Cf).

Use a full-rank decomposition � = *�
[
�11 0
0 0

]
*>� with �11 = �>11 > 0 and

transform the other coefficients accordingly as

*>� (� − ')*� =
[
!11 !12
!21 !22

]
, *>�"*� =

[
"11 "12
"21 "22

]
,

*>�� =

[
�1
�2

]
,

[
Î1
Î2

]
= *>� Î,

[
_̂1
_̂2

]
= *>� _̂,

[
Î1,0
Î2,0

]
= *>� I0.

After some permutations we can express (10.6) in the form



0 �11 0 0 0
−�>11 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0





¤_1¤̂I1¤̂_2¤̂I2
¤D


=



0 !11 0 !12 �1
!>11 0 !>21 0 �1
0 !21 0 !22 �2
!>12 0 !>22 0 �2

�>1 �>1 �>2 �>2 0





_̂1
Î1
_̂2
Î2
D


, (10.7)

with boundary conditions Î1(C0) = Î1,0 and _̂1(Cf) = −�−1
11 "11 Î1(Cf), and consistency
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condition Î2,0 = 0. Here we have used the condition that " = "> is in cokernel � ,
which implies that "12 = 0, "22 = 0.

For the structured matrix pencil associated with (10.7) there exists a condensed
form under real orthogonal congruence transformations, which was introduced in
Byers et al. (2007), and from which the spectral properties, the (Kronecker) index
and the regularity can be read off. If this pencil is regular, then we directly obtain
that the system has (Kronecker) index one if and only if

,̂D =


0 �22 − '22 �2

−�22 − '22 0 �2
�>2 �>2 0


is invertible; see Section 2.3. To simplify the algebraic equations, we can perform a
congruence transformation with the orthogonal matrix

*( =



1√
2
� − 1√

2
� 0

1√
2
� 1√

2
� 0

0 0 �


,

that is, we multiply the system by*>( from the left and set


_̃2
Ĩ2
D


=



1√
2
(Î2 + _̂2)

1√
2
(Î2 − _̂2)
D


= *>(


_̂2
Î2
D


.

Then we get

*>( ,̂u*( =


−'22 �22 �2
−�22 '22 0
�>2 0 0


.

Clearly, for this to be invertible we need �2 to have full column rank, which implies
that D is fixed as a linear combination of _̂2 and Î2. Considering the application
examples in Section 5, where we typically have �2 = 0, we cannot expect the DAE
associated with the optimality system to be of (Kronecker) index one. Thus we are
in the case of a singular control problem; see e.g. Bryson and Ho (2018).
The case when ,̂u is not invertible has been analysed in Schaller et al. (2021)

for the pHODE case and in Faulwasser et al. (2022) for the pHDAE case, where
`� − (� − ') is regular and of (Kronecker) index at most one. In these papers it is
assumed that the image of the matrix � does not intersect with the kernel of ', and
that even though this is a singular control problem, the optimal solution is still a
feedback control that can be obtained via the solution of a Riccati equation. We
refer to Aronna (2018) for the analysis of such problems. The extension of this
analysis to the LTV pHDAE case and the case when this assumption is not valid are
currently under investigation.
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11. Summary and open problems
This survey paper discusses the model class of port-Hamiltonian descriptor systems
(differential-algebraic systems) for numerical simulation and control. We have
demonstrated that this model class has many nice properties.

• It allows for automated modelling in a modularized and network-based fashion.

• It allows the coupling of mathematical models across different scales and
physical domains.

• It incorporates the properties of the real (open or closed) physical system.

• It has nice algebraic, geometric and analytical properties, and allows analysis
concerning existence, uniqueness, robustness, stability and passivity.

• It is invariant under local variable (coordinate) transformations, which leads
to local canonical and condensed forms.

• Furthermore, it allows for structure-preserving (space–time) discretization
and model reduction methods as well as fast solvers for the resulting linear
and nonlinear systems of equations.

Despite the many promising results already available for dHDAE systems and
pHDAEs, there are still many open problems that are either under investigation or
pose challenging problems to be tackled in the future. In the following, we present
an incomplete list to stimulate further research.
Many of the control theoretical concepts presented within this paper rely on

instantaneous feedback. While this is a convenient theoretical approach, it is not
always possible to realize in applications, where the states or outputs first have to
be measured, the control action computed and then fed back into the system, thus
resulting in a necessary intrinsic time delay; see also Remark 3.5. Although some
initial results for pHODEs with delays are available in the literature (e.g. Schiffer,
Fridman, Ortega and Raisch 2016, Breiten, Hinsen and Unger 2022a) a general
model class for time-delayed pHDAEs is not yet available, and the results presented
in this paper have to be extended to the time delay case.
In terms of MOR, the impact of the Hamiltonian on the approximation quality

(Breiten et al. 2022b, Breiten and Unger 2022) needs to be investigated further,
particularly with an emphasis on nonlinear MOR methods. Besides, one should
consider the optimal approximation of pHDAEs as a multi-objective optimization
problem, where the minimization of the approximation error for the input–output
dynamic and the Hamiltonian are the two objective functions. Structure-preserving
balancing methods are still under investigation; see Breiten and Schulze (2021) for
some initial results for LTI systems. Another open problem in structure-preserving
MOR is the construction of optimal projection spaces, in the sense that they minimize
the Kolmogorov =-widths, respectively the Hankel singular values; see Unger and
Gugercin (2019). The first gradient-based optimization procedures are discussed
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for pHODEs in Moser and Lohmann (2020), Sato and Sato (2018) and Schwerdtner
and Voigt (2020). If the =-widths do not decay rapidly, then one cannot expect
accurate ROMs with small dimension, and current efforts in the reduction of
transport-dominated phenomena (see e.g. Black, Schulze and Unger (2020) and the
references therein) need to be adapted to the pH framework.
A topic closely related to MOR is identifying a pHDAE realization from meas-

urements. In view of large data sets, modern artificial intelligence approaches and
automated machine learning methods used within the digital twin paradigm, this is
an important topic requiring further research, with only a few available results for
LTI systems; see Remark 8.15.
It is an open problem to derive necessary and sufficient conditions under which

output feedback can make a general nonlinear pHDAE system asymptotically stable.
A natural research question in this context would be to extend the concept of
hypocoercivity to the LTV and nonlinear cases.

The characterization of distance measures for general dHDAE systems – such as
the distance from an asymptotically stable dHDAE system to a system that is only
stable, or the distance of a strictly passive pHDAE system to the nearest system that
is only passive – is an important research topic because it is a requirement for the
design of real-world systems, e.g. Example 5.8. Even if such a characterization is
available, then we need computational methods to compute these distances. In the
large-scale setting, this is a challenging issue that can only be achieved by a clever
combination with model reduction techniques; see Aliyev et al. (2020) for a first
attempt.

Another interesting research topic is the exact characterization of the relationship
between passivity, positive realness and the port-Hamiltonian structure for pHDAEs
(see Beattie et al. (2019, 2022b) for the LTI pHODE case), as well as the character-
ization via Kalman–Yakobovich–Popov inequalities, as has been done for general
LTI DAE systems in Reis et al. (2015) and Reis and Voigt (2015). This has recently
been achieved in Cherifi, Gernandt and Hinsen (2022a) for continuous-time pHDAE
systems but is open for LTV pHDAE systems.
A research field that has so far not received much attention is that of discrete-

time pH descriptor systems. The primary research in this direction arises from
discretizations of pHDAE systems; see Kotyczka and Lefèvre (2018) and Mehrmann
and Morandin (2019) for some recent approaches, and Achleitner, Arnold and
Mehrmann (2023) for hypocontractivity of discrete-time systems. However, since
discrete-time systems arise not only from discretization but also from sampling or
realization, it is an open question how to properly define discrete-time pH systems
in a general way. This also concerns the stability and passivity analysis.
Since, in many cases, mathematical models are obtained from data via meas-

urements, and the resulting parameters, as well as model coefficients (including
the inputs and outputs), are only available with some uncertainty or randomness,
it is an open question how to include such uncertainties adequately within the
pHDAE framework and also to study robust control methods that deal with such
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uncertainties; see Breiten et al. (2022b) and Breiten and Schulze (2021) for the
modification of classical balanced truncation methods and Karsai (2022) for the
modification of robust control methods in the pHODE case. Another research area
is the associated perturbation theory and the error analysis of the relevant numerical
methods.
As we have seen, the area of optimal control for pHDAE systems also requires a

lot of further research. This concerns the optimal use of the structure for nonlinear
systems, the choice of an appropriate cost functional, and also structure-preserving
numerical methods, in particular for large-scale problems.

Finally, we would like to discuss a topic that has been touched upon only briefly
in this survey: the extension of pH modelling to partial differential equations that
has been pursued in many different directions in recent years. One might take the
approach of replacing the coefficient matrices with linear differential operators, or
follow a differential geometric approach via the extension of Lagrange or Dirac
structures, or formulate all classical partial differential equations from physics in
the areas of elasticity, electromagnetism, fluid dynamics, structural mechanics,
geomechanics, poroelasticity, gas or water transport, to name a few directions,
in a structure that resembles the pHDAE structure via the given symmetries or
differential forms. These efforts have been the topic of many recent research papers
on modelling, numerical methods, optimization and control. Discussing these
developments would be a considerable survey in its own right, mainly since the
field is growing immensely fast. An essential question that is wide open is how
to incorporate the boundary appropriately into the structure, and how to obtain
well-posed partial differential equations so that on the one hand they can be treated
as controls and on the other hand they can also be used for the interconnection of
subsystems. Another important topic that is actively pursued is the appropriate space–
time discretization methods, such as finite element or finite volume approaches that
preserve the structure.
Instead of discussing this further, we present the following incomplete list of

references, which describes many different research directions pursued: Altmann
et al. (2021), Altmann and Schulze (2017), Aoues, Cardoso-Ribeiro, Matignon
and Alazard (2017), Baaiu et al. (2009), Bansal et al. (2021), Cardoso-Ribeiro,
Matignon and Pommier-Budinger (2017), Cherifi, Mehrmann and Schulze (2022b),
Duindam et al. (2009), Egger (2019), Egger and Kugler (2018), Egger et al. (2018),
Ennsbrunner and Schlacher (2005), Gay-Balmaz and Yoshimura (2018, 2019),
Grmela and Öttinger (1997), Jacob and Zwart (2012), Kotyczka (2019), Kotyczka
et al. (2018), Kurula, Zwart, van der Schaft and Behrndt (2010), Le Gorrec, Zwart
and Maschke (2005), Macchelli and Maschke (2009), Macchelli, Melchiorri and
Bassi (2005), Macchelli, van der Schaft and Melchiorri (2004a,b), Matignon and
Hélie (2013), Moses Badlyan and Zimmer (2018), Moses Badlyan, Maschke, Beattie
and Mehrmann (2018), Öttinger (2006), Öttinger and Grmela (1997), Ramirez Estay
(2019), van der Schaft and Maschke (2002), Schöberl and Schlacher (2017), Serhani,
Matignon and Haine (2019), Villegas (2007) and Yoshimura and Marsden (2006a,b).
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