
2 Configuration Space

A robot is mechanically constructed by connecting a set of bodies, called links,

to each other using various types of joints. Actuators, such as electric motors,

deliver forces or torques that cause the robot’s links to move. Usually an end-

effector, such as a gripper or hand for grasping and manipulating objects, is

attached to a specific link. All the robots considered in this book have links that

can be modeled as rigid bodies.

Perhaps the most fundamental question one can ask about a robot is, where

is it? The answer is given by the robot’s configuration: a specification of the

positions of all points of the robot. Since the robot’s links are rigid and of a

known shape,1 only a few numbers are needed to represent its configuration.

For example, the configuration of a door can be represented by a single number,

the angle θ about its hinge. The configuration of a point on a plane can be

described by two coordinates, (x, y). The configuration of a coin lying heads up

on a flat table can be described by three coordinates: two coordinates (x, y) that

specify the location of a particular point on the coin, and one coordinate (θ) that

specifies the coin’s orientation. (See Figure 2.1).

The above coordinates all take values over a continuous range of real numbers.

The number of degrees of freedom (dof) of a robot is the smallest number

of real-valued coordinates needed to represent its configuration. In the example

above, the door has one degree of freedom. The coin lying heads up on a table has

three degrees of freedom. Even if the coin could lie either heads up or tails up,

its configuration space still would have only three degrees of freedom; a fourth

variable, representing which side of the coin faces up, takes values in the discrete

set {heads, tails}, and not over a continuous range of real values like the other

three coordinates.

Definition 2.1 The configuration of a robot is a complete specification of

the position of every point of the robot. The minimum number n of real-valued

coordinates needed to represent the configuration is the number of degrees of

freedom (dof) of the robot. The n-dimensional space containing all possible

configurations of the robot is called the configuration space (C-space). The

configuration of a robot is represented by a point in its C-space.

In this chapter we study the C-space and degrees of freedom of general robots.

1 Compare with trying to represent the configuration of a soft object like a pillow.
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2.1 Degrees of Freedom of a Rigid Body 11

Figure 2.1 (a) The configuration of a door is described by the angle θ. (b) The
configuration of a point in a plane is described by coordinates (x, y). (c) The
configuration of a coin on a table is described by (x, y, θ), where θ defines the direction in
which Abraham Lincoln is looking.

Since our robots are constructed from rigid links, we examine first the degrees of

freedom of a single rigid body, and then the degrees of freedom of general multi-

link robots. Next we study the shape (or topology) and geometry of C-spaces

and their mathematical representation. The chapter concludes with a discussion

of the C-space of a robot’s end-effector, its task space. In the following chapter

we study in more detail the mathematical representation of the C-space of a

single rigid body.

2.1 Degrees of Freedom of a Rigid Body

Continuing with the example of the coin lying on the table, choose three points A,

B, and C on the coin (Figure 2.2(a)). Once a coordinate frame x̂–ŷ is attached

to the plane,2 the positions of these points in the plane are written (xA, yA),

(xB, yB), and (xC , yC). If the points could be placed independently anywhere in

the plane, the coin would have six degrees of freedom – two for each of the three

points. But, according to the definition of a rigid body, the distance between

point A and point B, denoted d(A,B), is always constant regardless of where

the coin is. Similarly, the distances d(B,C) and d(A,C) must be constant. The

following equality constraints on the coordinates (xA, yA), (xB , yB), and (xC , yC)

must therefore always be satisfied:

d(A,B) =
√

(xA − xB)2 + (yA − yB)2 = dAB,

d(B,C) =
√

(xB − xC)2 + (yB − yC)2 = dBC ,

d(A,C) =
√

(xA − xC)2 + (yA − yC)2 = dAC .

To determine the number of degrees of freedom of the coin on the table, first

2 The unit axes of coordinate frames are written with a hat, indicating they are unit vectors,
and in a non-italic font, e.g., x̂, ŷ, and ẑ.
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Figure 2.2 (a) Choosing three points fixed to the coin. (b) Once the location of A is
chosen, B must lie on a circle of radius dAB centered at A. Once the location of B is
chosen, C must lie at the intersection of circles centered at A and B. Only one of these
two intersections corresponds to the “heads up” configuration. (c) The configuration of a
coin in three-dimensional space is given by the three coordinates of A, two angles to the
point B on the sphere of radius dAB centered at A, and one angle to the point C on the
circle defined by the intersection of the a sphere centered at A and a sphere centered at B.

choose the position of point A in the plane (Figure 2.2(b)). We may choose it

to be anything we want, so we have two degrees of freedom to specify, namely

(xA, yA). Once (xA, yA) is specified, the constraint d(A,B) = dAB restricts the

choice of (xB , yB) to those points on the circle of radius dAB centered at A.

A point on this circle can be specified by a single parameter, e.g., the angle

specifying the location of B on the circle centered at A. Let’s call this angle φAB
and define it to be the angle that the vector

−−→
AB makes with the x̂-axis.

Once we have chosen the location of point B, there are only two possible

locations for C: at the intersections of the circle of radius dAC centered at A

and the circle of radius dBC centered at B (Figure 2.2(b)). These two solutions

correspond to heads or tails. In other words, once we have placed A and B and

chosen heads or tails, the two constraints d(A,C) = dAC and d(B,C) = dBC
eliminate the two apparent freedoms provided by (xC , yC), and the location of

C is fixed. The coin has exactly three degrees of freedom in the plane, which can

be specified by (xA, yA, φAB).

Suppose that we choose to specify the position of an additional point D on

the coin. This introduces three additional constraints: d(A,D) = dAD, d(B,D) =

dBD, and d(C,D) = dCD. One of these constraints is redundant, i.e., it pro-

vides no new information; only two of the three constraints are independent.

The two freedoms apparently introduced by the coordinates (xD, yD) are then

immediately eliminated by these two independent constraints. The same would

hold for any other newly chosen point on the coin, so that there is no need to

consider additional points.

We have been applying the following general rule for determining the number
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of degrees of freedom of a system:

degrees of freedom = (sum of freedoms of the points) −
(number of independent constraints). (2.1)

This rule can also be expressed in terms of the number of variables and indepen-

dent equations that describe the system:

degrees of freedom = (number of variables) −
(number of independent equations). (2.2)

This general rule can also be used to determine the number of freedoms of

a rigid body in three dimensions. For example, assume our coin is no longer

confined to the table (Figure 2.2(c)). The coordinates for the three points A, B,

and C are now given by (xA, yA, zA), (xB , yB, zB), and (xC , yC , zC), respectively.

Point A can be placed freely (three degrees of freedom). The location of point B

is subject to the constraint d(A,B) = dAB, meaning it must lie on the sphere of

radius dAB centered at A. Thus we have 3−1 = 2 freedoms to specify, which can

be expressed as the latitude and longitude for the point on the sphere. Finally,

the location of point C must lie at the intersection of spheres centered at A and

B of radius dAC and dBC , respectively. In the general case the intersection of

two spheres is a circle, and the location of point C can be described by an angle

that parametrizes this circle. Point C therefore adds 3 − 2 = 1 freedom. Once

the position of point C is chosen, the coin is fixed in space.

In summary, a rigid body in three-dimensional space has six freedoms, which

can be described by the three coordinates parametrizing point A, the two angles

parametrizing point B, and one angle parametrizing point C, provided A, B,

and C are noncollinear. Other representations for the configuration of a rigid

body are discussed in Chapter 3.

We have just established that a rigid body moving in three-dimensional space,

which we call a spatial rigid body, has six degrees of freedom. Similarly, a

rigid body moving in a two-dimensional plane, which we henceforth call a planar

rigid body, has three degrees of freedom. This latter result can also be obtained

by considering the planar rigid body to be a spatial rigid body with six degrees

of freedom but with the three independent constraints zA = zB = zC = 0.

Since our robots consist of rigid bodies, Equation (2.1) can be expressed as

follows:

degrees of freedom = (sum of freedoms of the bodies) −
(number of independent constraints). (2.3)

Equation (2.3) forms the basis for determining the degrees of freedom of general

robots, which is the topic of the next section.
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2.2 Degrees of Freedom of a Robot

Consider once again the door example of Figure 2.1(a), consisting of a single

rigid body connected to a wall by a hinge joint. From the previous section we

know that the door has only one degree of freedom, conveniently represented

by the hinge joint angle θ. Without the hinge joint, the door would be free

to move in three-dimensional space and would have six degrees of freedom. By

connecting the door to the wall via the hinge joint, five independent constraints

are imposed on the motion of the door, leaving only one independent coordinate

(θ). Alternatively, the door can be viewed from above and regarded as a planar

body, which has three degrees of freedom. The hinge joint then imposes two

independent constraints, again leaving only one independent coordinate (θ). The

door’s C-space is represented by some range in the interval [0, 2π) over which θ

is allowed to vary.

In both cases the joints constrain the motion of the rigid body, thus reducing

the overall degrees of freedom. This observation suggests a formula for determin-

ing the number of degrees of freedom of a robot, simply by counting the number

of rigid bodies and joints. In this section we derive precisely such a formula,

called Grübler’s formula, for determining the number of degrees of freedom of

planar and spatial robots.

2.2.1 Robot Joints

Figure 2.3 illustrates the basic joints found in typical robots. Every joint connects

exactly two links; joints that simultaneously connect three or more links are not

allowed. The revolute joint (R), also called a hinge joint, allows rotational

motion about the joint axis. The prismatic joint (P), also called a sliding or

linear joint, allows translational (or rectilinear) motion along the direction of the

joint axis. The helical joint (H), also called a screw joint, allows simultaneous

rotation and translation about a screw axis. Revolute, prismatic, and helical

joints all have one degree of freedom.

Joints can also have multiple degrees of freedom. The cylindrical joint (C)

has two degrees of freedom and allows independent translations and rotations

about a single fixed joint axis. The universal joint (U) is another two-degree-

of-freedom joint that consists of a pair of revolute joints arranged so that their

joint axes are orthogonal. The spherical joint (S), also called a ball-and-socket

joint, has three degrees of freedom and functions much like our shoulder joint.

A joint can be viewed as providing freedoms to allow one rigid body to move

relative to another. It can also be viewed as providing constraints on the possible

motions of the two rigid bodies it connects. For example, a revolute joint can be

viewed as allowing one freedom of motion between two rigid bodies in space, or

it can be viewed as providing five constraints on the motion of one rigid body

relative to the other. Generalizing, the number of degrees of freedom of a rigid

body (three for planar bodies and six for spatial bodies) minus the number of
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Figure 2.3 Typical robot joints.

Constraints c Constraints c
between two between two

planar spatial
Joint type dof f rigid bodies rigid bodies

Revolute (R) 1 2 5
Prismatic (P) 1 2 5
Helical (H) 1 N/A 5
Cylindrical (C) 2 N/A 4
Universal (U) 2 N/A 4
Spherical (S) 3 N/A 3

Table 2.1 The number of degrees of freedom f and constraints c provided by common
joints.

constraints provided by a joint must equal the number of freedoms provided by

that joint.

The freedoms and constraints provided by the various joint types are summa-

rized in Table 2.1.

2.2.2 Grübler’s Formula

The number of degrees of freedom of a mechanism with links and joints can be

calculated using Grübler’s formula, which is an expression of Equation (2.3).

Proposition 2.2 Consider a mechanism consisting of N links, where ground

is also regarded as a link. Let J be the number of joints, m be the number of

degrees of freedom of a rigid body (m = 3 for planar mechanisms and m = 6 for

spatial mechanisms), fi be the number of freedoms provided by joint i, and ci be

the number of constraints provided by joint i, where fi + ci = m for all i. Then

https://doi.org/10.1017/9781316661239.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316661239.005


16 Configuration Space

Figure 2.4 (a) Four-bar linkage. (b) Slider–crank mechanism.

Grübler’s formula for the number of degrees of freedom of the robot is

dof = m(N − 1)
︸ ︷︷ ︸

rigid body freedoms

−
J∑

i=1

ci

︸ ︷︷ ︸

joint constraints

= m(N − 1)−
J∑

i=1

(m− fi)

= m(N − 1− J) +

J∑

i=1

fi. (2.4)

This formula holds in “generic” cases, but fails under certain configurations of

the links and joints, such as when the joint constraints are not independent.

Below we apply Grübler’s formula to several planar and spatial mechanisms.

We distinguish between two types of mechanism: open-chain mechanisms

(also known as serial mechanisms) and closed-chain mechanisms. A closed-

chain mechanism is any mechanism that has a closed loop. A person standing

with both feet on the ground is an example of a closed-chain mechanism, since

a closed loop can be traced from the ground, through the right leg, through the

waist, through the left leg, and back to ground (recall that the ground itself is

a link). An open-chain mechanism is any mechanism without a closed loop; an

example is your arm when your hand is allowed to move freely in space.

Example 2.3 (Four-bar linkage and slider–crank mechanism) The planar four-

bar linkage shown in Figure 2.4(a) consists of four links (one of them ground)

arranged in a single closed loop and connected by four revolute joints. Since all

the links are confined to move in the same plane, we have m = 3. Substituting

N = 4, J = 4, and fi = 1, i = 1, . . . , 4, into Grübler’s formula, we see that the

four-bar linkage has one degree of freedom.

The slider–crank closed-chain mechanism of Figure 2.4(b) can be analyzed in

two ways: (i) the mechanism consists of three revolute joints and one prismatic

joint (J = 4 and each fi = 1) and four links (N = 4, including the ground link),

or (ii) the mechanism consists of two revolute joints (fi = 1) and one RP joint

(the RP joint is a concatenation of a revolute and prismatic joint, so that fi = 2)
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(a) (b)

(c) (d)

Figure 2.5 (a) A k-link planar serial chain. (b) Five-bar planar linkage. (c) Stephenson
six-bar linkage. (d) Watt six-bar linkage.

and three links (N = 3; remember that each joint connects precisely two bodies).

In both cases the mechanism has one degree of freedom.

Example 2.4 (Some classical planar mechanisms) Let us now apply Grübler’s

formula to several classical planar mechanisms. The k-link planar serial chain of

revolute joints in Figure 2.5(a) (called a kR robot for its k revolute joints) has

N = k+ 1 links (k links plus ground), and J = k joints, and, since all the joints

are revolute, fi = 1 for all i. Therefore,

dof = 3((k + 1)− 1− k) + k = k

as expected. For the planar five-bar linkage of Figure 2.5(b), N = 5 (four links

plus ground), J = 5, and since all joints are revolute, each fi = 1. Therefore,

dof = 3(5− 1− 5) + 5 = 2.

For the Stephenson six-bar linkage of Figure 2.5(c), we have N = 6, J = 7, and

fi = 1 for all i, so that

dof = 3(6− 1− 7) + 7 = 1.

Finally, for the Watt six-bar linkage of Figure 2.5(d), we have N = 6, J = 7,
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and fi = 1 for all i, so that, like the Stephenson six-bar linkage,

dof = 3(6− 1− 7) + 7 = 1.

Figure 2.6 A planar mechanism with two
overlapping joints.

Example 2.5 (A planar mechanism with overlapping joints) The planar mecha-

nism illustrated in Figure 2.6 has three links that meet at a single point on the

right of the large link. Recalling that a joint by definition connects exactly two

links, the joint at this point of intersection should not be regarded as a single rev-

olute joint. Rather, it is correctly interpreted as two revolute joints overlapping

each other. Again, there is more than one way to derive the number of degrees of

freedom of this mechanism using Grübler’s formula: (i) The mechanism consists

of eight links (N = 8), eight revolute joints, and one prismatic joint. Substituting

into Grübler’s formula yields

dof = 3(8− 1− 9) + 9(1) = 3.

(ii) Alternatively, the lower-right revolute–prismatic joint pair can be regarded

as a single two-dof joint. In this case the number of links is N = 7, with seven

revolute joints, and a single two-dof revolute–prismatic pair. Substituting into

Grübler’s formula yields

dof = 3(7− 1− 8) + 7(1) + 1(2) = 3.

Example 2.6 (Redundant constraints and singularities) For the parallelogram

linkage of Figure 2.7(a), N = 5, J = 6, and fi = 1 for each joint. From Grübler’s

(a) (b)

Figure 2.7 (a) A parallelogram linkage. (b) The five-bar linkage in a regular and
singular configuration.
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formula, the number of degrees of freedom is 3(5− 1− 6) + 6 = 0. A mechanism

with zero degrees of freedom is by definition a rigid structure. It is clear from

examining the figure, though, that the mechanism can in fact move with one

degree of freedom. Indeed, any one of the three parallel links, with its two joints,

has no effect on the motion of the mechanism, so we should have calculated

dof = 3(4− 1− 4)+4 = 1. In other words, the constraints provided by the joints

are not independent, as required by Grübler’s formula.

A similar situation arises for the two-dof planar five-bar linkage of Figure 2.7(b).

If the two joints connected to ground are locked at some fixed angle, the five-

bar linkage should then become a rigid structure. However, if the two middle

links are the same length and overlap each other, as illustrated in Figure 2.7(b),

these overlapping links can rotate freely about the two overlapping joints. Of

course, the link lengths of the five-bar linkage must meet certain specifications

in order for such a configuration to even be possible. Also note that if a different

pair of joints is locked in place, the mechanism does become a rigid structure as

expected.

Example 2.7 (Delta robot) The Delta robot of Figure 2.8 consists of two plat-

forms – the lower one mobile, the upper one stationary – connected by three

legs. Each leg contains a parallelogram closed chain and consists of three revo-

lute joints, four spherical joints, and five links. Adding the two platforms, there

areN = 17 links and J = 21 joints (nine revolute and 12 spherical). By Grübler’s

formula,

dof = 6(17− 1− 21) + 9(1) + 12(3) = 15.

R

S

R

R
S

SS

Figure 2.8 The Delta robot.
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Of these 15 degrees of freedom, however, only three are visible at the end-effector

on the moving platform. In fact, the parallelogram leg design ensures that the

moving platform always remains parallel to the fixed platform, so that the Delta

robot acts as an x–y–z Cartesian positioning device. The other 12 internal de-

grees of freedom are accounted for by torsion of the 12 links in the parallelograms

(each of the three legs has four links in its parallelogram) about their long axes.

Example 2.8 (Stewart–Gough platform) The Stewart–Gough platform of Fig-

ure 1.1(b) consists of two platforms – the lower one stationary and regarded as

ground, the upper one mobile – connected by six universal–prismatic–spherical

(UPS) legs. The total number of links is 14 (N = 14). There are six universal

joints (each with two degrees of freedom, fi = 2), six prismatic joints (each with

a single degree of freedom, fi = 1), and six spherical joints (each with three

degrees of freedom, fi = 3). The total number of joints is 18. Substituting these

values into Grübler’s formula with m = 6 yields

dof = 6(14− 1− 18) + 6(1) + 6(2) + 6(3) = 6.

In some versions of the Stewart–Gough platform the six universal joints are

replaced by spherical joints. By Grübler’s formula this mechanism has 12 degrees

of freedom; replacing each universal joint by a spherical joint introduces an extra

degree of freedom in each leg, allowing torsional rotations about the leg axis.

Note, however, that this torsional rotation has no effect on the motion of the

mobile platform.

The Stewart–Gough platform is a popular choice for car and airplane cockpit

simulators, as the platform moves with the full six degrees of freedom of motion

of a rigid body. On the one hand, the parallel structure means that each leg

needs to support only a fraction of the weight of the payload. On the other

hand, this structure also limits the range of translational and rotational motion

of the platform relative to the range of motion of the end-effector of a six-dof

open chain.

2.3 Configuration Space: Topology and Representation

2.3.1 Configuration Space Topology

Until now we have been focusing on one important aspect of a robot’s C-space

– its dimension, or the number of degrees of freedom. However, the shape of the

space is also important.

Consider a point moving on the surface of a sphere. The point’s C-space is two

dimensional, as the configuration can be described by two coordinates, latitude

and longitude. As another example, a point moving on a plane also has a two-

dimensional C-space, with coordinates (x, y). While both a plane and the surface

of a sphere are two dimensional, clearly they do not have the same shape – the

plane extends infinitely while the sphere wraps around.
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a b

( )

( ) ( )

Figure 2.9 An open interval of the real line, denoted (a, b), can be deformed to an open
semicircle. This open semicircle can then be deformed to the real line by the mapping
illustrated: beginning from a point at the center of the semicircle, draw a ray that
intersects the semicircle and then a line above the semicircle. These rays show that every
point of the semicircle can be stretched to exactly one point on the line, and vice versa.
Thus an open interval can be continuously deformed to a line, so an open interval and a
line are topologically equivalent.

Unlike the plane, a larger sphere has the same shape as the original sphere, in

that it wraps around in the same way. Only its size is different. For that matter,

an oval-shaped American football also wraps around similarly to a sphere. The

only difference between a football and a sphere is that the football has been

stretched in one direction.

The idea that the two-dimensional surfaces of a small sphere, a large sphere,

and a football all have the same kind of shape, which is different from the shape

of a plane, is expressed by the topology of the surfaces. We do not attempt a

rigorous treatment in this book,3 but we say that two spaces are topologically

equivalent if one can be continuously deformed into the other without cutting

or gluing. A sphere can be deformed into a football simply by stretching, without

cutting or gluing, so those two spaces are topologically equivalent. You cannot

turn a sphere into a plane without cutting it, however, so a sphere and a plane

are not topologically equivalent.

Topologically distinct one-dimensional spaces include the circle, the line, and

a closed interval of the line. The circle is written mathematically as S or S1, a

one-dimensional “sphere.” The line can be written as E or E
1, indicating a one-

dimensional Euclidean (or “flat”) space. Since a point in E
1 is usually represented

by a real number (after choosing an origin and a length scale), it is often written

as R or R1 instead. A closed interval of the line, which contains its endpoints, can

be written [a, b] ⊂ R
1. (An open interval (a, b) does not include the endpoints

a and b and is topologically equivalent to a line, since the open interval can be

stretched to a line, as shown in Figure 2.9. A closed interval is not topologically

equivalent to a line, since a line does not contain endpoints.)

In higher dimensions, Rn is the n-dimensional Euclidean space and Sn is the

n-dimensional surface of a sphere in (n+ 1)-dimensional space. For example, S2

is the two-dimensional surface of a sphere in three-dimensional space.

Note that the topology of a space is a fundamental property of the space itself

and is independent of how we choose coordinates to represent points in the space.

3 For those familiar with concepts in topology, all the spaces we consider can be viewed as
embedded in a higher-dimensional Euclidean space, inheriting the Euclidean topology of
that space.
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For example, to represent a point on a circle, we could refer to the point by the

angle θ from the center of the circle to the point, relative to a chosen zero angle.

Or, we could choose a reference frame with its origin at the center of the circle

and represent the point by the two coordinates (x, y) subject to the constraint

x2 + y2 = 1. No matter what our choice of coordinates is, the space itself does

not change.

Some C-spaces can be expressed as the Cartesian product of two or more

spaces of lower dimension; that is, points in such a C-space can be represented

as the union of the representations of points in the lower-dimensional spaces. For

example:

• The C-space of a rigid body in the plane can be written as R2×S1, since the

configuration can be represented as the concatenation of the coordinates

(x, y) representing R
2 and an angle θ representing S1.

• The C-space of a PR robot arm can be written R
1×S1. (We will occasionally

ignore joint limits, i.e., bounds on the travel of the joints, when expressing

the topology of the C-space; with joint limits, the C-space is the Cartesian

product of two closed intervals of the line.)

• The C-space of a 2R robot arm can be written S1 × S1 = T 2, where T n is

the n-dimensional surface of a torus in an (n+ 1)-dimensional space. (See

Table 2.2.) Note that S1 × S1 × · · · × S1 (n copies of S1) is equal to T n,

not Sn; for example, a sphere S2 is not topologically equivalent to a torus

T 2.

• The C-space of a planar rigid body (e.g., the chassis of a mobile robot) with

a 2R robot arm can be written as R
2 × S1 × T 2 = R

2 × T 3.

• As we saw in Section 2.1 when we counted the degrees of freedom of a rigid

body in three dimensions, the configuration of a rigid body can be described

by a point in R
3, plus a point on a two-dimensional sphere S2, plus a point

on a one-dimensional circle S1, giving a total C-space of R3 × S2 × S1.

2.3.2 Configuration Space Representation

To perform computations, we must have a numerical representation of the

space, consisting of a set of real numbers. We are familiar with this idea from

linear algebra – a vector is a natural way to represent a point in a Euclidean

space. It is important to keep in mind that the representation of a space involves

a choice, and therefore it is not as fundamental as the topology of the space,

which is independent of the representation. For example, the same point in a

three-dimensional space can have different coordinate representations depending

on the choice of reference frame (the origin and the direction of the coordinate

axes) and the choice of length scale, but the topology of the underlying space is

the same regardless of theses choices.

While it is natural to choose a reference frame and length scale and to use

a vector to represent points in a Euclidean space, representing a point on a
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system topology sample representation

x̂

ŷ
(x, y)

point on a plane E
2

R
2

longitude

latitude
90◦

−90◦−180◦ 180◦

spherical pendulum S2 [−180◦, 180◦)× [−90◦, 90◦]

0

0

2π

2π θ1

θ2

2R robot arm T 2=S1×S1 [0, 2π)× [0, 2π)

. . . . . .

rotating sliding knob E
1 × S1

R
1 × [0, 2π)

Table 2.2 Four topologically different two-dimensional C-spaces and example coordinate
representations. In the latitude–longitude representation of the sphere, the latitudes −90◦

and 90◦ each correspond to a single point (the south pole and the north pole,
respectively), and the longitude parameter wraps around at 180◦ and −180◦; the edges
with arrows are glued together. Similarly, the coordinate representations of the torus and
cylinder wrap around at the edges marked with corresponding arrows.

curved space, such as a sphere, is less obvious. One solution for a sphere is to

use latitude and longitude coordinates. A choice of n coordinates, or parameters,

to represent an n-dimensional space is called an explicit parametrization of

the space. Such an explicit parametrization is valid for a particular range of

the parameters (e.g., [−90◦, 90◦] for latitude and [−180◦, 180◦) for longitude for

a sphere, where, on Earth, negative values correspond to “south” and “west,”

respectively).

The latitude–longitude representation of a sphere is unsatisfactory if you are

walking near the North Pole (where the latitude equals 90◦) or South Pole (where
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the latitude equals −90◦), where taking a very small step can result in a large

change in the coordinates. The North and South Poles are singularities of the

representation, and the existence of singularities is a result of the fact that a

sphere does not have the same topology as a plane, i.e., the space of the two

real numbers that we have chosen to represent the sphere (latitude and longi-

tude). The location of these singularities has nothing to do with the sphere itself,

which looks the same everywhere, and everything to do with the chosen repre-

sentation of it. Singularities of the parametrization are particularly problematic

when representing velocities as the time rate of change of coordinates, since these

representations may tend to infinity near singularities even if the point on the

sphere is moving at a constant speed
√

ẋ2 + ẏ2 + ż2 (which is what the speed

would be had you represented the point as (x, y, z) instead).

If you can assume that the configuration never approaches a singularity of the

representation, you can ignore this issue. If you cannot make this assumption,

there are two ways to overcome the problem.

• Use more than one coordinate chart on the space, where each coordinate

chart is an explicit parametrization covering only a portion of the space

such that, within each chart, there is no singularity. As the configuration

representation approaches a singularity in one chart, e.g., the North or

South Pole, you simply switch to another chart where the North and South

Poles are far from singularities.

If we define a set of singularity-free coordinate charts that overlap each

other and cover the entire space, like the two charts above, the charts are

said to form an atlas of the space, much as an atlas of the Earth consists

of several maps that together cover the Earth. An advantage of using an

atlas of coordinate charts is that the representation always uses the mini-

mum number of numbers. A disadvantage is the extra bookkeeping required

to switch representations between coordinate charts to avoid singularities.

(Note that Euclidean spaces can be covered by a single coordinate chart

without singularities.)

• Use an implicit representation of the space instead of an explicit parametri-

zation. An implicit representation views the n-dimensional space as emb-

edded in a Euclidean space of more than n dimensions, just as a two-

dimensional unit sphere can be viewed as a surface embedded in a three-

dimensional Euclidean space. An implicit representation uses the coordin-

ates of the higher-dimensional space (e.g., (x, y, z) in the three-dimensional

space), but subjects these coordinates to constraints that reduce the num-

ber of degrees of freedom (e.g., x2 + y2 + z2 = 1 for the unit sphere).

A disadvantage of this approach is that the representation has more

numbers than the number of degrees of freedom. An advantage is that

there are no singularities in the representation – a point moving smoothly

around the sphere is represented by a smoothly changing (x, y, z), even at

https://doi.org/10.1017/9781316661239.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316661239.005


2.4 Configuration and Velocity Constraints 25

the North and South poles. A single representation is used for the whole

sphere; multiple coordinate charts are not needed.

Another advantage is that while it may be very difficult to construct an

explicit parametrization, or atlas, for a closed-chain mechanism, it is easy

to find an implicit representation: the set of all joint coordinates subject to

the loop-closure equations that define the closed loops (Section 2.4).

We will use implicit representations throughout the book, beginning in

the next chapter. In particular, we use nine numbers, subject to six con-

straints, to represent the three orientation freedoms of a rigid body in space.

This is called a rotation matrix. In addition to being singularity-free (un-

like three-parameter representations such as roll–pitch–yaw angles4), the

rotation matrix representation allows us to use linear algebra to perform

computations such as rotating a rigid body or changing the reference frame

in which the orientation of a rigid body is expressed.5

In summary, the non-Euclidean shape of many C-spaces motivates our use of

implicit representations of C-space throughout this book. We return to this topic

in the next chapter.

2.4 Configuration and Velocity Constraints

For robots containing one or more closed loops, usually an implicit representation

is more easily obtained than an explicit parametrization. For example, consider

the planar four-bar linkage of Figure 2.10, which has one degree of freedom.

The fact that the four links always form a closed loop can be expressed by the

following three equations:

L1 cos θ1 + L2 cos(θ1 + θ2) + · · ·+ L4 cos(θ1 + · · ·+ θ4) = 0,

L1 sin θ1 + L2 sin(θ1 + θ2) + · · ·+ L4 sin(θ1 + · · ·+ θ4) = 0,

θ1 + θ2 + θ3 + θ4 − 2π = 0.

These equations are obtained by viewing the four-bar linkage as a serial chain

with four revolute joints in which (i) the tip of link L4 always coincides with the

origin and (ii) the orientation of link L4 is always horizontal.

These equations are sometimes referred to as loop-closure equations. For

the four-bar linkage they are given by a set of three equations in four unknowns.

The set of all solutions forms a one-dimensional curve in the four-dimensional

joint space and constitutes the C-space.

4 Roll–pitch–yaw angles and Euler angles use three parameters for the space of rotations
S2 × S1 (two for S2 and one for S1), and therefore are subject to singularities as discussed
above.

5 Another singularity-free implicit representation of orientations, the unit quaternion, uses
only four numbers subject to the constraint that the 4-vector be of unit length. In fact,
this representation is a double covering of the set of orientations: for every orientation,
there are two unit quaternions.
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x̂

ŷ

L1

L2

L3

L4

θ1

θ2

θ3

θ4

Figure 2.10 The four-bar
linkage.

In this book, when vectors are used in a linear algebra computation, they are

generally treated as column vectors, e.g., p = [1 2 3]T. When a computation is

not imminent, however, we often think of a vector simply as an ordered list of

variables, e.g., p = (1, 2, 3).

Thus, for general robots containing one or more closed loops, the configuration

space can be implicitly represented by the column vector θ = [θ1 · · · θn]T ∈ R
n

and loop-closure equations of the form

g(θ) =






g1(θ1, . . . , θn)
...

gk(θ1, . . . , θn)




 = 0, (2.5)

a set of k independent equations, with k ≤ n. Such constraints are known as

holonomic constraints, ones that reduce the dimension of the C-space.6 The C-

space can be viewed as a surface of dimension n−k (assuming that all constraints

are independent) embedded in R
n.

Suppose that a closed-chain robot with loop-closure equations g(θ) = 0, g :

R
n → R

k, is in motion, following the time trajectory θ(t). Differentiating both

sides of g(θ(t)) = 0 with respect to t, we obtain

d

dt
g(θ(t)) = 0;

(2.6)

thus








∂g1
∂θ1

(θ)θ̇1 + · · ·+ ∂g1
∂θn

(θ)θ̇n

...
∂gk
∂θ1

(θ)θ̇1 + · · ·+ ∂gk
∂θn

(θ)θ̇n









= 0.

6 Viewing a rigid body as a collection of points, the distance constraints between the points,
as we saw earlier, can be viewed as holonomic constraints.
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This can be expressed as a matrix multiplying a column vector [θ̇1 · · · θ̇n]T:








∂g1
∂θ1

(θ) · · · ∂g1
∂θn

(θ)

...
. . .

...
∂gk
∂θ1

(θ) · · · ∂gk
∂θn

(θ)














θ̇1
...

θ̇n




 = 0,

which we can write as

∂g

∂θ
(θ)θ̇ = 0. (2.7)

Here, the joint-velocity vector θ̇i denotes the derivative of θi with respect to time

t, ∂g(θ)/∂θ ∈ R
k×n, and θ, θ̇ ∈ R

n. The constraints (2.7) can be written

A(θ)θ̇ = 0, (2.8)

where A(θ) ∈ R
k×n. Velocity constraints of this form are called Pfaffian con-

straints. For the case of A(θ) = ∂g(θ)/∂θ, one could regard g(θ) as being the

“integral” of A(θ); for this reason, holonomic constraints of the form g(θ) = 0 are

also called integrable constraints – the velocity constraints that they imply

can be integrated to give equivalent configuration constraints.

We now consider another class of Pfaffian constraints that are fundamentally

different from the holonomic type. To illustrate this with a concrete example,

consider an upright coin of radius r rolling on a plane as shown in Figure 2.11.

The configuration of the coin is given by the contact point (x, y) on the plane,

the steering angle φ, and the angle of rotation θ. The C-space of the coin is

therefore R
2 × T 2, where T 2 is the two-dimensional torus parametrized by the

angles φ and θ. This C-space is four dimensional.

Figure 2.11 A coin rolling on a plane without
slipping.

We now express, in mathematical form, the fact that the coin rolls without

slipping. The coin must always roll in the direction indicated by (cosφ, sinφ),

with forward speed rθ̇:
[
ẋ

ẏ

]

= rθ̇

[
cosφ

sinφ

]

. (2.9)
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Collecting the four C-space coordinates into a single vector q = [q1 q2 q3 q4]
T =

[x y φ θ]T ∈ R
2 × T 2, the above no-slip rolling constraint can then be expressed

in the form
[

1 0 0 −r cos q3
0 1 0 −r sin q3

]

q̇ = 0. (2.10)

These are Pfaffian constraints of the form A(q)q̇ = 0, A(q) ∈ R
2×4.

These constraints are not integrable; that is, for the A(q) given in (2.10), there

does not exist a differentiable function g : R4 → R
2 such that ∂g(q)/∂q = A(q).

If this were not the case then there would have to exist a differentiable g1(q)

that satisfied the following four equalities:

∂g1(q)/∂q1 = 1 −→ g1(q) = q1 + h1(q2, q3, q4)

∂g1(q)/∂q2 = 0 −→ g1(q) = h2(q1, q3, q4)

∂g1(q)/∂q3 = 0 −→ g1(q) = h3(q1, q2, q4)

∂g1(q)/∂q4 = −r cos q3 −→ g1(q) = −rq4 cos q3 + h4(q1, q2, q3),

for some hi, i = 1, . . . , 4, differentiable in each of its variables. By inspection it

should be clear that no such g1(q) exists. Similarly, it can be shown that g2(q)

does not exist, so that the constraint (2.10) is nonintegrable. A Pfaffian constraint

that is nonintegrable is called a nonholonomic constraint. Such constraints

reduce the dimension of the feasible velocities of the system but do not reduce

the dimension of the reachable C-space. The rolling coin can reach any point

in its four-dimensional C-space despite the two constraints on its velocity.7 See

Exercise 2.30.

In a number of robotics contexts nonholonomic constraints arise that involve

the conservation of momentum and rolling without slipping, e.g., wheeled vehicle

kinematics and grasp contact kinematics. We examine nonholonomic constraints

in greater detail in our study of wheeled mobile robots in Chapter 13.

2.5 Task Space and Workspace

We now introduce two more concepts relating to the configuration of a robot: the

task space and the workspace. Both relate to the configuration of the end-effector

of a robot, not to the configuration of the entire robot.

The task space is a space in which the robot’s task can be naturally expressed.

For example, if the robot’s task is to plot with a pen on a piece of paper, the

task space would be R
2. If the task is to manipulate a rigid body, a natural

representation of the task space is the C-space of a rigid body, representing the

position and orientation of a frame attached to the robot’s end-effector. This is

the default representation of task space. The decision of how to define the task

space is driven by the task, independently of the robot.

7 Some texts define the number of degrees of freedom of a system to be the dimension of the
feasible velocities, e.g., two for the rolling coin. We always refer to the dimension of the
C-space as the number of degrees of freedom.
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θ1

θ2

θ3

(a) (b)

(c) (d)

Figure 2.12 Examples of workspaces for various robots: (a) a planar 2R open chain; (b)
a planar 3R open chain; (c) a spherical 2R open chain; (d) a 3R orienting mechanism.

The workspace is a specification of the configurations that the end-effector

of the robot can reach. The definition of the workspace is primarily driven by

the robot’s structure, independently of the task.

Both the task space and the workspace involve a choice by the user; in par-

ticular, the user may decide that some freedoms of the end-effector (e.g., its

orientation) do not need to be represented.

The task space and the workspace are distinct from the robot’s C-space. A

point in the task space or the workspace may be achievable by more than one

robot configuration, meaning that the point is not a full specification of the

robot’s configuration. For example, for an open-chain robot with seven joints,

the six-dof position and orientation of its end-effector does not fully specify the

robot’s configuration.

Some points in the task space may not be reachable at all by the robot, such as

some points on a chalkboard. By definition, however, all points in the workspace

are reachable by at least one configuration of the robot.

Two mechanisms with different C-spaces may have the same workspace. For
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example, considering the end-effector to be the Cartesian tip of the robot (e.g.,

the location of a plotting pen) and ignoring orientations, the planar 2R open

chain with links of equal length three (Figure 2.12(a)) and the planar 3R open

chain with links of equal length two (Figure 2.12(b)) have the same workspace

despite having different C-spaces.

Two mechanisms with the same C-space may also have different workspaces.

For example, taking the end-effector to be the Cartesian tip of the robot and

ignoring orientations, the 2R open chain of Figure 2.12(a) has a planar disk as

its workspace, while the 2R open chain of Figure 2.12(c) has the surface of a

sphere as its workspace.

Attaching a coordinate frame to the tip of the tool of the 3R open chain

“wrist” mechanism of Figure 2.12(d), we see that the frame can achieve any

orientation by rotating the joints but the Cartesian position of the tip is always

fixed. This can be seen by noting that the three joint axes always intersect at

the tip. For this mechanism, we would probably define the workspace to be the

three-dof space of orientations of the frame, S2×S1, which is different from the

C-space T 3. The task space depends on the task; if the job is to point a laser

pointer, then rotations about the axis of the laser beam are immaterial and the

task space would be S2, the set of directions in which the laser can point.

Example 2.9 The SCARA robot of Figure 2.13 is an RRRP open chain that is

widely used for tabletop pick-and-place tasks. The end-effector configuration is

completely described by the four parameters (x, y, z, φ), where (x, y, z) denotes

the Cartesian position of the end-effector center point and φ denotes the ori-

entation of the end-effector in the x–y-plane. Its task space would typically be

defined as R3×S1, and its workspace would typically be defined as the reachable

points in (x, y, z) Cartesian space, since all orientations φ ∈ S1 can be achieved

at all reachable points.

Example 2.10 A standard 6R industrial manipulator can be adapted to spray-

painting applications as shown in Figure 2.14. The paint spray nozzle attached

to the tip can be regarded as the end-effector. What is important to the task is

the Cartesian position of the spray nozzle, together with the direction in which

the spray nozzle is pointing; rotations about the nozzle axis (which points in the

direction in which paint is being sprayed) do not matter. The nozzle configuration

can therefore be described by five coordinates: (x, y, z) for the Cartesian position

of the nozzle and spherical coordinates (θ, φ) to describe the direction in which

the nozzle is pointing. The task space can be written as R3×S2. The workspace

could be the reachable points in R
3 × S2, or, to simplify visualization, the user

could define the workspace to be the subset of R3 corresponding to the reachable

Cartesian positions of the nozzle.
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x̂

ŷ
ẑ

(x, y, z)

φ

θ1

θ2

θ3

θ4

Figure 2.13 SCARA robot.

Figure 2.14 A spray-painting robot.

2.6 Summary

• A robot is mechanically constructed from links that are connected by various

types of joint. The links are usually modeled as rigid bodies. An end-effector
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such as a gripper may be attached to some link of the robot. Actuators

deliver forces and torques to the joints, thereby causing motion of the robot.

• The most widely used one-dof joints are the revolute joint, which allows rota-

tion about the joint axis, and the prismatic joint, which allows translation

in the direction of the joint axis. Some common two-dof joints include the

cylindrical joint, which is constructed by serially connecting a revolute and

prismatic joint, and the universal joint, which is constructed by orthogo-

nally connecting two revolute joints. The spherical joint, also known as the

ball-and-socket joint, is a three-dof joint whose function is similar to the

human shoulder joint.

• The configuration of a rigid body is a specification of the location of all its

points. For a rigid body moving in the plane, three independent parameters

are needed to specify the configuration. For a rigid body moving in three-

dimensional space, six independent parameters are needed to specify the

configuration.

• The configuration of a robot is a specification of the configuration of all its

links. The robot’s configuration space is the set of all possible robot config-

urations. The dimension of the C-space is the number of degrees of freedom

of a robot.

• The number of degrees of freedom of a robot can be calculated using Grübler’s

formula,

dof = m(N − 1− J) +

J∑

i=1

fi,

where m = 3 for planar mechanisms and m = 6 for spatial mechanisms,

N is the number of links (including the ground link), J is the number of

joints, and fi is the number of degrees of freedom of joint i.

• A robot’s C-space can be parametrized explicitly or represented implicitly.

For a robot with n degrees of freedom, an explicit parametrization uses n

coordinates, the minimum necessary. An implicit representation involves

m coordinates with m ≥ n, with the m coordinates subject to m − n

constraint equations. With an implicit parametrization, a robot’s C-space

can be viewed as a surface of dimension n embedded in a space of higher

dimension m.

• The C-space of an n-dof robot whose structure contains one or more closed

loops can be implicitly represented using k loop-closure equations of the

form g(θ) = 0, where θ ∈ R
m and g : Rm → R

k. Such constraint equations

are called holonomic constraints. Assuming that θ varies with time t, the

holonomic constraints g(θ(t)) = 0 can be differentiated with respect to t to

yield

∂g

∂θ
(θ)θ̇ = 0,

where ∂g(θ)/∂θ is a k ×m matrix.
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• A robot’s motion can also be subject to velocity constraints of the form

A(θ)θ̇ = 0,

where A(θ) is a k ×m matrix that cannot be expressed as the differential

of some function g(θ). In other words, there does not exist any g(θ), g :

R
m → R

k, such that

A(θ) =
∂g

∂θ
(θ).

Such constraints are said to be nonholonomic constraints, or nonintegrable

constraints. These constraints reduce the dimension of feasible velocities

of the system but do not reduce the dimension of the reachable C-space.

Nonholonomic constraints arise in robot systems subject to conservation of

momentum or rolling without slipping.

• A robot’s task space is a space in which the robot’s task can be naturally

expressed. A robot’s workspace is a specification of the configurations that

the end-effector of the robot can reach.

2.7 Notes and References

In the kinematics literature, structures that consist of links connected by joints

are also called mechanisms or linkages. The number of degrees of freedom of a

mechanism, also referred to as its mobility, is treated in most texts on mechanism

analysis and design, e.g., Erdman and Sandor (1996) or McCarthy and Soh

(2011). The notion of a robot’s configuration space was first formulated in the

context of motion planning by Lozano-Perez (1980); more recent and advanced

treatments can be found in Latombe (1991), LaValle (2006), and Choset et al.

(2005). As apparent from examples in this chapter, a robot’s configuration space

can be nonlinear and curved, as can its task space. Such spaces often have the

mathematical structure of a differentiable manifold, which are the central objects

of study in differential geometry. Some accessible introductions to differential

geometry are Millman and Parker (1977), do Carmo (1976) and Boothby (2002).

2.8 Exercises

In the exercises below, if you are asked to “describe” a C-space, you should

indicate its dimension and whatever you know about its topology (e.g., using R,

S, and T , as with the examples in Sections 2.3.1 and 2.3.2).

Exercise 2.1 Using the methods of Section 2.1 derive a formula, in terms of

n, for the number of degrees of freedom of a rigid body in n-dimensional space.

Indicate how many of these dof are translational and how many are rotational.

Describe the topology of the C-space (e.g., for n = 2, the topology is R
2 × S1).
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Exercise 2.2 Find the number of degrees of freedom of your arm, from your

torso to your palm (just past the wrist, not including finger degrees of freedom).

Keep the center of the ball-and-socket joint of your shoulder stationary (do not

“hunch” your shoulders). Find the number of degrees of freedom in two ways:

(a) add up the degrees of freedom at the shoulder, elbow, and wrist joints;

(b) fix your palm flat on a table with your elbow bent and, without moving the

center of your shoulder joint, investigate with how many degrees of freedom

you can still move your arm.

Do your answers agree? How many constraints were placed on your arm when

you placed your palm at a fixed configuration on the table?

Exercise 2.3 In the previous exercise, we assumed that your arm is a serial

chain. In fact, between your upper arm bone (the humerus) and the bone complex

just past your wrist (the carpal bones), your forearm has two bones, the radius

and the ulna, which are part of a closed chain. Model your arm, from your

shoulder to your palm, as a mechanism with joints and calculate the number of

degrees of freedom using Grübler’s formula. Be clear on the number of freedoms

of each joint you use in your model. Your joints may or may not be of the

standard types studied in this chapter (R, P, H, C, U, and S).

Exercise 2.4 Assume each of your arms has n degrees of freedom. You are driv-

ing a car, your torso is stationary relative to the car (owing to a tight seatbelt!),

and both hands are firmly grasping the wheel, so that your hands do not move

relative to the wheel. How many degrees of freedom does your arms-plus-steering

wheel system have? Explain your answer.

Human

Robot

A

Figure 2.15 Robot used for
human arm rehabilitation.

Exercise 2.5 Figure 2.15 shows a robot used for human arm rehabilitation.

Determine the number of degrees of freedom of the chain formed by the human

arm and the robot.
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Figure 2.16 Mobile
manipulator.

Spherical Joint

Revolute Joint

spherical joint

revolute joint

Figure 2.17 Three cooperating SRS arms grasping a common object.

Exercise 2.6 The mobile manipulator of Figure 2.16 consists of a 6R arm and

multi-fingered hand mounted on a mobile base with a single wheel. You can think

of the wheeled base as the same as the rolling coin in Figure 2.11 – the wheel

(and base) can spin together about an axis perpendicular to the ground, and the

wheel rolls without slipping. The base always remains horizontal. (Left unstated

are the means to keep the base horizontal and to spin the wheel and base about

an axis perpendicular to the ground.)

(a) Ignoring the multi-fingered hand, describe the configuration space of the

mobile manipulator.

(b) Now suppose that the robot hand rigidly grasps a refrigerator door handle

and, with its wheel and base completely stationary, opens the door using

only its arm. With the door open, how many degrees of freedom does the

mechanism formed by the arm and open door have?

(c) A second identical mobile manipulator comes along, and after parking its

mobile base, also rigidly grasps the refrigerator door handle. How many

degrees of freedom does the mechanism formed by the two arms and the

open refrigerator door have?

Exercise 2.7 Three identical SRS open-chain arms are grasping a common

object, as shown in Figure 2.17.
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(a) Find the number of degrees of freedom of this system.

(b) Suppose there are now a total of n such arms grasping the object. How many

degrees of freedom does this system have?

(c) Suppose the spherical wrist joint in each of the n arms is now replaced by a

universal joint. How many degrees of freedom does this system have?

Exercise 2.8 Consider a spatial parallel mechanism consisting of a moving

plate connected to a fixed plate by n identical legs. For the moving plate to have

six degrees of freedom, how many degrees of freedom should each leg have, as a

function of n? For example, if n = 3 then the moving plate and fixed plate are

connected by three legs; how many degrees of freedom should each leg have for

the moving plate to move with six degrees of freedom? Solve for arbitrary n.

Exercise 2.9 Use the planar version of Grübler’s formula to determine the

number of degrees of freedom of the mechanisms shown in Figure 2.18. Comment

on whether your results agree with your intuition about the possible motions of

these mechanisms.

Exercise 2.10 Use the planar version of Grübler’s formula to determine the

number of degrees of freedom of the mechanisms shown in Figure 2.19. Comment

on whether your results agree with your intuition about the possible motions of

these mechanisms.

Exercise 2.11 Use the spatial version of Grübler’s formula to determine the

number of degrees of freedom of the mechanisms shown in Figure 2.20. Comment

on whether your results agree with your intuition about the possible motions of

these mechanisms.

Exercise 2.12 Use the spatial version of Grübler’s formula to determine the

number of degrees of freedom of the mechanisms shown in Figure 2.21. Comment

on whether your results agree with your intuition about the possible motions of

these mechanisms.

Exercise 2.13 In the parallel mechanism shown in Figure 2.22, six legs of

identical length are connected to a fixed and moving platform via spherical joints.

Determine the number of degrees of freedom of this mechanism using Grübler’s

formula. Illustrate all possible motions of the upper platform.

Exercise 2.14 The 3×UPU platform of Figure 2.23 consists of two platforms

– the lower one stationary, the upper one mobile – connected by three UPU legs.

(a) Using the spatial version of Grübler’s formula, verify that it has three degrees

of freedom.
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(a) (b)

Fork Joint

Slider

Slider

(c) (d)

(e) (f)

Figure 2.18 A first collection of planar mechanisms.

(b) Construct a physical model of the 3×UPU platform to see if it does indeed

have three degrees of freedom. In particular, lock the three P joints in place;

does the robot become a structure as predicted by Grübler’s formula, or does

it move?

Exercise 2.15 Consider the mechanisms of Figures 2.24(a) and 2.24(b).

(a) The mechanism of Figure 2.24(a) consists of six identical squares arranged

in a single closed loop, connected by revolute joints. The bottom square is
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(a) (b)

(c)

(a) (b)

(d)

Figure 2.19 A second collection of planar mechanisms.

fixed to ground. Determine the number of degrees of freedom using Grübler’s

formula.

(b) The mechanism of Figure 2.24(b) also consists of six identical squares con-

nected by revolute joints, but arranged differently (as shown). Determine

the number of degrees of freedom using Grübler’s formula. Does your result

agree with your intuition about the possible motions of this mechanism?

Exercise 2.16 Figure 2.25 shows a spherical four-bar linkage, in which four

links (one of the links is the ground link) are connected by four revolute joints

to form a single-loop closed chain. The four revolute joints are arranged so that

they lie on a sphere such that their joint axes intersect at a common point.

(a) Use Grübler’s formula to find the number of degrees of freedom. Justify your

choice of formula.

(b) Describe the configuration space.

(c) Assuming that a reference frame is attached to the center link, describe its

workspace.
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circular P joint

R joint
P jointS joint

circular
P joint

S joint universal joint

S joint

Figure 2.20 A first collection of spatial parallel mechanisms.

Exercise 2.17 Figure 2.26 shows a parallel robot used for surgical applications.

As shown in Figure 2.26(a), leg A is an RRRP chain, while legs B and C are

RRRUR chains. A surgical tool is rigidly attached to the end-effector.
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Figure 2.21 A second collection of spatial parallel mechanisms.

(a) Use Grübler’s formula to find the number of degrees of freedom of the mech-

anism in Figure 2.26(a).

(b) Now suppose that the surgical tool must always pass through point A in

Figure 2.26(a). How many degrees of freedom does the manipulator have?

(c) Legs A, B, and C are now replaced by three identical RRRR legs as shown

in Figure 2.26(b). Furthermore, the axes of all R joints pass through point

A. Use Grübler’s formula to derive the number of degrees of freedom of this

mechanism.

Exercise 2.18 Figure 2.27 shows a 3×PUP platform, in which three identical

PUP legs connect a fixed base to a moving platform. The P joints on both

the fixed base and moving platform are arranged symmetrically. Use Grübler’s

formula to find the number of degrees of freedom. Does your answer agree with

your intuition about this mechanism? If not, try to explain any discrepancies

without resorting to a detailed kinematic analysis.
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Figure 2.22 A 6×SS platform.

Figure 2.23 The 3×UPU
platform.

Exercise 2.19 The dual-arm robot of Figure 2.28 is rigidly grasping a box.

The box can only slide on the table; the bottom face of the box must always be

in contact with the table. How many degrees of freedom does this system have?

Exercise 2.20 The dragonfly robot of Figure 2.29 has a body, four legs, and

four wings as shown. Each leg is connected to each adjacent leg by a USP linkage.

Use Grübler’s formula to answer the following questions.

(a) Suppose the body is fixed and only the legs and wings can move. How many

degrees of freedom does the robot have?
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stationary
R

R

R

RR

R

stationary

R

R

R

R

R

R

Figure 2.24 Two mechanisms.

Figure 2.25 The spherical four-bar
linkage.

(b) Now suppose the robot is flying in the air. How many degrees of freedom

does the robot have?

(c) Now suppose the robot is standing with all four feet in contact with the

ground. Assume that the ground is uneven and that each foot–ground con-

tact can be modeled as a point contact with no slip. How many degrees of

freedom does the robot have? Explain your answer.

Exercise 2.21 A caterpillar robot.

(a) A caterpillar robot is hanging by its tail end as shown in Figure 2.30(a).
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Leg A

Leg B

Leg C

Point A

Base

Surgical tool

End-effector

Leg D

Leg D

Leg D

Point A

Base

Surgical tool

End-effector

Figure 2.26 Surgical manipulator.

P

U

P

platform

base Figure 2.27 The 3×PUP platform.

The robot consists of eight serially connected rigid links (one head, one tail,

and six body links). The six body links are connected by revolute–prismatic–

revolute joints, while the head and tail are connected to the body by revolute

joints. Find the number of degrees of freedom of this robot.

(b) The caterpillar robot is now crawling on a leaf as shown in Figure 2.30(b).

Suppose that all six body links must make contact with the leaf at all times

but the links can slide and rotate on the leaf. Find the number of degrees of

freedom of this robot during crawling.

(c) Now suppose the caterpillar robot crawls on the leaf as shown in Fig-

ure 2.30(c), with only the first and last body links in contact with the leaf.

Find the number of degrees of freedom of this robot during crawling.

Exercise 2.22 The four-fingered hand of Figure 2.31(a) consists of a palm and

four URR fingers (the U joints connect the fingers to the palm).

https://doi.org/10.1017/9781316661239.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316661239.005


44 Configuration Space

S

S S

S

R R

R

Figure 2.28 Dual arm
robot.

Figure 2.29 Dragonfly
robot.

(a) Assume that the fingertips are points and that one fingertip is in contact

with the table surface (sliding of the fingertip point-contact is allowed). How

many degrees of freedom does the hand have? What if two fingertips are in

sliding point contact with the table? Three? All four?

(b) Repeat part (a) but with each URR finger replaced by an SRR finger (each

universal joint is replaced by a spherical joint).

(c) The hand (with URR fingers) now grasps an ellipsoidal object, as shown

in Figure 2.31(b). Assume that the palm is fixed in space and that no slip

occurs between the fingertips and object. How many degrees of freedom does

the system have?

(d) Now assume that the fingertips are hemispheres as shown in Figure 2.31(c).

Each fingertip can roll on the object but cannot slip or break contact with

the object. How many degrees of freedom does the system have? For a single
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R

R

RPR

(a) (b)

Contact

(c)

Figure 2.30 A caterpillar robot.

U

R

R

(a)         (b)         (c)

Figure 2.31 (a) A four-fingered hand with palm. (b) The hand grasping an ellipsoidal
object. (c) A rounded fingertip that can roll on the object without sliding.

fingertip in rolling contact with the object, comment on the dimension of

the space of feasible fingertip velocities relative to the object versus the

number of parameters needed to represent the fingertip configuration relative

to the object (the number of degrees of freedom). (Hint: You may want to

experiment by rolling a ball around on a tabletop to get some intuition.)

Exercise 2.23 Consider the slider–crank mechanism of Figure 2.4(b). A ro-

tational motion at the revolute joint fixed to ground (the “crank”) causes a

translational motion at the prismatic joint (the “slider”). Suppose that the two

links connected to the crank and slider are of equal length. Determine the con-

figuration space of this mechanism, and draw its projected version on the space

defined by the crank and slider joint variables.

Exercise 2.24 The planar four-bar linkage.

(a) Use Grübler’s formula to determine the number of degrees of freedom of a

planar four-bar linkage floating in space.

(b) Derive an implicit parametrization of the four-bar’s configuration space as

follows. First, label the four links 1, 2, 3, and 4, and choose three points
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A,B,C on link 1, D,E, F on link 2, G,H, I on link 3, and J,K,L on link

4. The four-bar linkage is constructed in such a way that the following four

pairs of points are each connected by a revolute joint: C with D, F with G,

I with J , and L with A. Write down explicit constraints on the coordinates

for the eight points A, . . . , H (assume that a fixed reference frame has been

chosen, and denote the coordinates for point A by pA = (xA, yA, zA), and

similarly for the other points). Based on counting the number of variables

and constraints, how many degrees of freedom does the configuration space

have? If it differs from the result you obtained in (a), try to explain why.

ψ

α

β

a

h

b

g

A B

α2 + β2

θ
x̂

ŷ

φ

(b)(a)
Figure 2.32 Planar four-bar
linkage.

Exercise 2.25 In this exercise we examine in more detail the representation

of the C-space for the planar four-bar linkage of Figure 2.32. Attach a fixed

reference frame and label the joints and link lengths as shown in the figure. The

(x, y) coordinates for joints A and B are given by

A(θ) = (a cos θ, a sin θ),

B(ψ) = (g + b cosψ, b sinψ).

Using the fact that the link connecting A and B is of fixed length h, i.e., ‖A(θ)−
B(ψ)‖2 = h2, we have the constraint

b2 + g2 + 2gb cosψ + a2 − 2(a cos θ(g + b cosψ) + ab sin θ sinψ) = h2.

Grouping the coefficients of cosψ and sinψ, the above equation can be expressed

in the form

α(θ) cosψ + β(θ) sinψ = γ(θ), (2.11)

where

α(θ) = 2gb− 2ab cos θ,

β(θ) = −2ab sin θ,

γ(θ) = h2 − g2 − b2 − a2 + 2ag cos θ.

We now express ψ as a function of θ, by first dividing both sides of Equa-
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tion (2.11) by
√

α2 + β2 to obtain

α
√

α2 + β2
cosψ +

β
√

α2 + β2
sinψ =

γ
√

α2 + β2
. (2.12)

Referring to Figure 2.32(b), the angle φ is given by φ = tan−1(β/α), so that

Equation (2.12) becomes

cos(ψ − φ) =
γ

√

α2 + β2
.

Therefore

ψ = tan−1

(
β

α

)

± cos−1

(

γ
√

α2 + β2

)

.

(a) Note that a solution exists only if γ2 ≤ α2 + β2. What are the physical

implications if this constraint is not satisfied?

(b) Note that, for each value of the input angle θ, there exist two possible values

of the output angle ψ. What do these two solutions look like?

(c) Draw the configuration space of the mechanism in θ–ψ space for the following

link length values: a = b = g = h = 1.

(d) Repeat (c) for the following link length values: a = 1, b = 2, h =
√

5, g = 2.

(e) Repeat (c) for the following link length values: a = 1, b = 1, h = 1, g =
√

3.

Exercise 2.26 The tip coordinates for the two-link planar 2R robot of Fig-

ure 2.33 are given by

x = 2 cos θ1 + cos(θ1 + θ2)

y = 2 sin θ1 + sin(θ1 + θ2).

(a) What is the robot’s configuration space?

(b) What is the robot’s workspace (i.e., the set of all points reachable by the

tip)?

(c) Suppose infinitely long vertical barriers are placed at x = 1 and x = −1.

What is the free C-space of the robot (i.e., the portion of the C-space that

does not result in any collisions with the vertical barriers)?

x̂

ŷ
θ1

θ2

(x, y)

Figure 2.33 Two-link planar 2R open chain.

Exercise 2.27 The workspace of a planar 3R open chain.

https://doi.org/10.1017/9781316661239.005 Published online by Cambridge University Press

https://doi.org/10.1017/9781316661239.005


48 Configuration Space

(a) Consider a planar 3R open chain with link lengths (starting from the fixed

base joint) 5, 2, and 1, respectively. Considering only the Cartesian point of

the tip, draw its workspace.

(b) Now consider a planar 3R open chain with link lengths (starting from the

fixed base joint) 1, 2, and 5, respectively. Considering only the Cartesian

point of the tip, draw its workspace. Which of these two chains has a larger

workspace?

(c) A not-so-clever designer claims that he can make the workspace of any planar

open chain larger simply by increasing the length of the last link. Explain

the fallacy behind this claim.

Exercise 2.28 Task space.

(a) Describe the task space for a robot arm writing on a blackboard.

(b) Describe the task space for a robot arm twirling a baton.

Exercise 2.29 Give a mathematical description of the topologies of the C-

spaces of the following systems. Use cross products, as appropriate, of spaces

such as a closed interval [a, b] of a line and R
k, Sm, and T n, where k, m, and n

are chosen appropriately.

(a) The chassis of a car-like mobile robot rolling on an infinite plane.

(b) The car-like mobile robot (chassis only) driving around on a spherical aster-

oid.

(c) The car-like mobile robot (chassis only) on an infinite plane with an RRPR

robot arm mounted on it. The prismatic joint has joint limits, but the rev-

olute joints do not.

(d) A free-flying spacecraft with a 6R arm mounted on it and no joint limits.

Exercise 2.30 Describe an algorithm that drives the rolling coin of Figure 2.11

from any arbitrary initial configuration in its four-dimensional C-space to any

arbitrary goal configuration, despite the two nonholonomic constraints. The con-

trol inputs are the rolling speed θ̇ and the turning speed φ̇. You should explain

clearly in words or pseudocode how the algorithm would work. It is not necessary

to give actual code or formulas.

Exercise 2.31 A differential-drive mobile robot has two wheels that do not

steer but whose speeds can be controlled independently. The robot goes forward

and backward by spinning the wheels in the same direction at the same speed,

and it turns by spinning the wheels at different speeds. The configuration of the

robot is given by five variables: the (x, y) location of the point halfway between

the wheels, the heading direction θ of the robot’s chassis relative to the x-axis of

the world frame, and the rotation angles φ1 and φ2 of the two wheels about the

axis through the centers of the wheels (Figure 2.34). Assume that the radius of

each wheel is r and the distance between the wheels is 2d.
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Side view                                 Top view

r θ

φ1

d

(x, y)

Figure 2.34 A side view and a top view of a differential-drive robot.

(a) Let q = (x, y, θ, φ1, φ2) be the configuration of the robot. If the two control

inputs are the angular velocities of the wheels ω1 = φ̇1 and ω2 = φ̇2, write

down the vector differential equation q̇ = g1(q)ω1+g2(q)ω2. The vector fields

g1(q) and g2(q) are called control vector fields (see Section 13.3) and express

how the system moves when the respective unit control signal is applied.

(b) Write the corresponding Pfaffian constraints A(q)q̇ = 0 for this system. How

many Pfaffian constraints are there?

(c) Are the constraints holonomic or nonholonomic? Or how many are holonomic

and how many nonholonomic?

Exercise 2.32 Determine whether the following differential constraints are

holonomic or nonholonomic:

(a) (1 + cos q1)q̇1 + (1 + cos q2)q̇2 + (cos q1 + cos q2 + 4)q̇3 = 0.

(b) −q̇1 cos q2 + q̇3 sin(q1 + q2)− q̇4 cos(q1 + q2) = 0

q̇3 sin q1 − q̇4 cos q1 = 0.
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