
2
Examples of Aspherical Manifolds

This chapter discusses some of the basic examples of, mainly closed, aspherical
manifolds that give content to our inquiry. After all, what good would the Borel
conjecture be if there were no aspherical manifolds?

We give some constructions of ones that come from locally symmetric man-
ifolds (i.e., Lie theory) including both arithmetic and non-arithmetic examples,
and also of others that do not.

By contrast, the construction of noncompact aspherical manifolds is quite
easy. There is an open aspherical manifold with fundamental group π iff π is
countable and has finite cohomological dimension, as one can see by thickening
a finite-dimensional K(π,1) complex (i.e. replacing all the cells in a CW-
decomposition by handles). Remarkably, aside from finiteness conditions, this
characterizes the groups that are retracts of (fundamental groups of) aspherical
manifolds.

2.1 Low-Dimensional Examples

In low dimensions, almost all connected manifolds (even noncompact) are
aspherical. The only connected nonaspherical surfaces are the sphere and the
projective plane.

In dimension 3, among closed orientable 3-manifolds all are aspherical
unless one of the following very good reasons holds:

(1) the fundamental group is finite (in which case, the universal cover is S3

and the deck group is a subgroup of SO(3));
(2) the manifold is a nontrivial connected sum (and the separating 2-sphere is

a nontrivial element of π2); or
(3) the manifold is S1 × S2.
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2.1 Low-Dimensional Examples 11

All of this1 is a consequence of the sphere theorem of Papakyriakopoulos (see
e.g. Hempel 1976; Jaco 1980)

However, in understanding even closed 3-manifolds, it is essential that one
consider manifolds with nonempty boundary as part of the story. Given an ar-
bitrary 3-manifold, one first has a decomposition into irreducible pieces, under
connected sum. This is unique up to the order of the decomposition. Then one
breaks the manifold summands further into pieces, where the gluing is done
along certain embedded incompressible2 tori. This topological decomposition
was discovered by Jaco and Shalen, and Johannson, and explained geomet-
rically by Thurston and Perelman: After breaking the 3-manifold along this
decomposition along a set of canonical tori (its torus decomposition), one is
left with pieces, all of which have geometric structure,3 i.e. a manifold with a
complete metric, which is locally homogeneous.

Let’s be more concrete. Suppose we start with a knot K in S3, i.e. a smooth
submanifold diffeomorphic to S1. The complement is always aspherical (as
before, by Papakyriakopoulos’s sphere theorem). For the unknot, the com-
plement is S1 × R2. It is often convenient to remove tubular neighborhoods
of submanifolds, to obtain the “closed complement”;4 then we would obtain
S1 × D2.

For all knots, we obtain an aspherical manifold with boundary as its com-
plement X , whose boundary is a torus. The unknot is characterized by the
property that π1(∂X) → π1(X) is not injective: a nontrivial knot always has an
incompressible torus embedded in its complement (i.e. an embedded T2 so that
π1 injects).

Sometimes there is another torus (i.e. not isotopic to the boundary) in the
complement that is incompressible. When this happens, essentially what that
means is that this knot can be thought of as being wrapped around another knot,
i.e. that it has a companion (Figure 2.1). The process of finding companions
must end – although not obvious, there is a geometric complexity that increases
under companionship.
1 At least for an infinite fundamental group. The description of what happens for a finite

fundamental group depends on Perelman’s solution of the geometricization conjecture.
2 Recall that a surface in a 3-manifold is incompressible if its normal bundle is trivial, and its

fundamental group injects into the fundamental group of the manifold.
3 This is the celebrated geometricization conjecture. Actually, if an irreducible connected

manifold contains any incompressible surfaces (and, in particular, if it has a nontrivial torus
decomposition), then the geometricization of all of the pieces in its decomposition is a
theorem of Thurston. For references, see the notes in §2.4.

4 There are subtleties with doing this in the topological category. In the setting of locally flat
manifolds, everything works the same (see Kirby and Siebenmann, 1977). When we discuss
orbifolds, we will see that the analogous issue is not solvable in the topological setting, i.e. one
cannot always find a “closed regular neighborhood” of the knot, and one needs a substitute for
tubular neighborhood theory.
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12 Examples of Aspherical Manifolds

Figure 2.1 The knot on the left is a companion of the thinner knot on the
right.

6

So, now consider one of the deepest pieces, i.e. a knot with no companions.
In that case, there are two cases: Torus knots are knots that lie on the surface of
a torus that surrounds the unknot. These are parameterized by pairs of coprime
integers (p,q) representing the homology class of the associated circles. All of
the remaining knots have hyperbolic complements, i.e. have complete metrics
of constant negative curvature and finite volume. (One can distinguish the two
cases easily: the torus knots have fundamental group of their complement with
nontrivial center – which precludes having a metric of negative curvature.7)

In other words, the fundamental group of the complement Γ is naturally a
discrete subgroup of PSL(2,C).

The same is true for the annular regions between the various embedded
tori: they all have hyperbolic structures. Thus, a typical knot complement (and
according to geometricization, this is typical) is a union of hyperbolic (or
perhaps one of several other geometries (see Scott, 1983) manifolds glued
together along their cusps. (See Chapter 3 for more of a discussion of the
geometry at∞ of noncompact locally symmetric spaces.)

This union itself does not have a locally homogeneous structure. Its funda-
mental group cannot be a lattice in any Lie group.

This is because, in any of the three-dimensional geometries (see Scott, 1983),

6 Adapted from Thurston (1982).
7 This is Preissman’s theorem, which can be found in most introductory differential geometry

textbooks. See Bridson and Haefliger (1999) for a proof not using differential geometry.
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2.1 Low-Dimensional Examples 13

any Z2 is either peripheral, i.e. conjugate to the fundamental group of a bound-
ary component,8 or contains an element of the center of the fundamental group.9
The Z2 coming from the torus of “companionship” is neither, and therefore this
manifold does not have a locally symmetric structure.

The upshot is that it is very easy to obtain closed aspherical 3-manifolds
whose fundamental groups are not lattices, e.g. the double of any knot comple-
ment other than torus knots. But they are obtained indirectly by gluing together
lattices.

It is hard to make this precise, but till the early 1980s there was a general
feeling that perhaps, somehow, lattices were the source of all closed aspherical
manifolds. We will see that this is not the case as we go along, but let us
start with the lattices themselves. Before we do, let us close this discussion by
making one very useful observation about gluing aspherical objects:

Proposition 2.1 Suppose that A, X , and Y are aspherical, A = X∩Y , and that
π1(A) → π1(X) and π1(A) → π1(Y ) are injective. Then X ∪ Y is aspherical.

Without the injectivity, the 2-sphere is a counterexample: it is a union of two
disks along a circle, all aspherical, but not π1 injective.

To see why the proposition is true, we shall construct the universal cover
of X ∪ Y and observe that it is contractible. We begin by taking the cover of
X . Over A (by injectivity) we get many copies of the universal cover of A
(according to the cosets of π1(A) → π1(X)). Each of these is glued to a copy
of the universal cover of Y (which also contains many copies of the universal
cover of A). We then proceed by gluing back copies of the universal cover of X ,
and so on. This is a union of contractible spaces glued together along (disjoint)
contractible spaces, so this is contractible.

Remark 2.2 If one shrinks each copy of the universal cover of X to a point, and
each copy of the universal cover of Y to a point while stretching and shrinking
the copies of the universal cover of A to intervals, we get the Bass–Serre tree
associated to this amalgamated free product description of π1X ∪ Y .

This proposition is of critical importance. It enables us to construct inter-
esting examples by gluing. We will either explicitly or tacitly apply it many
times. A consequence of this is that we can take geometric models for given
groups (i.e. K(π,1)s for groups) and glue them together to construct models for
various amalgamated free products and Higman–Neumann–Neumann (HNN)
8 Quotients by lattices have a natural compactification (the Borel–Serre compactification) which

makes them into the interiors of manifolds with boundary. It is this virtual boundary that I am
referring to when I describe a subgroup of the fundamental group as being peripheral.

9 Like in the situation of a circle bundle over a surface.
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14 Examples of Aspherical Manifolds

extensions: the quality of the union will depend on the quality of the complexes
we begin with and of the inclusion of the subgroup. But, for example, it shows
that the category of finite K(π,1), i.e. πs that are realized by finite aspherical
complexes, is closed under amalgamated free products and HNN extensions.

This, in particular, allows the construction of finite aspherical complexes
whose fundamental groups have unsolvable word problems, or other logical
complications. The Davis construction, discussed below, will incorporate these
features into fundamental groups of aspherical manifolds.

2.2 Constructions of Lattices

. . . Arithmetic and Non-arithmetic
Given a Lie group, even a quite explicit one like O(n,1) (the automorphisms
of the quadratic form x1

2 + x2
2 + · · · + xn2 − xn+1

2, i.e. the isometry group of
hyperbolic n-space) or SLn(R), it is not trivial to find uniform lattices; that is
discrete subgroups of G such that G/Γ is compact.10 Indeed, this is not always
possible, e.g. for solvable Lie groups.11

However, if G is semisimple, Borel gave a general construction of uniform
lattices (and Raghanuthan gave non-uniform lattices;12 see Raghunathan (1972)
for both). For SLn(R) there is an obvious lattice, namely SLn(Z), but it is not
uniform, i.e. cocompact. If we think of SLn(Z)\SLn(R)/SO(n) as the space of
flat tori (as in §1.1), then tori that are more and more eccentric (i.e. the result of
identifying opposite sides in a rectangle with sides t and 1/t) leave any compact
subset of this space (the shortest geodesic is approaching 0 length).

Let’s make this a bit more precise (or more general). To talk about the “integer
points” in a Lie group, we should define it over the field Q (there are many
distinct ways of doing this). Then, for simplicity, let’s assume that the group is
linear – there will be a maximal subgroup isomorphic to Q∗k in G(Q); here the
diagonal matrices and k = n − 1. If k > 0, then G/G(Z) is not compact and
one can take powers of a matrix in this Q-split torus to leave any compact.

The converse holds, i.e. the nonexistence of such a Q-split torus implies
compactness (and this is a theorem of Borel and Harish-Chandra). We defer

10 Recall that Γ is a lattice in G if, giving G its natural (Haar) measure, the quotient G/Γ has
finite volume.

11 The two-dimensional Lie group of affine isomorphisms of R→ R (the “ax + b” group)
contains no lattices.

12 Note that Rn has uniform lattices, but no non-uniform lattices. The same is true for all
nilpotent real Lie groups.

https://doi.org/10.1017/9781316529645.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781316529645.003


2.2 Constructions of Lattices 15

further discussion of this to Chapter 3, where the size of the torus will be seen
to govern the “size” of G/Γ.

Another way to tell if a lattice is non-uniform is to see if it contains any
nontrivial unipotent elements. (Consider the Lie group G as a matrix group,
and then g is unipotent if its characteristic polynomial is (t−1)n for some n, i.e.
if g differs from the identity by a nilpotent matrix.) No uniform lattice contains
unipotent elements: the length of a geodesic represented by g in Γ\G/K is
proportional to the supremum of |log(λ)| over eigenvalues of g representing
the g. The converse had been a conjecture of Selberg, proved by Kazhdan and
Margulis (and we refer to Margulis (1991) for the proof), and this property is
often easy to check.

Finding appropriate Q structures for the case of SLn is rather nontrivial and
requires some development of the theory of division algebras. We shall leave
this to the references, but for those who know some algebra, the group of units
in an order in a division algebra of dimension n2 does the trick.

Let us now return to the problem of constructing uniform lattices.
For O(n,1), looking at O(n,1)(Z) does not do the trick: one obtains a lattice,

but not a uniform one.13 However if we replace the quadratic form x1
2 + x2

2 +

· · ·+ xn2− xn+1
2 by Q = x1

2+ x2
2+ · · ·+ xn2−√p xn+1

2, then the real Lie group
is the same: the quadratic forms are isomorphic over R. However, O(Q)(Q[√p])
has two different embeddings into real orthogonal groups, associated to the two
embeddings of Q[√p] into R, according to whether

√
p is positive or negative.

The (real) orthogonal group associated to making
√

p negative is the usual
compact orthogonal group. Note that the orthogonal group has no nontriv-
ial unipotent elements. This means that O(Q)(Z[√p]) is a uniform lattice in
O(n,1) × O(n + 1). However, we can safely project to the first factor, as the
second factor is compact, with at most a finite subgroup as kernel. In other
words, the space O(Q)(Z[√p])\O(n,1)/O(n + 1) is a compact hyperbolic orb-
ifold. Replacing O(Q)(Z[√p]) by a torsion free subgroup of finite index gives
a compact hyperbolic manifold.

This method produces many lattices. Lattices produced in this way are called
arithmetic. Note that when written in coordinates, automorphisms defined using
larger fields than Q give rise to Lie groups over Q – this is formally called
“restriction of scalars.” Using suitable quadratic forms over arbitrary totally
real fields, we can get uniform lattices in any O(p,q).

The general case follows, as Borel says, from the statement that “any real

13 Considering the automorphisms of the slight variant a1x1
2 + · · · + anxn

2 − an+1xn+1
2, one

obtains a uniform lattice iff this indefinite quadratic form does not represent 0 (i.e. does not
vanish on any integral vector). However, the Hasse–Minkowski theorem says that this does not
happen when n > 4.
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16 Examples of Aspherical Manifolds

semisimple Lie algebra has a form defined over a totally real field E � Q all
of whose conjugates are compact.” Borel proves this Lie-theoretic statement
via tricky (for me) Lie algebra calculations in his paper (and the book of
Raghunathan (1972) explains how to guarantee Q forms that produce the non-
uniform lattices, as well).

For simple Lie groups of rank ≥ 2 (or even irreducible14 lattices in semisim-
ple groups) Margulis shows that these are all the examples, i.e. that all lattices
are arithmetic. The reader should pause to reflect on how amazing this result
is: one is given a structure with only local information defined over R (say a
group of real matrices, or a finite-volume Riemannian manifold modeled on
some K\G) and one needs to find an algebraic number field and a form of the
Lie group from this and then an isomorphism of one’s given object with the
arithmetic construction.

In the cases not excluded by Margulis (and the subsequent work of Corlette,
Gromov, and Schoen that proves arithmeticity in some rank-1 situations by more
analytic methods: see Gromov and Schoen, 1992), it is an important question
of whether there are non-arithmetic lattices.

We mention here three such constructions, all of which are in O(n,1). (Some
examples are also known in U(n,1) for small values of n (see, e.g., Deligne and
Mostow, 1993), but these are isolated.)

2.2.1 Method One: Reflection Groups
The first is classical, and is based on constructing polyhedra in hyperbolic space
so that reflections across its walls generate a reflection group on hyperbolic
space. In the hyperbolic plane, the easiest example is a triangle with angles π/p,
π/q, and π/r , so that 1/q+1/r < 1. (Below is an example with p,q,r = 2,3,9.)
Even in dimension 2, Takeuchi (1977) showed only finitely many of these are
arithmetic (and indeed gave a list of them).

It is known that such examples exist in small dimension, and do not exist in
very high dimensions. Nevertheless, they perhaps motivate the Davis construc-
tion to be discussed in §2.3 below. Figure 2.2 shows a nice hyperbolic planar
group generated by reflections.

14 A lattice is reducible if, after passing to a subgroup of finite index, it is a product of two other
lattices. An irreducible lattice in a product of real groups will project to a dense subgroup of
each of the factors. So, for example, among lattices acting on a product of two hyperbolic
planes, reducible ones will have deformations, but irreducible ones will be arithmetic (and
have no deformations).
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2.2 Constructions of Lattices 17

Figure 2.2 A hyperbolic triangle group.

2.2.2 Method Two: Closing Cusps
This method is due to Thurston, and is his famous Dehn surgery theorem
(see Thurston, 2002). Consider a hyperbolic manifold with cusps (e.g. a knot
complement, or most15 link complements for “nonsplittable” links, i.e. links in
which components cannot be isotoped to lie in disjoint balls). Thurston shows
that for all “sufficiently large” surgeries, one obtains a compact hyperbolic
manifold.

What does this mean? Given a manifold whose boundary is a torus, we
can “close it up” by gluing in a solid torus S1 × D2. Although there is an
SL2(Z) = π0Diff(T2) set of possible gluing diffeomorphisms, the diffeomor-
phism type of the manifold is determined by the image of the circle ∂D2. (One
can imagine the gluing as being done in stages: first glue in a thickened D2 to
get a boundary component that is an S2 and then glue in a final ball, which has
no indeterminacy.) These are parameterized by the primitive (i.e. indivisible)
elements of H1(T2) ≈ Z2.

Thurston’s theorem now asserts that, if one excludes finitely many possi-
bilities at each cusp, then all the remaining possibilities of filling produce
hyperbolic manifolds. Moreover, as the boundary curves get longer and longer,
the hyperbolic manifold that is constructed gets closer and closer to the orig-
inal cusped hyperbolic manifold in a very reasonable geometric sense: The
“surgery” can, up to very small perturbation, be imagined as taking place

15 One needs to exclude phenomena analogous to companionship (which prevent any geometric
structure) or torus knots (which correspond to structures that are not hyperbolic).
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18 Examples of Aspherical Manifolds

M1

M2

M
∞

Figure 2.3 The limit of the volumes of the filled manifolds is the volume
of the original cusped manifold. The cusped manifold is a pointed Gromov–
Hausdorff limit of the filled manifolds.

further and further from the “core” of the original manifold.16 (We will dis-
cuss the shape of noncompact locally symmetric manifolds at infinity more in
Chapter 3.)

As a result, these manifolds have different volumes that converge to the
volume of the original cusped manifold. This is a very crude reason for non-
arithmeticity (although it does not do a single example!): for any G, the volumes
of the arithmetic lattices K\G/Γ form a discrete subset of the positive reals.17

Figure 2.3 gives a schematic of how the different “cusp closings” converge to
the original cusped manifold.

It is very interesting to ponder this example from the representation theoretic
viewpoint. One starts with a representation:

ρ : Γ→ PSL2(C)

that describes the original hyperbolic manifold with cusps. The filling gives
nearby representations ρn : Γ/〈γn〉 → PSL2(C), where 〈γn〉 is the subgroup

16 These examples provide a good set of examples for thinking about thick–thin decompositions,
and the Cheeger–(Fukaya)–Gromov collapse theory.

17 In some cases, they are even quantized (i.e. multiples of a given smallest one) using the
Gauss–Bonnet theorem. I suspect that the converse holds, i.e. that only for Gs with
χ (K\G/Γ) � 0 (this can be re-expressed in various ways – but, in particular for the case of
hyperbolic manifolds, this is exactly that the dimension be even) are the volumes of
torsion-free lattices quantized.
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2.2 Constructions of Lattices 19

normally generated by the nth filling curves. These provide a family of nearby
but inequivalent representations to Γ.

Of course, Mostow’s rigidity theorem asserts the uniqueness (up to conju-
gacy) of the discrete faithful representation. These representations are pertur-
bations that are not faithful but are discrete. (For a closed manifold, all nearby
representations to the discrete faithful one are in fact equivalent to it.) This
phenomenon is highly special to this Lie group. Superrigidity is a significant
strengthening of the representation-theoretic aspect of Mostow rigidity in high
rank, and would preclude anything like this in higher rank.18

This method also has had a number of applications to constructing aspherical
manifolds (and groups) that are not lattices. We will mention some in §2.3, and
the method will recur when we discuss the groups of Gromov that disprove a
version of the Baum–Connes conjecture19 in Chapter 8.

2.2.3 Method Three: Gromov–Piatetski-Shapiro (G-PS) Grafting
This is the only method20 that is known to produce examples in all dimensions.
We describe the idea, but none of the technicalities, for which we refer to the
original paper (Gromov and Piatetski-Shapiro, 1988).

Suppose that you have two compact arithmetic manifolds, and that they have
a common codimension-1 submanifold. In other words, we have M and M ′

that are not (virtually) isometric, but both contain a separating totally geodesic
submanifold V . Then we can cut both M and M ′ along V , and glue one side of
M to the other side of M ′. This is clearly a hyperbolic manifold.21

This manifold cannot be arithmetic, essentially because it has a big enough
piece of M that it would have to be M if it were, but it would similarly have to
be M ′, but it can’t be both!

How do we get such pairs?
We get uniform lattices from orthogonal groups, but it is possible for different

quadratic forms to give the same lattice. The condition is that the forms be
similar (i.e. equivalent to rescaled versions of one another). Now it is pretty
easy: If one takes the orthogonal groups of the quadratic forms x1

2 + x2
2 +

· · · + xn2 − √2 xn+1
2 and 3x1

2 + x2
2 + · · · + xn2 − √2 xn+1

2 over Q[√2], one
gets noncommensurable lattices for n even. (The case of n odd is another trick
away.) Now these each have an involution associated to x1 → −x1 whose fixed
18 Which is a good thing, because superrigidity gives rise to Margulis’s arithmeticity (and

therefore to discreteness of the set of volumes).
19 This is a C∗-algebra version of the Borel conjecture.
20 G-PS call it “interbreeding.”
21 More precisely, it is clearly a compact manifold with constant curvature equal to −1, but such

are, of course, hyperbolic.
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20 Examples of Aspherical Manifolds

set is a codimension-1 submanifold: essentially the orthogonal group of the
lattice x2

2 + · · · + xn2 − √2 xn+1
2.

We will have use for the natural topological variant of this method for con-
structing interesting examples (such as counterexamples to certain orbifold vari-
ants of the Borel conjecture) in Chapter 7. One tries to find interesting aspherical
objects with boundary and then obtains monsters by grafting22 them together.

2.3 Some More Exotic Aspherical Manifolds

2.3.1 Method One: Davis’s Reflection Group Method
This method was introduced by M. Davis (1983), whose self-proclaimed aim
was to describe aspherical manifolds whose universal cover is not Euclidean
space. There is a simple criterion (thanks to the Poincaré conjecture) for deter-
mining whether a contractible manifold is Rn or not; it is whether the manifold
is simply connected at infinity.23

Recall that a manifold (or even locally compact space) is connected at in-
finity, if the complement of any compact subset has exactly one “noncompact”
component (more precisely, one component with noncompact closure). Assume
this is the case, then one can glob on all the compact components, to obtain a
somewhat larger compact, whose complement has exactly one component.

Now let us consider a sequence of compact subsets that exhaust the space:
Ai ⊂ Ai+1 and M =

⋃
Ai . The latter is simply connected at infinity if the

inverse limit sequence

π1(M − A1) ← π1(M − A2) ← · · · ← π1(M − Ai) ← · · ·

is pro-equivalent to the trivial system, i.e. for each i, there is a j > i so that
π1(M − Ai) ← π1(M − Aj) is trivial.

Note that this is not equivalent to there being “no loop that can be moved all
the way to∞.” The system ofZ← Z← · · · , where all arrows are multiplication
by 2, has that property, but is not pro-trivial. The inverse limit is indeed trivial,
but the multiples of 2n come from n stages ahead – and this image does not
stabilize.

At least for high-dimensional manifolds, this pro-triviality (i.e. simple con-
nectivity at infinity) is equivalent to there being an exhaustion by compact sets,
all of whose complements are simply connected. In general, the inverse limit

22 Or interbreeding them.
23 This criterion, in dimension > 4, is due to Stallings (1962) (and extended to dimension 4 by

Freedman; in dimension 3, it follows from the Poincaré conjecture).
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2.3 Some More Exotic Aspherical Manifolds 21

of this sequence is independent of the defining compact sets, but this “funda-
mental group at ∞” only sometimes24 plays the same role as the fundamental
group for compact manifolds. In any case, it is a good approximation to “π1(∂)
if it only were the interior of a manifold with boundary ∂.”

A good example of a contractible manifold (of dimension greater than 2)
which is not Euclidean space is the interior of a contractible manifold whose
boundary is non-simply connected. The boundary of a compact contractible
manifold is automatically a homology sphere (i.e. has the homology of a sphere)
– which is a sphere (according to the Poincaré conjecture) iff it is simply
connected.

However, every homology sphere bounds a contractible topological mani-
fold.25 Some three-dimensional examples of homology spheres can be obtained
by gluing together two nontrivial knot complements along their boundaries, in-
terchanging longitudinal and meridional directions. Higher-dimensional exam-
ples can be obtained by spinning low-dimensional ones: puncture a homology
sphere and cross it with a disk, and then take the boundary of this manifold.

Without relying on any theory, a simple example of a contractible 4-manifold
whose boundary is non-simply connected is a Mazur manifold, constructed as
follows: attach a D2 × D2 to S1 × D3 along a (neighborhood of a) nontrivial
knot in ∂(S1 ×D3) = S1 ×S2 that represents a generator of π1 = Z.26 (Mazur
observed, see the crystal clear exposition in Zeeman (1962), that the product of
this manifold with the interval [0,1] is a ball.)

Davis’s idea was to generalize the obvious construction of R2 from a square
by repeated reflection and gluing (producing the checkerboard with an action of
the product of two infinite dihedral groups, D∞×D∞) to a construction of some
contractible manifold by reflecting across the top simplices of a triangulation
of the boundary of any contractible manifold with boundary, with an action of
a Coxeter group (that is, a group generated by reflections, whose only relations
are commutation of the reflections along incident faces; see next page), whose
quotient is precisely this “seed” contractible manifold.

Davis also calculated that, if the seed has non-simply connected boundary,

24 Essentially when the manifold is tame at∞.
25 This is classical and due to Kervaire if the homology sphere is of dimension 4 and higher. It is

strictly speaking correct in the PL and topological categories – in the smooth category it might
be necessary to take the connected sum with an exotic sphere (a differentiable manifold
homeomorphic to the sphere). In dimension 3 this is true in the topological category by the
work of Freedman, but it is not true in the PL and smooth categories, by Rochlin’s theorem, that
the signature of a closed spin (smooth) 4-manifold is divisible by 16. The most straightforward
proof of this important theorem is probably the one given in Lawson and Michelsohn (1989).

26 Of course, to get an example, one should specify a knot and calculate that one gets a nontrivial
homology sphere; but Gabai’s theorem on “Property R” guarantees this.
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22 Examples of Aspherical Manifolds

then the manifold he so constructed is also non-simply connected at ∞. In
particular, this happens if one starts with a Mazur manifold.

It is a general fact that Coxeter groups are linear, and therefore virtually
torsion free, so a finite index subgroup acts on this contractible manifold freely,
giving the relevant compact aspherical manifold with exotic universal cover.

Now for a few more details and a generalization with some indication of
applications.

A right-angled27 Coxeter group is given as a pair (Γ,V), where Γ is a group
and V is a generating set, by elements of order 2. All the relations of Γ are
consequences of relations of the form (vw)2 = 1. We shall take the barycentric
subdivision of a triangulation of our seed X . Define an abstract group Γ,
generated by involutions v, one for each top simplex. We impose the relation
(vw)2 = 1 (and hence v and w commute) if the two simplices share a face. Note
that if a k-tuple of simplices have pairwise commuting associated generators,
then the intersection of these simplices is nonempty (and conversely). Consider
Z = Γ × X/∼ where we identify points (γ, x) = (γ′, x ′) iff γ−1γ′ lies in the
group generated by all the generators of all the simplices that x lies in. So, in the
interior of the seed, there is no identification. On the simplex corresponding to
a generator v, v acts trivially. Davis proved by an induction on the length of the
words in a Coxeter group that one obtains in this way a contractible manifold
by showing that it is an ascending union of contractible spaces glued along
contractible subspaces.28

The Davis construction is most usefully put into the context of CAT(0)
geometry,29 both in its own right in understanding the geometry that such a
group has, and also because of the role that negative and non-positively curved
geometry plays throughout our story. Nevertheless, we defer this discussion for
now, and will say a bit more about it in describing the next construction.

Another variant that has extremely important applications is using strange
seeds to construct aspherical manifolds with other strange properties. Start
with any aspherical seed that is a manifold with boundary. Triangulating the
boundary, and constructing the reflection group, one obtains here an aspherical
manifold with a cocompact Coxeter action, and therefore, by passing to the
universal cover, a contractible manifold with a cocompact group action, so on
taking the quotient, a compact aspherical manifold which inherits properties
from the seed. For example, this is a good way (following Davis and Haus-

27 We assume right angles for simplicity. Otherwise, the exponent in the power for the nontrivial
relations would be different.

28 Perhaps reminiscent slightly of the argument in §2.1.
29 CAT(0) is a synthetic notion of non-positive curvature, named by Gromov in honor of Cartan,

Alexandrov, and Toponogov (see Gromov, 1987). Wait a page!
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mann, 1989) to produce an aspherical manifold with no smooth structure, or
even no triangulation (using a seed that is a topological manifold that is non-
triangulable, but whose boundary is triangulable, so that the construction can
be done).

If K is any finite aspherical complex, one can take its regular neighborhood
in Euclidean space30 to obtain a manifold with boundary to use as a seed. This
is a good way to produce aspherical manifolds whose fundamental groups are
not residually finite or don’t have a solvable word problem. An excellent book
on Coxeter groups, their properties, and diversity is Davis (2008).

2.3.2 Method Two: Branched Covers (Gromov–Thurston
Examples)

Gromov and Thurston (1987) gave some very interesting examples of compact
manifolds with pinched negative curvature, i.e. curvature between −1 and −1−
ε by a variant of the philosophy of Dehn filling. This elaboration of that
philosophy paves the way to other interesting constructions of groups by “adding
large relations.”

The basic idea is that negative curvature is a condition of large links. After
all, negative curvature means that geodesics spread faster than in Euclidean
space. So, if one takes a triangulated two-dimensional polyhedron, and then
metrize it so that every triangle is an equilateral triangle with side length 1,
then assuming that each vertex is incident to at least seven triangles should give
a type of negative curvature. (As an exercise with Euler characteristic, neither
the 2-sphere nor the torus has such a triangulation.)

A suitable version of curvature is given by the notion of CAT(k) geometry.
A metric space X is called geodesic if its metric is generated by the length of
paths connecting pairs of points. Riemannian manifolds are a good example,
but one can make others by using a metric and then taking lengths of paths.
Now, suppose that we have a triangle in X; then we can construct a triangle in
one of the model geometries with curvature k (i.e. rescaled hyperbolic space,
Euclidean space, or a sphere). We say X is CAT(k) if the triangles in X are
thinner than the corresponding model triangle, meaning that each leg is closer
to the union of the other two in X than they are in the model. Figure 2.4 shows
a δ-thin triangle.

This is equivalent to curvature less than k for Riemannian manifolds and is
30 Any (finite) polyhedron can be simplicially embedded by general position in a much

larger-dimensional Euclidean space. Subdividing, and taking the union of all of the simplices
that touch this complex, one obtains a (compact) manifold with boundary that (simplicially
collapses onto and therefore) deformation retracts to the polyhedron. This is called a regular
neighborhood.
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δ

δ

δ

Figure 2.4 A δ-thin triangle.

a useful synthetic substitute for other metric spaces. If X is locally CAT(0),
then its universal cover is contractible. (Points will be connected by unique
geodesics, and the contraction will be radial.) A great example is a tree.

Back to the case of triangulated surfaces: six incident triangles for each point
implies CAT(0), seven gives a negative31 CAT curvature.

In the Dehn surgery theorem, we can think of the process of filling as gluing
on (a family of) D2s along the translates of a geodesic on the boundary torus.
Thurston’s theorem tells us that we can have negative curvature (indeed, he
gives constant, but that’s too much in general) if the length of the geodesic is
long enough.

Gromov and Thurston do something similar. They consider a hyperbolic
manifold M with a totally geodesic submanifold V of codimension 2. They
show that k-fold branched covers32 (can be proved to exist, at least sometimes,
and then) can be given metrics with curvature between −1 and −1 − c/log(k).
The volume in this construction grows linearly: the metric is constructed quite
explicitly and deviates from the hyperbolic metric only in a small neighborhood
of the submanifold (as the heuristic suggests).

Philosophically, when k gets large, the curvature should be getting more
negative. They essentially have to stretch the neighborhood to make it more
pinched (i.e. so that the divergence of the geodesics has more time to occur).

The reason that these manifolds can’t be made constant negative curvature is
a nice application of Mostow rigidity. They all have Zk-actions, which would
be isometric if they were constant curvature. Varying k and modding out by

31 Depending on the length of the triangles.
32 Recall that a branched cover of a manifold M along a codimension-2 submanifold V is a

cyclic covering space of the complement M −V that restricts to the usual cyclic cover of the
circle to itself in the direction normal to V . This allows one to fill in V in the covering space,
and obtain a manifold (with Zk -action – whose fixed set is V , and whose quotient is M).
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the actions would produce infinitely many different hyperbolic orbifolds with
bounded volume. However, above dimension 3, there are only finitely many
hyperbolic orbifolds with any given volume bound (Wang’s theorem: see Wang,
1972).

As the final technical point to mention, one can take branched cover along
a codimension-2 submanifold iff it is trivial as a homology class. We can
construct examples of this by the arithmetic construction we discussed earlier.
If one uses the quadratic forms that arose in “grafting,” then there is a Z2 × Z2
action generated by two reflections. The fixed set of the action of the whole
group is null-homologous in the fixed set of either of the involutions – which
gives us the relevant M and V to start this construction.

In general, this method is about adding long relations and keeping negative
curvature. This method is related to the ideas of small cancellation theory
(as is CAT(−1) geometry in general) and in both its manifold and nonmanifold
versions has led to many very interesting groups, some of which we will discuss
below.

2.3.3 Method Three: Hyperbolization
The basic idea of hyperbolization is very simple, and there are many hyper-
bolization methods, i.e. implementations of this idea. We will be brief and leave
the reader to study the (rather beautiful) literature (see the notes in §2.4). On the
other hand, it is impossible to resist mentioning at least a few of the surprising
examples.

The Kan–Thurston theorem asserts that any simplicial complex X has the
homology type of a group π, i.e. there is a map Bπ → X which is an isomor-
phism (for all local coefficient systems on X). Baumslag, Dyer, and Heller gave
a very nice approach to this theorem that gives a finite complex Bπ if X is finite
(Baumslag et al., 1980).

The idea is to find a “simplex of acyclic groups” and glue these together. One
simple version can be done as follows, using cubes instead of simplices. This
doesn’t make a difference since one can replace every simplicial complex by a
“cubulated” complex. So we will instead look for cubes of acyclic groups.

Acyclic groups are easy to come by. A simple example is any free product
with amalgamation π = F ∗F′ F, where F and F ′ are free groups of rank k
and 2k, respectively, and the first inclusion of F ′ to F induces a split surjection
on first homology Z2k → Zk projecting onto the first k dimensions, and the
second inclusion interchanging the first k and second k basis elements. In this
case, gluing tells us that Bπ is the 2-complex obtained by taking the double

https://doi.org/10.1017/9781316529645.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781316529645.003


26 Examples of Aspherical Manifolds

mapping cylinder of a wedge of 2k circles mapping to two wedges of k circles.
A straightforward Mayer–Vietoris calculation then gives that Bπ is acyclic.

An “interval of acyclic groups” is simply given by the diagram of groups
π → π × π ← π, where the first (respectively second) inclusion is given by the
inclusion of the first (second) factor. From intervals of groups, we can obtain
squares and the cubes of groups by taking products.

Note that if we have a cubical complex, we can then (ordering the vertices!)
glue together the associated cube of acyclic groups. This will produce a complex
(in this case, finite if X is, and of twice the dimension) which has all the desired
properties.

Notice that this construction is aspherical in the category of simplicial com-
plexes (or cubical complexes) and simplicial inclusions.

Hyperbolizations do exactly the same thing, but using aspherical manifolds33

instead of complexes. In both of these constructions, it is critically important
that fundamental groups inject for gluing purposes.

It is not possible to arrange for the map to be a homology equivalence (for
then the 2-sphere would be homology-equivalent to an aspherical surface –
which we know by classification is not the case).34 However, other geometric
properties can be achieved by suitable constructions of simplices or cubes of
aspherical manifolds.

The seed is often chosen to be non-positively curved (or negatively curved),
orientable, or even with stably trivial35 tangent bundle. Points are hyperbolized
as points, and the geometry is rigid enough that the links of these points are
the same in X and its hyperbolized version. If X is a manifold, so will be the
hyperbolized space, and the map H(X) → X will be degree 1 and preserve
characteristic classes. This implies that H(X) is cobordant to X ,36 so, for
example, every cobordism class contains an aspherical manifold.

If M is a manifold with boundary, Gromov suggested hyperbolizing M∪c∂M
(where c∂M denotes the cone of the boundary of M). This will produce an
aspherical complex with a single singular point, whose link is ∂M . One can
show that if ∂M is aspherical, then one can remove this singular point to
get a “relative hyperbolization” that ∂M bounds (mapping to M). Thus, not
only is every manifold cobordant to an aspherical manifold, but also cobordant
aspherical manifolds are cobordant through aspherical manifolds.

33 We give up on acyclicity, however.
34 In higher dimensions, I do not know how to eliminate any closed manifold from being

homology-equivalent to an aspherical manifold. However, the Hopf conjecture would clearly
preclude this.

35 That is, trivial after adding on a trivial bundle.
36 By Thom’s classical work that shows that bordism is governed by tangential information

(Thom, 1954).
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Among the applications of this technique (besides ones we will see later) are
aspherical manifolds that cannot be triangulated or smooth manifolds (whose
universal covers are topologicallyRn) with CAT(0)metrics, but no Riemannian
metric of non-positive curvature.

For example, a non-triangulable aspherical manifold comes from the fol-
lowing. The Poincaré homology 3-sphere37 Σ bounds a 4-manifold W whose
intersection form is E8 (the unique eight-dimensional positive definite uni-
modular quadratic form over Z with 〈x, x〉 ≡ 0 mod 2 for all x).38 Hyperbolize
W ∪ c∂. Then remove the cone point, and glue on the contractible 4-manifold,
constructed by Freedman, that Σ bounds. This gives a topological manifold X
that, being homotopy equivalent to the hyperbolization, is aspherical. On the
other hand, this manifold is “spin” in the sense that its first two Stiefel–Whitney
classes must vanish (since they do for W , and hyperbolization is tangential),
which then prevents smoothness – by the cobordism property X has signature 8,
but Rochlin’s theorem asserts that any smooth spin 4-manifold has signature a
multiple of 16.

The complex X cannot be triangulated as a simplicial complex, as can be seen
using either the Casson invariant39 (or, even easier now, the three-dimensional
Poincaré conjecture).

Ontaneda (2011) refined the construction of hyperbolization to produce ar-
bitrarily well-pinched negatively curved hyperbolizations, so one can, for in-
stance, construct manifolds with curvature −1 − ε < k < −1 in any cobordism
class.

2.4 Notes

That surfaces tend to be aspherical is classical. For 3-manifolds, there were
some early results by combinatorial methods. For example, Aumann (1956)40

proved the result asserted in its title with its main topological tool being the
gluing lemma. That 3-manifolds in general tend to be aspherical (and, for
example, the complements of all knots, and all nonsplittable links) is due to
Papakyriakopoulos (1957).

The tools introduced in that paper (the Dehn lemma, loop, and sphere the-
37 See Kirby and Scharleman’s (1979) for a beautiful description of this 3-manifold and many

descriptions and properties of it.
38 See Serre (1973) for more information.
39 Casson showed how to count the conjugacy classes of SU(2) representations of the

fundamental group of the homology 3-sphere, and that, when done properly, these reduce
mod 2 to 1/8 of the signature of any smooth cobounding spin 4-manifold.

40 Whose author later won a Nobel Prize (for work in game theory).
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orems) were the core of 3-manifold topology (their power being most evident
for the class of “Haken” 3-manifolds) until the Thurston revolution brought in
a wealth of more (differential) geometric techniques. This development can be
found in any standard book on 3-manifolds. (Good books for the torus decom-
position and some of its pre-Thurston understanding are Hempel, 1976, and
Jaco, 1980.)

The geometricization conjecture of Thurston is a picture of all closed 3-
manifolds in terms of locally symmetric ones. The possible geometries are
well described in Scott (1983). Very useful explanations of Thurston’s theorem
proving this picture correct in the situation where there is an incompressible
surface are Morgan (1984) and Kapovich (2001) (from a different point of view
than Thurston’s original approach). A detailed explanation of Perelman’s result
can be found in Morgan and Tian (2014).

The study of locally symmetric manifolds started in the nineteenth century.
These manifolds are now studied by mathematicians of many different stripes.
Besides being interesting examples to geometers, the geometry and topology
of many of these manifolds are the essence of such classical results of algebraic
number theory as the Dirichlet unit theorem (which calculates the group of units
in the integers of an algebraic extension of Q, and which is the compactness of
a certain torus) and the finiteness of the class number (which, for instance in the
situation of a totally real field, follows from the existence of a compactification
for Hilbert modular varieties – the cusps corresponding to elements of the
class group). We will discuss arithmetic manifolds and hints of arithmeticity in
Chapter 3. As mentioned earlier, Borel (1963) gave the first general construction
of uniform lattices for all K\G. It is much simpler to give non-uniform lattices.
The books by Eberlein (1997) and Witte-Morris (2015) are extremely useful.

Non-arithmetic lattices, as we have seen, are ubiquitous (if not so easy to
construct) in low dimensions. The question of exactly which semisimple Lie
groups admit them is still open. As we mentioned, for rank greater than 1,
Margulis’s arithmeticity theorem assures us that there are no (irreducible)
examples (see Zimmer, 1984; Margulis, 1991).

The only known construction that works in infinitely many dimensions is the
Gromov–Piatetski-Shapiro (G-PS) grafting method we explained. Deligne and
Mostow (1993) gave some examples in U(n,1) for small n. On the other hand,
in Sp(n,1) and F4, Gromov and Schoen (following on earlier work of Corlette)
showed that arithmeticity does hold using analytic methods related to harmonic
maps (Gromov and Schoen, 1992).

The G-PS manifolds play a role in counting the number of hyperbolic mani-
folds with volume less than V , in dimensions greater than 3 (when it is finite)
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(Burger et al., 2002) and with diameter less than D in all dimensions, including
dimension 3 (Young, 2005).41

As emphasized in the main text, the examples of non-arithmetic lattices are
suggestive of tools for constructing interesting aspherical manifolds that have
nothing to do with lattices. Davis (1983, 2000) was motivated, as he explains
therein, by Andreev’s theorem about reflection groups in hyperbolic space.

Closing cusps has been applied both to manifolds and to nonmanifolds.
See Hummel and Schroeder (1996) for the situation of closing cusps for, e.g.,
complex hyperbolic manifolds (and its impossibility in the quaternionic case).
CAT(0) geometry was broadcast to the world by Gromov (1987) in his paper
on hyperbolic groups. The main theme of that paper is developing a large-
scale (or coarse) notion of negative curvature for groups, as a property of
their Cayley graphs, and showing how this notion deepens and generalizes our
understanding of hyperbolic manifolds. The most obvious examples of such
groups are fundamental groups of negatively curved manifolds, and also free
groups. But there are many more!

For instance, Gromov pointed out that one can cone very long words at
will42 (as a generalization of the idea of Thurston’s Dehn surgery theorem) and
maintain negative curvature, giving “easy” finitely generated torsion groups
(just kill large powers of the elements of the group, one at a time).43

That paper also introduces hyperbolization (with some glitches regarding
the procedure fixed in Davis and Januszkiewicz, 1991, Charney and Davis,
1995, and Davis et al., 2001), which also give some new applications. The
paper, all told, launched a major area of geometric group theory and numerous
other investigations. See, for example, Ghys and de la Harpe (1990) for an
exposition of much of the content of that paper. Bridson and Haefliger (1999)
is an excellent source on non-positively curved spaces that are not necessarily
manifolds.

Regarding more basic facts about discrete groups that arose in this chapter,
see C. Miller (1971) for constructions of groups with unsolvable word problem
and related matters. Baumslag et al. (1980) is the paper that gives the finite form

41 Note that when a hyperbolic Dehn surgery is done, the filling takes place further and further
down the cusp, and the diameter of the manifold increases with the length of the curve filled.

42 What I mean is that one can represent a long word in π1X by a long closed geodesic in X, and
then we can attach a disk along this word, and maintain negative curvature. If the geodesic is
long, then the geometry is that of locally having an n-gon with n > 6 at the new vertex.

43 If one starts with a lattice in Sp(n, 1) and does this, one gets an infinite torsion group with
Property (T). This example also shows that while Property (T) implies finite generation, it does
not imply finite presentation. (See Chapter 3 for the basics of Property (T).) On the other hand,
this method does not solve the Burnside problem of giving finitely generated exponent p
groups. However, even this can be achieved in the hyperbolic group setting, as was shown by
Ivanov and Ol’shanskii (1996).
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of the Kan–Thurston theorem along the lines described here. It is subsequently
applied in Baumslag et al. (1983) to give remarkable information about the
possible sequences of homology groups of a finitely presented group (it’s
obviously not arbitrary: there are countably many finitely presented groups and
uncountably many sequences of even finite abelian groups!).44

Rochlin’s theorem, mentioned in explaining the construction of a non-
triangulable four-dimensional aspherical manifold, asserts that the signature
(see Chapter 4) of a smooth spin 4-manifold is a multiple of 16. This was
immediately understood to be an anomaly, and led to various examples of phe-
nomena where dimension four behaves differently from the smooth perspective
than higher dimensions. This turned out to be the tip of the iceberg with the
advent of Donaldson’s thesis (see Donaldson, 1983) – and the work that has
followed it – which has yielded much more profound information about smooth
4-manifolds.

44 It also contains the construction of an acyclic universal group, i.e. an acyclic finitely presented
group containing every finitely presented group as a subgroup. (Note that there’s no finitely
generated group containing all finitely generated groups.) This group has been surprisingly
helpful for various constructions. As one example relevant to this chapter, it was applied in an
early version of Davis et al. (2001) for the construction of relative hyperbolization – although
this was not necessary in the final version, which followed Gromov’s original ideas more
closely.
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