Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-19T04:43:40.338Z Has data issue: false hasContentIssue false

Creating Invasion Resistant Soils via Nitrogen Management

Published online by Cambridge University Press:  20 January 2017

Edward Vasquez*
Affiliation:
USDA-Agricultural Research Service, 67826-A Highway 205, Burns, OR, 97720
Roger Sheley
Affiliation:
USDA-Agricultural Research Service, 67826-A Highway 205, Burns, OR, 97720
Tony Svejcar
Affiliation:
USDA-Agricultural Research Service, 67826-A Highway 205, Burns, OR, 97720
*
Corresponding author's E-mail: ed.vasquez@oregonstate.edu

Abstract

Invasion by annual grasses, such as cheatgrass, into the western U.S. sagebrush-steppe is a major concern of ecologists and resource managers. Maintaining or improving ecosystem health depends on our ability to protect or re-establish functioning, desired plant communities. In frequently disturbed ecosystems, nutrient status and the relative ability of species to acquire nutrients are important drivers of invasion, retrogression, and succession. Thus, these processes can potentially be modified to direct plant community dynamics toward a desired plant community. The overall objective of this review paper is to provide the ecological background of invasion by exotic plants and propose a concept to facilitate the use of soil nitrogen (N) management to achieve desired plant communities that resist invasion. Based on the literature, we propose a model that predicts the outcome of community dynamics based on N availability. The model predicts that at low N levels, native mid- and late-seral species are able to successfully out-compete early-seral and invasive annual species up to some optimal level. However, at some increased level of N, early-seral species and invasive annual grasses are able to grow and reproduce more successfully than native mid- and late-seral species. At the high end of N availability to plants, the community is most susceptible to invasion and ultimately, increased fire frequency. Soil N level can be managed by altering microbial communities, grazing, mowing, and using cover crops and bridge species during restoration. In these cases, management may be more sustainable since the underlying cause of invasion and succession is modified in the management process.

Type
Invited Review
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alpert, P. and Maron, J. L. 2000. Carbon addition as a countermeasure against biological invasion by plants. Biol. Invasions 2:3340.CrossRefGoogle Scholar
Anderson, M., Michelsen, A., Jensen, M., and Kjoller, A. 2004. Tropical savannah woodland: effects of experimental fire on soil microorganisms and soil emissions of carbon dioxide. Soil Biol. Biochem 36:849858.CrossRefGoogle Scholar
Arredondo, J. T., Jones, T. A., and Johnson, D. A. 1998. Seedling growth of intermountain perennial and weedy annual grasses. J. Range Manage 51:584589.CrossRefGoogle Scholar
Austin, A. T., Yahdjian, L., Stark, J. M., Belnap, J., Porporato, A., Norton, U., Ravetta, D. A., and Schaeffer, S. M. 2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141:221235.CrossRefGoogle ScholarPubMed
Balser, T. C. and Firestone, M. K. 2005. Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73:395415.CrossRefGoogle Scholar
Bardgett, R. D., Bowman, W. D., Kaufman, R., and Schmidt, S. K. 2005. A temporal approach to linking aboveground and belowground ecology. Trends Ecol. Evol 20:634640.CrossRefGoogle ScholarPubMed
Baron, V. S., Dick, A. C., Mapfumo, E., Malhi, S. S., Naeth, M. A., and Chanasyk, D. S. 2001. Grazing impacts on soil nitrogen and phosphorus under Parkland pastures. J. Range Manage 54:704710.CrossRefGoogle Scholar
Belnap, J. and Phillips, S. L. 2001. Soil biota in an ungrazed grassland: response to annual grass (Bromus tectorum) invasion. Ecol. Appl 11:12611275.CrossRefGoogle Scholar
Belnap, J., Phillips, S. L., Sherrod, S. K., and Moldenke, A. 2005. Soil biota can change after exotic plant invasions: does this affect ecosystem processes. Ecology 86:30073017.CrossRefGoogle Scholar
Berendse, F. and Elberse, W. T. 1990. Competition and nutrient availability in heathland and grassland ecosystems. Pages 93116. in Grace, J. B. and Tilman, D., editors. Perspectives on Plant Competition. Caldwell, NJ Blackburn.Google Scholar
Berg, W. A., Bradford, J. A., and Sims, P. L. 1997. Long-term soil nitrogen and vegetation change on sandhill rangeland. J. Range Manage 50:482486.CrossRefGoogle Scholar
Blank, R. R., Allen, F., and Young, J. A. 1994. Growth and elemental content of several sagebrush-steppe species in unburned and post-wildfire soil and plant effects on soil attributes. Plant Soil 164:3541.CrossRefGoogle Scholar
Blank, R. R., Allen, F. L., and Young, J. A. 1996. Influence of simulated burning of soil-litter from low sagebrush, squirreltail, cheatgrass, and medusahead on water-soluble anions and cations. Int. J. Wildland Fire 6:137143.CrossRefGoogle Scholar
Blumenthal, D., Jordon, N. R., and Russelle, M. P. 2003. Soil carbon addition controls weeds and facilitates prairie restoration. Ecol. Appl 13:605615.CrossRefGoogle Scholar
Booth, M. S., Stark, J. M., and Caldwell, M. M. 2003. Inorganic N turnover and availability in annual-and perennial-dominated soils in a northern Utah shrub-steppe ecosystem. Biogeochemistry 66:311330.CrossRefGoogle Scholar
Bovey, R. W., Le Tourneau, D., and Erickson, L. C. 1961. The chemical composition of medusahead and downy brome. Weeds 9:307311.CrossRefGoogle Scholar
Bradley, B. A. and Mustard, J. F. 2006. Characterizing the landscape dynamics of an invasive plant and risk of invasion using remote sensing. Ecol. Appl 16:11321147.CrossRefGoogle ScholarPubMed
Brainard, D. C. and Bellinder, R. R. 2004. Weed suppression in a broccoli-winter rye intercropping system. Weed Sci 52:281290.CrossRefGoogle Scholar
Chambers, J. C., Roundy, B. A., Blank, R. R., Meyer, S. E., and Whittaker, A. 2007. What makes Great Basin sagebrush ecosystems invasible by Bromus tectorum . Ecol. Monogr 77:117145.CrossRefGoogle Scholar
Chapman, S. K., Langley, J. A., Hart, S. C., and Koch, G. W. 2005. Plants actively control nitrogen cycling: uncorking the microbial bottleneck. New Phytol 169:2734.CrossRefGoogle Scholar
Chen, J. and Stark, J. M. 2000. Plant species effects and carbon and nitrogen cycling in a sagebrush-crested wheatgrass soil. Soil Biol. Biochem 32:4757.CrossRefGoogle Scholar
Clarke, A. L. and Barley, K. P. 1968. The uptake of nitrogen from soils in relation to solute diffusion. Aust. J. Soil Res 6:7592.CrossRefGoogle Scholar
Clark, B. R., Hartley, S. E., Suding, K. N., and de Mazancourt, C. 2005. The effect of recycling on plant competitive hierarchies. Am. Nat 165:609622.CrossRefGoogle ScholarPubMed
Collins, S. L., Knapp, A. K., Briggs, J. M., Blair, J. M., and Steinauer, E. M. 1998. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280:745747.CrossRefGoogle ScholarPubMed
Connell, J. H. 2003. Apparent versus “real” competition in plants. Pages 926. in Grace, J. B. and Tilman, D., editors. Perspectives on Plant Competition. Caldwell, NJ Blackburn.Google Scholar
Connell, J. H. and Slatyer, R. O. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat 111:11191144.CrossRefGoogle Scholar
Cookson, W. R., Muller, C., O'Brian, P. A., Murphy, D. V., and Grierson, P. F. 2006. Nitrogen dynamics in an Australian semiarid grassland soil. Ecology 87:20472057.CrossRefGoogle Scholar
Coughenour, M. B. 1991. Biomass and nitrogen responses to grazing of upland steppe on Yellowstone's Northern Winter Range. J. Appl. Ecol 28:7182.CrossRefGoogle Scholar
Covington, W. W., DeBano, L. F., and Huntsberger, T. G. 1991. Soil nitrogen changes associated with slash pile burning in pinyon-juniper woodlands. For. Sci 37:347355.Google Scholar
Cox, R. D. and Anderson, V. J. 2004. Increasing native diversity of cheatgrass-dominated rangeland through assisted succession. J. Range Manage 57:203210.CrossRefGoogle Scholar
Daehler, C. C. 2003. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu. Rev. Ecol., Evol. Syst 34:183211.CrossRefGoogle Scholar
D'Antonio, C. M. and Vitousek, P. M. 1992. Biological invasions by exotic grasses, the grass/fire cycles, and global change. Annu. Rev. Ecol. Syst 23:6387.CrossRefGoogle Scholar
Davidson, E. A., Stark, J. M., and Firestone, M. K. 1990. Microbial production and consumption of nitrate in an annual grassland. Ecology 71:19681975.CrossRefGoogle Scholar
Davies, K. W., Bates, J. D., and Miller, R. F. 2007. Short-term effects of burning Wyoming big sagebrush steppe in southeastern Oregon. Rangeland Ecol. Manage 60:515522.CrossRefGoogle Scholar
Davis, M. A., Grime, J. P., and Thompson, K. 2000. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol 88:528534.CrossRefGoogle Scholar
Day, T. A. and Detling, J. K. 1990. Grassland patch dynamics and herbivore grazing preference following urine deposition. Ecology 71:180188.CrossRefGoogle Scholar
DiTomaso, J. M., Brooks, M. L., Allen, E. B., Minnich, R., Rice, P. M., and Kyser, G. B. 2006. Control of invasive weeds with prescribed burning. Weed Tech 20:535548.CrossRefGoogle Scholar
Duncan, C. A., Jachetta, J. J., Brown, M. L., Carrithers, V. F., Clark, J. K., DiTomaso, J. M., Lym, R. G., McDaniel, K. C., Renz, M. J., and Rice, P. M. 2004. Assessing the economic, environmental, and societal losses from invasive plants on rangeland and wildlands. Weed Technol 18:14111416.CrossRefGoogle Scholar
Ehrenfeld, J. G. 2003. Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503523.CrossRefGoogle Scholar
Ehrenfeld, J. G. and Scott, N. 2001. Invasive species and the soil: effects on organisms and ecosystem processes. Ecol. Appl 11:12591260.CrossRefGoogle Scholar
Evans, R. D., Bloom, A. J., Sukrapanna, S. S., and Ehleringer, J. R. 1996. Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition. Plant Cell Environ 19:13171323.CrossRefGoogle Scholar
Evans, R. D., Rimer, R., Sperry, L., and Belnap, J. 2001. Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol. Appl 11:13011310.CrossRefGoogle Scholar
Feyereisen, G. W., Wilson, B. N., Sands, G. R., Strock, J. S., and Porter, P. M. 2006. Potential for a rye cover crop to reduce nitrate loss in southwestern Minnesota. Agron. J 98:14161426.CrossRefGoogle Scholar
Fowler, N. 1986. The role of competition in plant communities in arid and semiarid regions. Annu. Rev. Ecol. Syst 17:89110.CrossRefGoogle Scholar
Frank, D. A. and Evans, R. D. 1997. Effects of native grazers on grassland N cycling in Yellowstone National Park. Ecology 78:22382248.CrossRefGoogle Scholar
Grace, J. B. 2003. On the relationship between plant traits and competitive ability. Pages 5165. in Grace, J. B. and Tilman, D., editors. Perspectives on Plant Competition. Caldwell, NJ Blackburn.Google Scholar
Grime, J. P. and Hunt, R. 1975. Relative growth-rate: its range and adaptive significance in a local flora. J. Ecol 63:393422.CrossRefGoogle Scholar
Handayanto, E., Cadisch, G., and Giller, K. E. 1995. Manipulation of quality and mineralization of tropical legume tree prunings by varying nitrogen supplies. Plant Soil 176:149160.CrossRefGoogle Scholar
Harpole, W. S. 2006. Resource-ratio theory and the control of invasive plants. Plant Soil 280:2327.CrossRefGoogle Scholar
Harrison, K. A., Bol, R., and Bardgett, R. D. 2007. Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989999.CrossRefGoogle ScholarPubMed
Harrison, S., Inouye, B. D., and Safford, H. D. 2003. Ecological heterogeneity in the effects of grazing and fire on grassland diversity. Conserv. Biol 17:837845.CrossRefGoogle Scholar
Hawkes, C. V., Wren, I. F., Herman, D. J., and Firestone, M. K. 2005. Plant invasion alters nitrogen cycling by modifying the soil nitrifying community. Ecol. Lett 8:976985.CrossRefGoogle ScholarPubMed
Herman, D. J., Halverson, L. J., and Firestone, M. K. 2003. Nitrogen dynamics in an annual grassland: oak canopy, climate, and microbial population effects. Ecol. Appl 13:593604.CrossRefGoogle Scholar
Herron, G. J., Sheley, R. L., Maxwell, B. D., and Jacobsen, J. S. 2001. Influence of nutrient availability on the interaction between spotted knapweed and bluebunch wheatgrass. Restor. Ecol 9:326331.CrossRefGoogle Scholar
Hobbs, N. T. and Schimel, D. S. 1984. Fire effects on nitrogen mineralization and fixation in mountain shrub and grassland communities. J. Range Manage 37:402405.CrossRefGoogle Scholar
Hobbs, R. J. and Humphries, S. E. 1995. An integrated approach to ecology and management of plant invasions. Conserv. Biol 9:761770.CrossRefGoogle Scholar
Holland, E. A. and Detling, J. K. 1990. Plant response to herbivory and belowground nitrogen cycling. Ecology 71:10401049.CrossRefGoogle Scholar
Huenneke, L. F., Hamburg, S. P., Koide, R., Mooney, H. A., and Vitousek, P. M. 1990. Effects of soil resources on plant invasions and community structure in Californian Serpentine grassland. Ecology 71:478491.CrossRefGoogle Scholar
Jackson, L. E., Strauss, R. B., Firestone, M. K., and Bartolome, J. W. 1988. Plant and soil nitrogen dynamics in California annual grassland. Plant Soil 110:917.CrossRefGoogle Scholar
James, J. J., Tiller, R. L., and Richards, J. H. 2005. Multiple resources limit plant growth and function in a saline-alkaline desert community. J. Ecol 93:113126.CrossRefGoogle Scholar
Jobbagy, E. G. and Jackson, R. B. 2001. The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochemistry 53:5177.CrossRefGoogle Scholar
Jobbagy, E. G. and Jackson, R. B. 2004. The uplift of soil nutrients by plants: biogeochemical consequences across scales. Ecology 85:23802389.CrossRefGoogle Scholar
Jones, D. L., Shannon, D., Murphy, D. V., and Farrar, J. 2004. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol. Biochem 36:749756.CrossRefGoogle Scholar
Jones, D. L., Healey, J. R., Willett, V. B., Farrar, J. F., and Hodge, A. 2005. Dissolved organic nitrogen uptake by plants-and important N uptake pathway. Soil Biol. Biochem 37:413423.CrossRefGoogle Scholar
Kaspar, T. C., Jaynes, D. B., Parkin, T. B., and Moorman, T. B. 2007. Rye cover crop and gamagrass strip effects on NO3 concentration and load in tile drainage. J. Environ. Qual 36:15031511.CrossRefGoogle ScholarPubMed
Kaye, J. P. and Hart, S. C. 1998. Ecological restorations alters nitrogen transformations in a ponderosa pine-bunchgrass ecosystem. Ecol. Appl 8:10521060.Google Scholar
Kessavalou, A. and Walters, D. T. 1999. Winter rye crop following soybean under conservation tillage: residual soil nitrate. Agron. J 91:643649.CrossRefGoogle Scholar
Klipple, G. E. and Bement, R. E. 1961. Light-grazing—is it ecologically feasible as a range improvement practice. J. Range Manage 14:5762.CrossRefGoogle Scholar
Knapp, P. A. 1996. Cheatgrass (Bromus tectorum L.) dominance in the Great Basin Desert. Global Environ. Change 6:3752.CrossRefGoogle Scholar
Knicker, H. 2007. How does fire affect the nature and stability of soil organic nitrogen and carbon. A review. Biogeochemistry 85:91118.CrossRefGoogle Scholar
Knops, J. M. H., Bradley, K. L., and Wedin, D. A. 2002. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol. Lett 5:454466.CrossRefGoogle Scholar
Krueger-Mangold, J. M., Sheley, R. L., and Svejcar, T. J. 2006. Toward ecologically-based invasive plant management on rangeland. Weed Sci 54:597605.CrossRefGoogle Scholar
Kuske, C. R., Ticknor, L. O., Miller, M. E., Dunbar, J. M., Davis, J. A., Barns, S. M., and Belnap, J. 2002. Comparison of soil bacterial communities in rhizospheres of three plant species and the interspaces in an arid grassland. Appl. Environ. Microbiol 68:18541863.CrossRefGoogle Scholar
Kutiel, P. and Naveh, Z. 1987. The effect of fire on nutrients in a pine forest soil. Plant Soil 104:269274.CrossRefGoogle Scholar
Kyser, G. B., DiTomaso, J. M., Doran, M. P., Orloff, S. B., Wilson, R. G., Lancaster, D. L., Lile, D. F., and Porath, M. L. 2007. Control of medusahead (Taeniatherum caput-medusae) and other annual grasses with Imazapic. Weed Technol 21:6675.CrossRefGoogle Scholar
Lavado, R. S., Sierra, J. O., and Hashimoto, P. N. 1995. Impact of grazing on soil nutrients in a Pampean grassland. J. Range Manage 49:452457.CrossRefGoogle Scholar
Lipson, D. and Näsholm, T. 2001. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305316.CrossRefGoogle ScholarPubMed
Mack, M. C. and D'Antonio, C. M. 2003. Exotic grasses alter controls over soil nitrogen dynamics in a Hawaiian woodland. Ecol. Appl 13:154166.CrossRefGoogle Scholar
Mack, M. C., D'Antonio, C. M., and Ley, R. E. 2001. Alteration of ecosystem nitrogen by exotic plants: a case study of C-4 grasses in Hawaii. Ecol. Appl 11:13231335.Google Scholar
Maron, J. L. and Jefferies, R. L. 2001. Restoring enriched grasslands: effects of mowing on species richness, productivity, and nitrogen retention. Ecol. Appl 11:10881100.CrossRefGoogle Scholar
Marschner, H. 1986. Mineral nutrition of higher plants. New York Academic. 197218.Google Scholar
Masters, R. A. and Sheley, R. L. 2001. Invited Synthesis Paper: Principles and practices for managing rangeland invasive plants. J. Range Manage 54/5:502517.CrossRefGoogle Scholar
McLendon, T. and Redente, E. F. 1991. Nitrogen and phosphorus effects on secondary succession dynamics on a semi-arid sagebrush site. Ecology 72:20162024.CrossRefGoogle Scholar
McLendon, T. and Redente, E. F. 1992. Effects of nitrogen limitation on species replacement dynamics during early secondary succession on a semiarid sagebrush site. Oecologia 91:312317.CrossRefGoogle ScholarPubMed
McNaughton, S. J. 1985. Ecology of a grazing ecosystem: the Serengeti. Ecol. Monogr 55:259294.CrossRefGoogle Scholar
Melgoza, G. and Nowak, R. S. 1991. Competition between B. tectorum and two native species after fire: implications from observations and measurements of root distribution. J. Range Manage 44:2733.CrossRefGoogle Scholar
Monaco, T. A., Johnson, D. A., Norton, J. M., Jones, T. A., Conners, K. J., Norton, J. B., and Redinbaugh, M. B. 2003. Contrasting responses of Intermountain West grasses to soil nitrogen. J. Range Manage 56:282290.CrossRefGoogle Scholar
Moog, D., Poschlod, P., Kahmen, S., and Schreiber, K-F. 2002. Comparison of species composition between different grassland management treatments after 25 years. Appl. Veg. Sci 5:99106.CrossRefGoogle Scholar
National Invasive Species Council 2001. Meeting the Invasive Species Challenge: National Invasive Species Management Plan. Washington, DC National Invasive Species Council. 80.Google Scholar
Neff, J. C., Reynolds, R. L., Belnap, J., and Lamothe, P. 2005. Multi-decadal impacts of grazing on soil physical and biogeochemical properties in southeast Utah. Ecol. Appl 15:8795.CrossRefGoogle Scholar
Norton, J. B., Monaco, T. A., and Norton, U. 2007. Mediterranean annual grasses in western North America: kids in a candy store. Plant Soil 298:15.CrossRefGoogle Scholar
Norton, J. B., Monaco, T. A., Norton, J. M., Johnson, D. A., and Jones, T. A. 2004. Soil morphology and organic matter dynamics under cheatgrass and sagebrush-steppe plant communities. J. Arid Environ 57:445466.CrossRefGoogle Scholar
Oomes, M. J. M. 1990. Changes in dry matter and nutrient yields during the restoration of species-rich grasslands. J. Veg. Sci 1:333338.CrossRefGoogle Scholar
Parker, L. W., Santos, P. F., Phillips, J., and Whitford, W. G. 1984. Carbon and nitrogen dynamics during the decomposition of litter and roots of a Chihuahuan desert annual, Lepidium lasiocarpum . Ecol. Monogr 54:339360.CrossRefGoogle Scholar
Paschke, M. W., McLendon, T., and Redente, E. F. 2000. Nitrogen availability and old-field succession in a shortgrass steppe. Ecosystems 3:144158.CrossRefGoogle Scholar
Pickett, S. T. A., Collins, S. L., and Armesto, J. J. 1987. Models, mechanisms and pathways of succession. Bot. Rev 53:335371.CrossRefGoogle Scholar
Pimm, S. and Gilpin, M. 1989. Theoretical issues in conservation biology. Pages 287305. in Roughgarden, J., May, R., and Levey, S., editors. Perspectives in Ecological Theory. Princeton, NJ Princeton University Press.CrossRefGoogle Scholar
Prober, S. M., Thiele, K. R., Lunt, I. D., and Koen, T. B. 2005. Restoring ecological function in temperate grassy woodlands: manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns. J. Appl. Ecol 42:10731085.CrossRefGoogle Scholar
Pyke, D. A., McArthur, T. O., Harrison, K. S., and Pellant, M. 2003. Coordinated intermountain restoration project—fire, decomposition and restoration. Pages 11161124. in. Proceedings of the VII International Rangelands Congress, Durban, S. Africa International Rangelands Congress.Google Scholar
Radosevich, S., Holt, J., and Ghersa, C. 1997. Weed Ecology: Implications for Management. 2nd ed. New York John Wiley and Sons. 2831.Google Scholar
Radosevich, S., Holt, J., and Ghersa, C. 2007. Ecology of Weeds and Invasive Plants. 3rd ed. New York John Wiley and Sons. 233235.CrossRefGoogle Scholar
Randall, J. 1996. Weed control for the preservation of biological diversity. Weed Technol 10:370383.CrossRefGoogle Scholar
Rapp, M. 1990. Nitrogen status and mineralization in natural and disturbed Mediterranian forests and coppices. Plant Soil 128:2130.CrossRefGoogle Scholar
Reever Morghan, K. J. and Seastedt, T. R. 1999. Effects of soil nitrogen reduction on nonnative plants in restored grasslands. Restor. Ecol 7:5155.CrossRefGoogle Scholar
Rimer, R. L. and Evans, R. D. 2006. Invasion of downy brome (Bromus tectorum L.) causes rapid changes in the nitrogen cycle. Am. Midl. Nat 156:252258.CrossRefGoogle Scholar
Risser, P. G. and Parton, W. J. 1982. Ecosystem analysis of the tallgrass prairie: nitrogen cycle. Ecology 63:13421351.CrossRefGoogle Scholar
Schaeffer, S. M., Billings, S. A., and Evans, R. D. 2003. Responses of soil nitrogen dynamics in a Mojave Desert ecosystem to manipulations in soil carbon and nitrogen availability. Oecologia 134:547553.CrossRefGoogle Scholar
Schaeffer, S. M. and Evans, R. D. 2005. Pulse additions of soil carbon and nitrogen affect soil nitrogen dynamics in an arid Colorado Plateau shrubland. Oecologia 145:425433.CrossRefGoogle Scholar
Schimel, J. P. and Bennett, J. 2004. Nitrogen mineralization: challenges of a changing paradigm. Ecology 85:591602.CrossRefGoogle Scholar
Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L. F., Jarrell, W. M., Virginia, R. A., and Whiford, W. G. 1990. Biological feedbacks in global desertification. Science 247:10431048.CrossRefGoogle ScholarPubMed
Schuman, G. E., Reeder, J. D., Manley, J. T., Hart, R. H., and Manley, W. A. 1999. Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecol. Appl 9:6571.CrossRefGoogle Scholar
Seagle, S. W., McNaughton, S. J., and Ruess, R. W. 1992. Simulated effects of grazing on soil nitrogen and mineralization in contrasting Serengeti grasslands. Ecology 73:11051123.CrossRefGoogle Scholar
Sheley, R. L. and Krueger-Mangold, J. 2003. Principles for restoring invasive plant-infested rangeland. Weed Sci 260265.CrossRefGoogle Scholar
Sheley, R. L., Mangold, J. M., and Anderson, J. L. 2006. Potential for successional theory to guide restoration of invasive–plant-dominated rangeland. Ecol. Monogr 76:365379.CrossRefGoogle Scholar
Sheley, R. L., Svejcar, T. J., and Maxwell, B. D. 1996. A theoretical framework for developing successional weed management strategies on rangeland. Weed Technol 10:766773.CrossRefGoogle Scholar
Singh, R. S. 1994. Changes in soil nutrients following burning of dry tropical savanna. Int. J. Wildland Fire 4:187194.CrossRefGoogle Scholar
Smith, S. D., Huxman, T. E., Zitzer, S. F., Charlet, T. N., Housmen, D. C., Coleman, J. S., Fenstermaker, L. K., Swemann, J. R., and Nowak, R. S. 2000. Elevated C02 increases productivity and invasive species success in an arid ecosystem. Nature 408:7982.CrossRefGoogle Scholar
Sperry, L. J., Belnap, J., and Evans, R. D. 2006. Bromus tectorum alters nitrogen dynamics in an undisturbed arid grassland ecosystem. Ecology 87:603615.CrossRefGoogle Scholar
Steffens, M., Kölbl, A., Totsche, K. U., and Kögel-Knabner, I. 2008. Grazing effects on soil chemical and physical properties in a semiarid steppe of inner Mongolia (P. R. China). Geoderma 143:6372.CrossRefGoogle Scholar
Stevenson, F. J. and Cole, M. A. 1999. Cycles of Soil. New York John Wiley and Sons. 65162.Google Scholar
Stubbs, J. M. and Pyke, D. A. 2005. Available nitrogen: a time-based study of manipulated resource islands. Plant Soil 270:123133.CrossRefGoogle Scholar
Svejcar, T. 2003. Appling ecological principles to wildland weed management. Weed Sci 51:266270.CrossRefGoogle Scholar
Svejcar, T. and Sheley, R. 2001. Nitrogen dynamics in perennial- and annual-dominated arid rangeland. J. Arid Environ 47:3346.CrossRefGoogle Scholar
Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton, NJ Princeton University Press. 376.Google Scholar
Wedin, D. A. and Tilman, D. 1990. Species effects on nitrogen cycling: a test with perennial grasses. Oecologia 84:433441.CrossRefGoogle ScholarPubMed
Weigelt, A., Bol, R., and Bardgett, R. D. 2005. Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142:627635.CrossRefGoogle ScholarPubMed
Werner, P. 1999. Reflections on “mechanistic” experiments in ecological restoration. in Jordon, W. R. III, Gilpin, M. E., and Aber, J. D., editors. Restoration Ecology: A Synthetic Approach to Ecological Research. Cambridge, UK Cambridge University Press.Google Scholar
Westbrooks, R. 1998. Invasive Plants, Changing the Landscape of America: Fact Book. Washington, DC Federal Interagency Committee for the Management of Noxious and Exotic Weeds. 109.Google Scholar
Wilson, D. J., Wells, T. C. E., and Sparks, T. H. 1995. Are calcareous grasslands in the UK under threat from nitrogen deposition? An experimental determination of a critical load. J. Ecol 83:823832.CrossRefGoogle Scholar
Wittenberg, R. and Cock, M. J. 2001. Invasive Alien Species: A Toolkit of Best Prevention and Management Practices. Wallingford, UK CABI Publishing. 228.CrossRefGoogle Scholar
Witwicki, D. L. 2005. Sugar application and nitrogen pools in Wyoming big sagebrush communities and exotic annual grasslands. M.S. thesis. Corvallis, OR Oregon State University. 24.Google Scholar
Young, J. A. and Allen, F. L. 1997. Cheatgrass and range science: 1930–1950. J. Range Manage 50:530535.CrossRefGoogle Scholar
Zheng, X., Fu, C., Xu, X., Yan, X., Huang, Y., Han, S., Hu, F., and Chen, G. 2002. The Asian nitrogen cycle case study. Ambio 31:7987.CrossRefGoogle ScholarPubMed
Zink, T. A. and Allen, M. F. 1998. The effects of organic amendments on the restoration of a disturbed coastal sage scrub habitat. Restor. Ecol 6:5258.Google Scholar