Abbreviations

Ab	category of abelian groups, xv	
$Ab(\mathcal{A})$	abelian category associated with a locally finitely presented	
, ,	category A , 384	
Ab(X)	abelian category associated with an object X of a locally	
, ,	finitely presented category, 392	
$Ab(\Lambda)$	free abelian category over a ring Λ , 400	
$\mathbf{Ac}(\mathcal{A})$	acyclic complexes in an exact category A , 107	
add(X)	closure of X under finite direct sums and summands, xxi	
Add(X)	closure of X under all coproducts and direct summands,	
	xxiii	
$Add(\mathcal{C}, Ab)$	additive functors $\mathcal{C} \to Ab$, 345	
Ann(X)	annihilator of a module X , 48	
Ass(X)	associated prime ideals of a module X , 50	
$\mathbf{C}(\mathcal{A})$	complexes in an additive category A , 102	
$\mathbf{C}^b(\mathcal{A})$	bounded complexes in A , 109	
$\mathbf{C}^+(\mathcal{A})$	bounded below complexes in A, 109	
$\mathbf{C}^-(\mathcal{A})$	bounded above complexes in A , 109	
card(X)	cardinality of a set X , xv	
$\operatorname{coh}(\mathbb{X})$	coherent sheaves on a scheme X, 344	
$Coker(\phi)$	cokernel of a morphism ϕ , xxii	
colim(F)	colimit of a functor F , xix	
$Cone(\phi)$	cone of a morphism ϕ , 76	
$Cores(\mathcal{C})$	objects that admit a finite coresolution in C, 208	
$\mathbf{D}(\mathcal{A})$	derived category of an exact category A , 107	
$\mathbf{D}^b(\mathcal{A})$		
$\mathbf{D}^+(\mathcal{A})$ derived category of bounded below complexes in \mathcal{A} , 10		

$\mathbf{D}^-(\mathcal{A})$	derived category of bounded above complexes in A , 109
$\mathbf{D}(\mathcal{A}, \mathcal{A}_0)$	derived category of a Frobenius pair (A, A_0) , 88
$\mathbf{D}(A)$	derived category of a dg algebra A, 299
$\mathbf{D}^{\mathrm{perf}}(A)$	perfect complexes of a ring or dg algebra A, 167, 300
$\mathbf{D}_{\mathrm{sg}}(A)$	singularity category of a ring A, 182
D(X)	Matlis dual of a module <i>X</i> , xxxi
Δ_i, ∇_i	(co)standard module over a quasi-hereditary algebra, 232
E(X)	injective envelope of an object X , xxviii
$\mathrm{eff}(\mathcal{A})$	effaceable functors $\mathcal{A}^{op} \to Ab$, 42
$\mathrm{Eff}(\mathcal{A})$	locally effaceable functors $\mathcal{A}^{op} \to Ab$, 44
Eff(A, Ab)	effaceable functors $A \rightarrow Ab$, 399
End(X)	endomorphisms of an object X , xvii
$\mathcal{E}nd(X)$	endomorphism dg algebra of X, 299
endol(X)	endolength of a module X , 426
Ess	essential monomorphisms in an abelian category, 59
$Ex(\mathcal{C}, Ab)$	exact functors $\mathcal{C} \to Ab$, 353
$\operatorname{Ext}^n(X,Y)$	degree n extensions between objects X, Y, xxv
$\widehat{\operatorname{Ext}}^n(X,Y)$	degree n Tate extensions between objects $X, Y, 143$
$\mathfrak{F}(\Lambda)$	finitely generated free modules over a ring Λ , 375
$Filt(\mathfrak{X})$	extension closed subcategory generated by a class \mathfrak{X} , xxvi
fp(A)	finitely presented objects of a category A , 343
$Fp(\mathcal{C}, Ab)$	finitely presented functors $\mathcal{C} \to Ab$, 346
$\operatorname{Fun}({\mathfrak C},{\mathfrak D})$	functors $\mathcal{C} \to \mathcal{D}$, xviii
GI(X)	Gorenstein injective approximation of a module X , 193
$Ginj(\Lambda)$	Gorenstein injective modules over a ring Λ , 192
$\overline{\text{Ginj}}(\Lambda)$	stable category of Gorenstein injective modules, 193
$\mathrm{GL}_n(\Lambda)$	general linear group of $n \times n$ matrices over a ring Λ , 375
$gl.dim(\mathcal{A})$	global dimension of an exact category A , xxix
$Gor.dim(\Lambda)$	dimension of a Gorenstein ring Λ , 184
GP(X)	Gorenstein projective approximation of a module X , 193
$Gproj(\Lambda)$	Gorenstein projective modules over a ring Λ , 179
$\underline{Gproj}(\Lambda)$	stable category of Gorenstein projective modules, 182
$GrMod(\Lambda)$	graded modules over a graded ring Λ , 54
$\operatorname{grmod}(\Lambda)$	finitely presented graded modules, 54
$\operatorname{grmod}(\Lambda)$	projectively stable module category, 54
$\overline{\mathrm{grproj}}(\Lambda)$	finitely generated projective graded modules, 54
Γ	category of finite sets, 373
Γ_{inj}	category of finite sets with injective morphisms, 375
$\Gamma_{ m os}$	category of finite sets with ordered surjections, 373

$\Gamma_{ m sur}$	category of finite sets with surjective morphisms, 373
$\Gamma^*(V)$	algebra of symmetric tensors of a module V , 244
$\Gamma^d \mathcal{P}_k$	category of symmetric tensors over k, 244
h_{λ}	complete symmetric function for a partition λ , 243
$H^n(X)$	cohomology of degree n of a complex X , 104
$H^n(G,X)$	cohomology of degree n of a group G with coefficients in
, ,	a module X , 408
$\hat{H}^n(G,X)$	Tate cohomology of degree n of a group G with coefficients
· / /	in a module X , 411
$hocolim(X_n)$	homotopy colimit of a sequence $(X_n \to X_{n+1})_{n \in \mathbb{N}}$, 90
$holim(X_n)$	homotopy limit of a sequence $(X_{n+1} \to X_n)_{n \in \mathbb{N}}$, 90
$\operatorname{Hom}(X,Y)$	set (or complex) of morphisms $X \to Y$, xvii, 129
$\overline{\text{Hom}}(X,Y)$	stable morphisms modulo injectives, 190
$\operatorname{Hom}(X,Y)$	stable morphisms modulo projectives, 83, 190
$\mathcal{H}om(\mathcal{C}, \mathcal{D})$	functors $\mathcal{C} \to \mathcal{D}$, xviii
$\mathcal{H}om(X,Y)$	dg module of morphisms $X \to Y$, 298
ht(X)	height of an object X , xxiv
i(X)	injective resolution of an object X , 112
$\mathbf{i}(X)$	K-injective resolution of a complex <i>X</i> , 123
id_X	identity morphism of an object X , xvii
$id_{\mathcal{C}}$	identity functor of a category C, xvii
$\operatorname{Im}(\phi)$	image of a morphism ϕ , xxii
Im(F)	essential image of a functor F , xviii
$\operatorname{ind}(\mathcal{A})$	indecomposable objects of a Krull–Schmidt category A ,
()	422
$\operatorname{Ind}(\mathcal{A})$	indecomposable pure-injective objects of a locally finitely
. ,	presented category A , 384
$\operatorname{Ind}(\Lambda)$	indecomposable pure-injective modules over a ring Λ , 400
Inj(A)	injective objects of an exact category A, xxviii
$\operatorname{Inj}(\Lambda)$	injective modules over a ring Λ , 23
$inj(\Lambda)$	finitely presented injective modules, 195
inj.dim(X)	injective dimension of an object X , $xxix$
$J(\Lambda)$	Jacobson radical of a ring Λ , xxiv
$K_{\lambda\mu}$	Kostka number for partitions λ , μ , 242
$K_0(\mathcal{C})$	Grothendieck group of an exact or triangulated category C,
	xxx, 110
$K_0(\Lambda)$	Grothendieck group of a ring Λ , xxx
$\mathbf{K}(\mathcal{A})$	homotopy category of complexes in an additive category
	A, 103

$\mathbf{K}^b(\mathcal{A})$	homotopy category of bounded complexes in A , 109
$\mathbf{K}^{+}(\mathcal{A})$	homotopy category of bounded below complexes in \mathcal{A} , 109
$\mathbf{K}^{-}(\mathcal{A})$	homotopy category of bounded above complexes in \mathcal{A} , 109
$\mathbf{K}^{+,b}(\mathcal{C})$	homotopy category of bounded below complexes with
	bounded cohomology, 114
$\mathbf{K}^{-,b}(\mathcal{C})$	homotopy category of bounded above complexes with
	bounded cohomology, 114
$\mathbf{K}_{\mathrm{ac}}(\mathfrak{P})$	acyclic complexes of projectives in a Frobenius category,
	142
$\mathbf{K}_{\mathrm{inj}}(\mathcal{A})$	K-injective complexes in an exact category A , 122
$\mathbf{K}_{\mathrm{proj}}(\mathcal{A})$	K-projective complexes in an exact category A , 122
$Ker(\phi)$	kernel of a morphism ϕ , xxii
Ker(F)	kernel of a functor F , xxi
KG.dim(A)	Krull–Gabriel dimension of an abelian category A , 436
KG.dim(X)	Krull–Gabriel dimension of an object X , 441
$\mathbf{L}F$	left derived functor of a functor F , 128
$\mathbf{L}(X)$	lattice of subobjects of an object X , $xxxi$
$\ell(X)$	composition length of an object X , xxiv
Lex(A)	left exact functors $\mathcal{A}^{op} \to Ab$ for an exact category \mathcal{A} , 44
$Lex(\mathcal{C}^{op}, Ab)$	left exact functors $\mathcal{C}^{op} \to Ab$ for an additive category \mathcal{C}
	with cokernels, 349
$\lim(F)$	limit of a functor F , xix
$Loc(\mathfrak{X})$	localising subcategory generated by a class X , 92
$\Lambda^*(V)$	exterior algebra of a module V , 246
$\Lambda(n,d)$	compositions of d into n parts, 241
$M_n(\Lambda)$	semigroup of $n \times n$ matrices over a ring Λ , 375
$Max(\Lambda)$	maximal ideals of a commutative ring Λ , 445
m.dim(L)	m-dimension of a lattice L , 439
$Mod(\mathcal{C})$	additive functors $C^{op} \rightarrow Ab$, 16
$mod(\mathcal{C})$	finitely presented functors $\mathcal{C}^{op} \to Ab$, 17
$\operatorname{mod}_{\alpha}(\mathfrak{C})$	α -presentable functors $\mathcal{C}^{op} \to Ab$, 65
$\operatorname{Mod}(\Lambda)$	modules over a ring Λ , xv
$\operatorname{mod}(\Lambda)$	finitely presented modules, xv
$\overline{\operatorname{mod}}(\Lambda)$	injectively stable module category, 191
$\underline{\operatorname{mod}}(\Lambda)$	projectively stable module category, 43
$Mor(\mathcal{C})$	morphisms of a category C, xvii
N	set of non-negative integers, xvi
$ar{\mathbb{N}},ar{\mathbb{N}}$	category of non-negative integers, 367
$noeth(\mathcal{A})$	noetherian objects of an abelian category A , 37

ν	Nakayama functor, 195
$\mathscr{O}_{\mathbb{X}}$	structure sheaf of a scheme X, 152
Ob(C)	objects of a category C, xvii
$\Omega(X)$	syzygy of a module X , xxix
$\Omega_{\mathbb{X}/k}$	sheaf of differential forms of \mathbb{X} over k , 318
\mathbb{P}^n_k	projective n -space over a field k , 329
$\mathbf{P}(\mathcal{A})$	purity category of a locally finitely presented category A , 379
$\mathcal{P}(\Lambda)$	modules that admit a finite resolution in proj Λ , 218
\mathcal{P}_k	finitely generated projective <i>k</i> -modules, 243
p(X)	projective resolution of an object X , 112
$\mathbf{p}(X)$	K-projective resolution of a complex <i>X</i> , 123
$pcoh(\Lambda)$	pseudo-coherent modules over a ring Λ , 171
Ph(X,Y)	phantom morphisms $X \rightarrow Y$, 167
$\operatorname{Pol}^d \mathcal{P}_k$	strict polynomial functors of degree d over k , 251
$\operatorname{pol}^d \mathfrak{P}_k$	finite strict polynomial functors of degree d over k , 251
Prod(X)	closure of <i>X</i> under all products and direct summands, 395
Proj(A)	projective objects of an exact category A, xxviii
$Proj(\Lambda)$	projective modules over a ring Λ , 23
$\operatorname{proj}(\Lambda)$	finitely generated projective modules, xv
proj.dim(X)	projective dimension of an object X , xxviii
$\operatorname{Qcoh}(\mathbb{X})$	quasi-coherent sheaves on a scheme X, 344
Qis	quasi-isomorphisms of complexes in an exact category, 107
rad(X)	radical of an object X , $xxiv$
Rad(X, Y)	group of radical morphisms $X \to Y$, xxiv
$\operatorname{rank}_k(X)$	rank of a free k -module X , $xxiv$
$\operatorname{reg}(\Lambda)$	regular modules over an Artin algebra Λ , 158
$rep(\Gamma, k)$	finite k-linear representations of Γ , 285
$Rep(\Gamma, k)$	<i>k</i> -linear representations of Γ , 348
$Res(\mathcal{C})$	objects that admit a finite resolution in C, 177
$\mathbf{R}F$	right derived functor of a functor F , 128
RHom(X, Y)	derived hom of complexes X and Y , 130
$\operatorname{Rlim} F$	right derived limit of a functor F , 321
s_{λ}	Schur function for a partition λ , 243
$S^*(V)$	symmetric algebra of a module V , 244
Sch^{λ}	Schur functor for a partition λ , 279
Set	category of sets, xv
$\operatorname{sgn}(\sigma)$	signum of a permutation σ , 279
Sh(X)	sheaves on a topological space X , 35
soc(X)	socle of an object X , $xxiv$

$\operatorname{span}_k(X)$	k-linear span of a set X , 265
$\operatorname{Sp}(\mathcal{A})$	spectrum of a Grothendieck category A , 37
$\operatorname{Spec}(A)$	prime ideal spectrum of a commutative ring A , 48
$S_k(n,d)$	Schur algebra over k given by parameters n , d , 245
$S(\mathbf{p}, \lambda)$	coordinate algebra of a weighted projective line, 334
$Sq(\mathbf{p}, \lambda)$	squid algebra given by a weighted projective line, 336
$\operatorname{St}(\mathcal{A})$	injectively stable category of an exact category A , 28, 83
$StMod(\Lambda)$	stable module category of a quasi-Frobenius ring Λ , 88
Sub(X)	poset of subobjects of an object X , 370
Supp(F)	support of a functor F , 422
$\operatorname{Supp}(\mathscr{F})$	support of a sheaf \mathcal{F} , 153
Supp(X)	support of a module or complex X , 48, 162, 133
SW_f	Spanier-Whitehead category of finite CW-complexes, 308
\mathfrak{S}_d	symmetric group, 244
\mathfrak{S}_{λ}	Young subgroup of the symmetric group, 247
$\Sigma(X)$	suspension or shift of an object X , 73
$\sigma_{\leq n}X,\sigma_{\geq n}X$	brutal truncations of a complex X , 111
t(X)	complete resolution of an object X , 143
T(A)	trivial extension algebra of an Artin algebra A, 164
$T^*(V)$	tensor algebra of a module V , 246
Thick(\mathfrak{X})	thick subcategory generated by a class of objects \mathcal{X} , xxvii,
	77
top(X)	top of an object X , $xxiv$
$\operatorname{Tor}_n^{\Lambda}(X,Y)$	Tor group of degree n of modules X and Y , 130
Tr(X)	transpose of a finitely presented module X , 191
$\tau_{\leq n}X, \tau_{\geq n}X$	soft truncations of a complex X , 111
$\mathcal{V}(\mathfrak{a})$	prime ideals containing an ideal a, 48
$\text{vect}(\mathbb{X})$	vector bundles on a scheme X, 317
Weyl $^{\lambda}$	Weyl functor for a partition λ , 279
w.dim(X)	weak dimension of a module X , 179
\mathbb{Z}	set of integers, xvi
$Z(\mathcal{C})$	centre of a preadditive category C, xxx, 347
$Z(\Lambda)$	centre of a ring Λ , xxx
$Z^n(X)$	cocycles of degree n of a complex X , 104

Constructions

A^{op}	opposite of a ring A , xv
A_{Σ}	universal localisation of a ring A with respect to Σ , 46
$A^!$	quadratic dual of an algebra A, 331

\mathcal{A}^{α}	α -presentable objects of a cocomplete category A , 61
$\mathcal{A}_1 \times_{\mathcal{A}} \mathcal{A}_2$	pullback of abelian categories, 41
C ^J	diagrams of type I in a category C , xix
Gob	opposite of a category C, xvii
\mathbb{C}^2	morphisms in a category C, xvii
-	- · ·
$\mathcal{C}(x,y)$	morphisms $x \to y$ in a category \mathcal{C} , 369
$\mathcal{C}(x)$	morphisms terminating at x in a category \mathcal{C} , 369
ē	closure of C under filtered colimits, 345
ПС	closure of C under all coproducts, 97
$(\mathcal{C}_{\alpha})_{\alpha}$	Krull–Gabriel filtration of an abelian category C, 436
\mathbb{C}/\mathbb{D}	quotient of an additive, abelian, or triangulated category C
	with respect to a subcategory $\mathcal{D} \subseteq \mathcal{C}$, 29, 30, 78
\mathbb{C}/F	slice category of \mathcal{C} over a functor F , 345
\mathbb{C}/X	slice category of \mathcal{C} over an object X , 343
$\mathbb{C}[S^{-1}]$	localisation of a category \mathcal{C} with respect to S , 3
S^{-1} C	category of left fractions of \mathcal{C} with respect to S , 10
$C = \coprod_{i \in I} C_i$	orthogonal decomposition of an additive category C, xxi
$C = \bigvee_{i \in I} C_i$	direct decomposition of an additive category C, xxi
$\mathbb{C}^{\perp}, {}^{\perp}\mathbb{C}$	perpendicular categories in an abelian, triangulated, exact,
	or locally finitely presented category, 30, 77, 176, 385
F_{λ}, F_{ρ}	left and right adjoint of a functor F , xix
F^{λ}	λ -fold tensor product of a graded functor F^* , 254
F^{\vee}	dual of a functor F , 43, 401
F°	dual of a functor F , 243
$k\mathcal{C}$	linearisation of a category C over a commutative ring, 348
kG	group algebra of a group G over a commutative ring, 348
kQ	path category of a quiver Q over a commutative ring, 348
k[X]	free module with basis X over a commutative ring, 348
$k_{ m sgn}$	sign representation of the symmetric group, 275
$(L_{\alpha})_{\alpha}$	minimal cofiltration of a modular lattice L , 439
$\lambda \vdash d$	partition of an integer d , 241
S^{\perp}	class of S-local objects with respect to morphisms in S, 4
X^*	dual of a module X , 180
X^{\vee}	dual of a module X , 243
X^G	invariants of a module X with G-action, 244
X_G	coinvariants of a module X with G-action, 244
$X(V)_{\lambda}$	weight space of $X(V)$ for a composition λ , 260
X_{ϕ}	subgroup of finite definition of $Hom(C, X)$ with respect to
	$\phi \colon C \to C', 363, 392$

$X^{(I)}, X[I]$	coproduct of copies of X indexed by a set I , xxiii
$X \otimes_{\Lambda} Y$	tensor product of (complexes of) modules X and Y , $xxxiii$,
	129
$X \otimes^{L}_{\Lambda} Y$	derived tensor product of complexes X and Y , 130
$\chi * \ddot{y}$	extensions in a triangulated category of objects in $\mathfrak{X}, \mathfrak{Y}, 97$

Arrows

$X \rightarrow Y$	monomorphism, xvii
$X \twoheadrightarrow Y$	epimorphism, xvii
$X \xrightarrow{\sim} Y$	isomorphism, xvii
$\mathbb{C}\rightarrowtail \mathbb{D}$	fully faithful functor, xviii
$\mathbb{C} \twoheadrightarrow \mathbb{D}$	quotient functor, xviii
$\mathbb{C} \xrightarrow{\sim} \mathbb{D}$	equivalence, xviii
$\mathbb{C}\rightleftarrows\mathbb{D}$	adjoint pair of functors, xviii