Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-16T17:50:38.715Z Has data issue: false hasContentIssue false

Extending Multivariate Distance Matrix Regression with an Effect Size Measure and the Asymptotic Null Distribution of the Test Statistic

Published online by Cambridge University Press:  01 January 2025

Daniel B. McArtor*
Affiliation:
University of Notre Dame
Gitta H. Lubke
Affiliation:
University of Notre Dame VU University Amsterdam
C. S. Bergeman
Affiliation:
University of Notre Dame
*
Correspondence should be made to Daniel B. McArtor, University of Notre Dame, 118 Haggar Hall, Notre Dame, IN 46556, USA. Email: dmcartor@nd.edu

Abstract

Person-centered methods are useful for studying individual differences in terms of (dis)similarities between response profiles on multivariate outcomes. Multivariate distance matrix regression (MDMR) tests the significance of associations of response profile (dis)similarities and a set of predictors using permutation tests. This paper extends MDMR by deriving and empirically validating the asymptotic null distribution of its test statistic, and by proposing an effect size for individual outcome variables, which is shown to recover true associations. These extensions alleviate the computational burden of permutation tests currently used in MDMR and render more informative results, thus making MDMR accessible to new research domains.

Type
Original Paper
Copyright
Copyright © 2016 The Psychometric Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 3246Google Scholar
Anderson, M. J. & Walsh, DCI (2013). PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing?. Ecological Monographs 83, 557574CrossRefGoogle Scholar
Bauer, D. J. Shanahan, M. J. Little, T. D. Bovaird, J. A. & Card, N. A. (2007). Modeling complex interactions: Person-centered and variable-centered approaches. Modeling contextual effects in longitudinal studies London: Rouledge 255283Google Scholar
Belloc, N. B. Breslow, L. & Hochstim, J. R. (1971). Measurement of physical health in a general population survey. American Journal of Epidemiology 93, 328336CrossRefGoogle Scholar
Bergeman, C. S. & Deboeck, P. R. (2014). Trait stress resistance and dynamic stress dissipation on health and well-being: The reservoir model. Research in Human Development 11, 108125CrossRefGoogle ScholarPubMed
Bergman, L. R. & Magnusson, D. (1997). A person-oriented approach in research on developmental psychopathology. Development and psychopathology 9, 291319CrossRefGoogle ScholarPubMed
Bernstein, A. Stickle, T. R. Zvolensky, M. J. Taylor, S. Abramowitz, J. & Stewart, S. (2010). Dimensional, categorical, or dimensional-categories: Testing the latent structure of anxiety sensitivity among adults using factor-mixture modeling. Behavior Therapy 41, 515529CrossRefGoogle ScholarPubMed
Braeckman, U. Van Colen, C. Soetaert, K. Vincx, M. & Vanaverbeke, J. (2011). Contrasting macrobenthic activities differentially affect nematode density and diversity in a shallow subtidal marine sediment. Marine Ecology Progress Series 422, 179191CrossRefGoogle Scholar
Bray, J. H. & Maxwell, S. E. (1985). Multivariate analysis of variance. Sage University Paper Series on Quantitative Research Methods 54, 179Google Scholar
Breslau, N. Reboussin, B. A. Anthony, J. C. & Storr, C. L. (2005). The structure of posttraumatic stress disorder. Archives of General Psychiatry 62, 13431351CrossRefGoogle ScholarPubMed
Buhrmester, M. Kwang, T. & Gosling, S. D. (2011). Amazon’s mechanical turk: A new source of inexpensive, yet high-quality, data?. Perspectives on Psychological Science 6, 35CrossRefGoogle Scholar
Carmody, R. N. Gerber, G. K. Luevano, J. M. Gatti, D. M. Somes, L. & Svenson, K. L. (2015). et al. Diet dominates host genotype in shaping the murine gut microbiota. Cell Host & Microbe 17, 7284CrossRefGoogle ScholarPubMed
Cassady, J. C. & Finch, W. H. (2015). Using factor mixture modeling to identify dimensions of cognitive test anxiety. Learning and Individual Differences 41, 1420CrossRefGoogle Scholar
Clopper, C. J. & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404413CrossRefGoogle Scholar
Costa, P. T. & McCrae, R. R. (1992). Professional manual: Revised NEO personality inventory (NEO-PI-R) and NEO five-factor inventory (NEO-FFI). Odessa FL Psychological Assessment Resources 3, 101Google Scholar
Davies, R. B. (1980). The distribution of a linear combination of chi-square random variables. Journal of the Royal Statistical Society 29, 323333Google Scholar
Duchesne, P. & de Micheaux, P. L. (2010). Computing the distribution of quadratic forms: Further comparisons between the Liu–Tang–Zhang approximation and exact methods. Computational Statistics and Data Analysis 54, 858862CrossRefGoogle Scholar
Efron, B. & Tibshirani, R. J. (1994). An introduction to the bootstrap Boca Raton: CRC PressCrossRefGoogle Scholar
Etezadi-Amoli, J. & McDonald, R. P. (1983). A second generation nonlinear factor analysis. Psychometrika 48, 315342CrossRefGoogle Scholar
Friedman, J. H. & Meulman, J. J. (2004). Clustering objects on subsets of attributes. Journal of the Royal Statistical Society 66, 815839CrossRefGoogle Scholar
Gower, J. C. (1966). Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325338CrossRefGoogle Scholar
Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika 32, 241254CrossRefGoogle ScholarPubMed
Kelly, B. J. Gross, R. Bittinger, K. Sherrill-Mix, S. Lewis, J. D. & Collman, R. G. (2015). et al. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. Bioinformatics 31, 24612468CrossRefGoogle ScholarPubMed
Kiers, HAL Vicari, D. & Vichi, M. (2005). Simultaneous classification and multidimensional scaling with external information. Psychometrika 70, 433460CrossRefGoogle Scholar
Kruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 127CrossRefGoogle Scholar
Kruskal, J. B. (1964). Nonmetric multidimensional scalling: A numerical method. Psychometrika 29, 115129CrossRefGoogle Scholar
Kubarych, T. S. Aggen, S. H. Kendler, K. S. Torgersen, S. Reichborn-Kjennerud, T. & Neale, M. C. (2010). Measurement non-invariance of DSM-IV narcissistic personality disorder criteria across age and sex in a population-based sample of Norwegian twins. International Journal of Methods in Psychiatric Research 19, 156166CrossRefGoogle Scholar
Lubke, G. H. & McArtor, D. B. (2014). Multivariate genetic analyses in heterogeneous populations. Behavior Genetics 44, 232239CrossRefGoogle ScholarPubMed
Lubke, G. H. & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological methods 10, 2139CrossRefGoogle ScholarPubMed
McArdle, B. H. & Anderson, M. J. (2001). Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290297CrossRefGoogle Scholar
McDonald, R. P. (1962). A general approach to nonlinear factor analysis. Psychometrika 27, 397415CrossRefGoogle Scholar
Meulman, J. J. (1992). The integration of multidimensional scaling and multivariate analysis with optimal transformations. Psychometrika 57, 539565CrossRefGoogle Scholar
Muthén, B. & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism, Clinical and Experimental Research 24, 882891CrossRefGoogle ScholarPubMed
Osborne, D. & Weiner, B. (2015). (2015). A latent profile analysis of attributions for poverty: Identifying response patterns underlying people’s willingness to help the poor. Personality and Individual Differences 85, 149154CrossRefGoogle Scholar
R Core Team R: A language and environment for statistical computing Vienna: R Core TeamGoogle Scholar
Salem, R. M. O’Connor, D. T. & Schork, N. J. (2010). Curve-based multivariate distance matrix regression analysis: Application to genetic association analyses involving repeated measures. Physiological Genomics 42, 236247CrossRefGoogle ScholarPubMed
Satterthwaite, T. D. Vandekar, S. N. Wolf, D. H. Bassett, D. S. Ruparel, K. & Shehzad, Z. (2015). et al. Connectome-wide network analysis of youth with psychosis-spectrum symptoms. Molecular Psychiatry 20, 18CrossRefGoogle ScholarPubMed
Shehzad, Z. Kelly, C. Reiss, P. T. Cameron Craddock, R. Emerson, J. W. & McMahon, K. (2014). et al. A multivariate distance-based analytic framework for connectome-wide association studies. NeuroImage 93, 7494CrossRefGoogle ScholarPubMed
Torgerson, W. S. (1952). Multidimensional scaling: I Theory and method. Psychometrika 17, 401419CrossRefGoogle Scholar
Yalcin, I. & Amemiya, Y. (2001). Nonlinear factor analysis as a statistical method. Statistical Science 16, 275294Google Scholar
Zapala, M. A. & Schork, N. J. (2012). Statistical properties of multivariate distance matrix regression for high-dimensional data analysis. Frontiers in Genetics 3, 110CrossRefGoogle ScholarPubMed