
1 Introduction

In the last two or three decades, the need for machine learning and artificial intelligence
has grown dramatically. As the tasks we undertake become ever more ambitious, both in
terms of size and complexity, it is imperative that the available methods keep pace with
these demands. A critical component of any suchmethod is the ability tomodel very large
and complex data sets. There is a large suite of powerful modeling methods based on
linear algebra and cluster analysis that can often provide solutions for the problems that
arise. Although they are often successful, these methods suffer from some weaknesses.
In the case of algebraic methods, it is the fact that they are not always flexible enough to
model complex data, such as data sets of financial transactions or of surveys. Clustering
methods by definition cannot model continuous phenomena. Additionally, they often
require choosing thresholds for which there are no good theoretical justifications. What
we will discuss in this volume is a modeling methodology called topological data
analysis, or TDA, in which data is instead modeled by geometric objects, namely graphs
and their higher-dimensional versions, simplicial complexes. Topological data analysis
has been under development during the last 20 or so years, and has been applied in many
diverse situations. Its starting point is a set equipped with a metric, typically given as a
dissimilarity measure on the data points, which can be regarded as endowing the data
with a shape. This shape is very informative, in that it describes the overall organization
of the data set and therefore enables interrogation of various kinds to take place; TDA
provides methods for measuring the shape, in a suitable sense. This is useful in as much
as it allows one to access information about the overall organization. In addition, TDA
can be used to study data sets of complex description, which might be thought of as
unstructured data, where the data points themselves are sets equippedwith a dissimilarity
measure. For example, one might consider data sets of molecules, where each data point
consists of a set of atoms and a set of bonds between those atoms, and use the bonds
to construct a metric on the set of atoms. This idea leads to powerful methods for the
vectorization of complex unstructured data. The methodology uses and is inspired by the
methods of topology, the mathematical study of shape, and we now give a more detailed
description of how it works.
Much of mathematics can be characterized as the construction of methods for

organizing infinite sets into understandable representations. Euclidean spaces are
organized using the notions of vector spaces and affine spaces, which allows one to
arrange the (infinite) underlying sets into understandable objects which can readily be
manipulated andwhich can be used to construct new objects from old in systematic ways.
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Similarly, the notion of an algebraic variety allows one to work effectively with the zero
sets of sets of polynomials in many variables. The notion of shape is similarly encoded
by the notion of a metric space, a set equipped with a distance function satisfying three
simple axioms. This abstract notion permits one to study not only ordinary notions
of shape in two and three dimensions but also higher-dimensional analogues, as well
as objects like the p-adic integers, which may not be immediately recognized as being
geometric in character. Thus, the notion of ametric serves as a useful organizing principle
formathematical objects. The approach thatwewill describe demonstrates that the notion
of metric spaces acts as an organizing principle for finite but large data sets as well.
Topology is one of the branches of mathematics which studies properties of shapes.

The aspect of the study of shapes which is particular to topology can be described in
terms of three points.

1. The properties of a shape studied by topology are independent of any particular
coordinate representation of the shape in question, and instead depend only on the
pairwise distances between the points making up the shape.

2. The topological properties of shapes are deformation invariant, i.e. they do not
change if the shape is stretched or compressed. They would of course change if
non-continuous transformations are applied that “tear” the space.

3. Topology constructs compressed representations of shapes, which retain many
interesting and useful qualitative features while ignoring some fine detail.
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Thus, topology deals with shapes in two distinct ways. The first is by building com-
pressed combinatorial representations of shapes, via processes such as triangulation. Of
course some information about a shape is lost in this discretization, such as fine-scale cur-
vature information, but, as in the example above, the rough overall structure is preserved
in passing from the circle to the hexagon. The second way is by attempting to measure
shapes, or aspects of shapes. This is done via homological signatures, which permit a kind
of count of the occurrences of patterns within a shape. The adaptation of these signatures
to the study of point cloud data (sets of data points in space) is the subject of this book.
A motivating example comes from contemplation of the phase space pictures of the

Lotka–Volterra equations. Recall that these equations describe the population dynamics
in a simple predator–prey model and result in oscillatory behavior, which gives rise to
loops in phase space. One could of course describe such a loop by giving a precise
parametrization (i.e. a system of local coordinates) for the loop. However, for many
purposes the fact that the shape of the phase portrait is a smooth deformation of a circle
is the most salient detail. More generally, consider the family of examples coming from
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the mapping of a circle to Euclidean space under a wide variety of embeddings. A salient
qualitative description would extract the fact that the underlying data comprised a circle.
The intuitive idea behind algebraic topology is that one should try to distinguish or
perhaps even characterize spaces by the occurrences of such qualitative patterns within
a space. For the Lotka–Volterra example one could say that a characteristic pattern is
the presence of a loop in the space surrounding the empty region in the middle. One
could say intuitively that the count of loops in the phase portrait is one, in that there is
“essentially” only one loop in the space. The same characterization would hold for an
annulus, where the essential loop winds around the central removed disc. It is not so
easy to make mathematical sense of this observation, because there are often families of
loops that we would regard as being essentially the same, as in the figure below.

The presence of essentially one loop is somethingwhich a priori is difficult to quantify,
since in fact there is an uncountable infinity of actual loopswhich have the same behavior,
i.e. they each wind around the hole once. In order to resolve this difficulty and formalize
the notion that there is essentially only one loop, we are forced to perform some abstract
constructions involving equivalence relations to obtain a sensible way of counting the
number of loops. The idea is that we must regard many different loops as equivalent,
in order to get a count of the occurrences, not of each individual loop but, rather, of
a whole class of equivalent loops. This step is responsible for much of the abstraction
which has been introduced into the subject. Once that layer of abstraction has been
built, it provides a way to detect the presence of geometric patterns of certain types. The
general idea of a pattern is of course somewhat diffuse, with many different meanings
in many different contexts. In the geometric context, we define patterns as maps from a
template space, such as a circle, into the space. A large part of the subject concerns the
process of reducing the abstract constructions described above to much more concrete
mathematical constructions, involving row and column operations on matrices. The
goals of the present volume are the following.

• To introduce the pattern detection signatureswhich come up in algebraic topology, and
to simultaneously develop the matrix methods which make them into computable
and usable invariants for various geometric problems, particularly in the domain of
point clouds or finite metric spaces. We hope that the introduction of the relevant
matrix algorithms will begin to bridge the gap between topology as practiced “by
hand” and the computational world. We will describe the standard methods of
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homology, which attach a list of non-negative integers (called Betti numbers) to
any topological space, and we also discuss the adaptation of homology to a tool
for the study of point clouds. This adaptation is called persistent homology.

• To introduce the mathematics surrounding the collection of persistence barcodes or
persistence diagrams, which are the values taken by persistent homology construc-
tions. Unlike Betti numbers, which are integer valued, persistent homology takes
its values in multisets of intervals on the real line. As such, persistence barcodes
have a mix of continuous and discrete structure. The study of these spaces from
various points of view, so as to be able to make them maximally useful in various
problem domains, is one of the most important research directions within applied
topology.

• To describe various examples of applications of topological methods to various
problem domains.

1.1 Overview

The purpose of this book is to develop topological techniques for the study of the
qualitative properties of geometric objects, particularly those objects which arise in real-
world situations such as sets of experimental data, scanned images of various geometric
objects, and arrays of points arising in engineering applications. The mathematical
formalism called algebraic topology, and more specifically homology theory, turns out
to be a useful tool in making precise various informal, intuitive, geometric notions such
as holes, tunnels, voids, connected components, and cycles. This precision has been
quite useful in mathematics proper, in situations where we are given geometric objects
in closed form and where calculations are carried out by hand. In recent years, there has
been a movement toward improving the formalism so that it becomes capable of dealing
with geometric objects from real-world situations. This has meant that the formalism
must be able to deal with geometric objects given via incomplete information (i.e. as a
finite but large sample, perhaps with noise, from a geometric object) and that automatic
techniques for computing the homology are needed.We refer to this extension of standard
topological techniques as computational topology, and it is the subject of this volume.
We will assume that the reader is familiar with basic algebra, groups, and vector

spaces.
In this introductory chapter, we will sketch all the main ideas of computational

topology, without going into technical detail. The remaining chapters will then include
a precise technical development of the ideas as well as some applications of the theory
to actual situations.

1.2 Examples of Qualitative Properties in Applications

1.2.1 Diabetes Data and Clustering

Diabetes is a metabolic disorder which is characterized by elevated blood glucose levels.
Its symptoms include excessive thirst and frequent urination. In order to understand the
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disease more precisely, it is important to understand the possible configurations of values
that various metabolic variables can exhibit. The kind of understanding we hope for is
geometric in nature. An analysis of this type was carried out in the 1970s by Reaven &
Miller (1979).
In this study, a collection of five parameters (four metabolic quantities and the relative

weight) were measured for each patient. Each patient then corresponds to a single data
point in five-dimensional space. In Reaven & Miller (1979), the projection pursuit
method was used to produce a three-dimensional projection of the data set, which looks
like the situation on the left in Figure 1.1.

Figure 1.1 Diabetes patient distribution. See the main text for a description of the figure. From
Reaven & Miller (1979), reproduced with permission of Springer–Nature, © 1979.

Each patient was classified as being normal, chemical diabetic, or overt diabetic. This
is a classification which physicians devised using their observation of the patients. It was
observed that the normal patients occupied the central rounded object, and the chemical
diabetics and overt diabetics corresponded to the two “ears” in the picture. Another very
interestingmethod for visualizing the set was introduced inDiaconis& Friedman (1980).
These visualizations suggest that the two forms of diabetes are actually fundamentally
different ailments. In fact, physicians have understood that diabetes occurs in two forms,
“Type I” and “Type II”. Type I patients often have juvenile onset, and the disease may be
independent of the patient’s life style choices. Type II diabetes more often occurs later
in life and appears to depend on life style choices. The chemical diabetics are likely to
be thought of as Type II diabetics who eventually may arrive at the overt diabetic stage,
while the overt diabetics might arrive at overt status directly.
In this case, the qualitative property of the figure that is relevant is that it has the two

distinct ears, coming out of a central core. Although human beings can recognize this fact
in this projection, it is important to formalize mathematically what this means, so that
one can hope to automate the recognition of this qualitative property. For example, there
may be data sets for which no two- or three-dimensional projection gives a full picture of
the nature of the set. In this case, the mathematical version of this statement would be as
follows. We suppose that the three categories of patients (normal, chemical, and overt)
correspond to three different regions A, B, and C in five-dimensional Euclidean space.
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What this experiment suggests is that if we consider the union X = A ∪ B ∪ C (which
corresponds to all patients) and then remove A, the region corresponding to the normal
patients, the regionwe are left with breaks up into two distinct connected pieces, which do
not overlap and in fact are substantially removed from each other. Clustering techniques
from statistics were used in Symons (1981) to find methods to differentiate between
these two components. The qualitative question above about the nature of the disease
can now be stated as asking howmany connected components are present in the space of
all patients having some form of diabetes. Finding the number of connected components
of a geometric object is a topological question.

1.2.2 Periodic Motion

Imagine that we are tracking a moving object in space, and that the information is given
in terms of a three-dimensional coordinate system, so that we are given coordinates
(x(t), y(t), z(t)). If we want to know whether the object is moving periodically, say,
because it is orbiting around a planet, we can simply check whether the values of the
coordinates repeat after some fixed period of time. Suppose, however, that we are not
given the time values corresponding to the points but just a set of positions, and want
to determine whether the object is undergoing periodic motion. We would thus like to
know whether the set of positions forms a closed loop in space. If the object is orbiting
around a single planet or star, and we therefore know by Kepler’s laws that the geometric
shape of the orbit must be that of an ellipse, we can determine that the object is orbiting
by simply curve-fitting an ellipse to the data set of positions. Suppose, however, that
the object is being acted on gravitationally by several other objects, so that the path
is not a familiar kind of closed curve. We would then still want to know whether the
space of positions is a closed loop, but perhaps not one for which we have a familiar
set of coordinatizations. The qualitative property in which we are interested is whether
the space is a closed loop, and we would like to develop techniques which allow us to
determine this without necessarily asking for a particular coordinatization of the curve.
In other words, we are asking whether our space is a closed loop of some kind, not
exactly what type of loop it is.
A more difficult situation is where we are not actually given the values of the position

of the object but, rather, a family of images taken from a digital camera. In this case,
the set of these images actually lies in a very high-dimensional space, namely the space
of all p-vectors, where p is the number of pixels. Each pixel of each image is given a
value, the gray-scale intensity at that pixel, and so each image corresponds to a vector,
with a coordinate for each pixel. If we take many images sequentially, we will obtain a
family of points in the p-dimensional space, which lies along a subset which should be
identified topologically with the set of positions of the object, i.e. a circle. So, although
this set is not identified with a circle through any simple set of equations in p variables,
the qualitative information that it is a circle is contained in this data. This is an example
of an exotic coordinatization of a space (namely the circle) and shows that, in order to
analyze this kind of data, it would be very useful to have tools which can tell whether
a space is a closed loop, without its having to be any particular loop. In other words,
coordinate-free tools are very useful.
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1.2.3 Curve and Shape Recognition

There are situations where we have geometric objects which do not come from
experimental data, but where qualitative and coordinate free tools are of value for their
analysis. Consider the problem of recognizing hand-printed characters. Hand-printed
versions of a particular letter or number can vary a great deal. In fact, there exists
a database (the MNIST database Bottou et al. 1994) which comprises many different
handwritten versions of the numerals from 0 to 9. The variability comes from the fact that
different people develop slightly different versions of the same character, and in fact these
versions are sufficiently different that they may sometimes be used to identify the person
who wrote them. Differences may also arise from the fact that one may not be looking
directly, i.e. head-on, at the paperwhere the character is drawn, or that it may not be drawn
on a flat surface. However, there are a sufficient number of qualitative cues which allow
human beings to identify characters despite this variability. For example, if we compare
the letter “A” with the letter “B”, it is not hard to see that the letter “A” has a single
closed loop in it, while “B” has two. Thus, the number of loops is a sufficient criterion
to distinguish between these two letters, and it suggests the potential value of developing
rigorous and automatic methods for determining the number of loops. Suppose instead
that we consider the problem of distinguishing between the letter “U” and the letter “V”.
In this case, neither letter has a loop, but “V” has a “corner” and “U” does not. This
is another useful qualitative cue. Finally, if we attempt to distinguish “C” from “I”, we
see that neither letter has a loop, and further that there are no corners, but that “C” has
a curved arc while “I” does not. This is again a useful qualitative cue, which it will be
useful to formalize.
Similar cues can allow us to distinguish between two-dimensional objects in R3, i.e.

to perform shape recognition. For example, to distinguish the sphere from the torus (the
two-dimensional surface of a doughnut), we can observe that every loop on the sphere can
be contracted down to a point, while the torus has two obvious types of loopwhich cannot.

Similarly, one can distinguish between a tetrahedron and a cube by noting that a cube
has eight vertices and 12 edges, while the tetrahedron has four vertices and six edges.
Note that both these criteria are robust in the sense that if we make smooth deformations
of the objects in question, these characteristics still remain unchanged.
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10 Introduction

We will see later that cues involving “corners”, “curved arcs”, “vertices”, and “edges”
are not directly topological. We will develop methods for recognizing these cues
topologically on new spaces that we have constructed from the old ones using tangential
information.
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