
1 Introduction

… things inanimate have mov’d,
And, as with living Souls, have been inform’d,
By Magick Numbers and persuasive Sound.

—William Congreve (1697) The Mourning Bride

The ear is a most complex and beautiful organ. It is the most perfect
acoustic, or hearing instrument, with which we are acquainted,
and the ingenuity and skill of man would be in vain exercised to imitate it.

—John Frost (1838), The Class Book of Nature: Comprising Lessons on the Universe,
the Three Kingdoms of Nature, and the Form and Structure of the Human Body

Would it truly be in vain to exercise our ingenuity to imitate the ear? It would have
been, in the 1800s—but now we are beginning to do so, using the “magick” of num-
bers. Machines imitating the ear already perform useful services for us: answering our
queries, telling us what music is playing, locating gunshots, and more. By imitating ears
more faithfully, we will be able to make machines hear even better. The goal of this book
is to teach readers how to do so.

Understanding how humans hear is the primary strategy in designing machines that
hear. Like the study of vision, the study of human hearing is ancient, and has enjoyed
impressive advances in the last few centuries. The idea of machines that can see and
hear also dates back more than a century, though the computational power to build
such machines has become available only in recent decades. It is now, as they say in the
computer business, a simple matter of programming. Well, not quite—there is still work
to be done to firm up our understanding of sound analysis in the ear, and yet more to be
done to understand the enormous capabilities of the human brain, and to abstract these
understandings to better support machine hearing. So let’s get started.

Humans tend to take hearing for granted. We are so aware of what’s going on around
us, largely by extracting information from sound, yet so unable to describe or appreciate
how we do it. Can we make machines do as well at interpreting their world, and ours,
through sound? We can, if we leverage scientific knowledge of how humans process
sound.

Being able to produce and analyze sound waves is a prerequisite to developing a
better understanding of hearing. Early progress in the field was made with the help of
analytical instruments such as Helmholtz’s resonators and recording devices, like the
waveform drawing device in Figure 1.1, and controlled sound production instruments
such as Seebeck’s siren, shown in Figure 1.2. Representing such waves as electrical
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Figure 1.1 Helmholtz explained the idea of a sound’s waveform via this diagram of a tuning fork
with a stylus point attached, drawing its vibration on a moving piece of paper.

signals has been routine since the invention of the telephone. We now have a myriad of
machines that help us generate, compress, communicate, store, reproduce, and modify
sound signals, in ways tuned to how we hear. For most of these applications, though,
the machines remain “deaf,” in that they get very little meaning out of the sounds they
process.

What if you had a device at home, always listening to what’s going on? Could it
tell what interesting things it heard while you were out? Could it tell you the refrig-
erator sounds like it’s wearing out? Would it understand if you asked it a question?
Could it find you some music to listen to if you described your mood? Could it lis-
ten to you and determine your mood itself? Could it say where a mouse might be
hiding because it heard it run there? Could it distinguish between normal household
sounds and an anomaly in the dead of night? Could it also be your intelligent answering
machine, and tell you who called, and why, based on hearing their voice? Of course it
could.

Who might make such a machine? What crazy functionality might they give a
machine that could hear and understand sounds? Have we chosen the best path through
the complex web of theories about hearing? Can we do better on some tasks by modify-
ing the approach? What advances in the study of human hearing might we discover while
trying to put our theories to the test of real use? These are the kinds of ideas and ques-
tions about sound and hearing that have been going around in my head for decades—
and that we are getting some answers on recently. I’ve worked on spatial effects in
music and games, and on machines to synthesize and recognize speech and music, and
on other fun things to do with sound. Where most others deal with sounds by various
conventional or ad hoc methods, I keep coming back to how the ear would do it—and
this approach has proved fruitful.

There is enough known about how the ear and hearing work that we have gotten
serious about putting this knowledge to practical uses. Starting with the anatomy, we
model the structure and function of the ear and the auditory nervous system; using
physiological and psychophysical techniques, we figure out what the brain gets from
the ear, and how it deals with the information to perform meaningful tasks. Then we
program computing machines to do similarly, based on this knowledge. In essence, we
mimic the biology.
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Figure 1.2 A make-it-yourself acoustic siren, much like August Seebeck’s, as shown by Alfred M.
Mayer (1878). The spinning disk, driven from a crank via string and pulleys, interrupts a stream
of air from the tube to make waves of sound pressure that we hear as a tone. Different tones can
be made by moving the tube to a different row of holes, or by changing the disk to one with a
different pattern of holes. August Seebeck and Hermann von Helmholtz were among the
nineteenth-century scientists who used such devices in their research that contributed to
connecting the physical and perceptual properties of musical tones to the mechanisms of human
hearing—though their theories were somewhat in opposition to each other.

Today we have access to massive quantities of sound, to analyze, organize, index,
and learn from. The soundtracks of YouTube videos alone have hundreds of millions of
hours of sound, and so far our computers are rather ignorant of what those soundtracks
are trying to communicate. Imagine what value there might be in having our machines
just listen to them and understand. Speech, music, laughing babies, sounds of interesting
events, activities, places, and personalities—it’s all there to be discovered, categorized,
indexed, summarized, remembered, and retrieved.

The full scope of machine hearing will reveal itself as people discover that it
is relatively easy to have machines understand sounds of all sorts, and people find
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imaginative uses for such machines. Elephant infrasound hearing and bat ultrasound
hearing and echolocation suggest that the same basic strategies have been put to many
purposes by other mammals. We might include other sonic applications—such as med-
ical imaging—that use sound waves but don’t rely on anything about sound percep-
tion. At Schlumberger Research in the 1980s, we experimented with hearing techniques
applied to the analysis of underground sonic waves. Any far-out infrasound through
ultrasound applications that can benefit from the use of techniques like those evolved
by humans fall within the scope of what we’re trying to teach via this book.

As we get more people engaged in machine hearing, there will be more good ideas
and more things we can take on. The potential is enormous, and the scope broad.

1.1 On Vision and Hearing à la David Marr

The pioneering vision scientist David Marr was a big influence on my approach to mod-
eling hearing. When I visited him at MIT in 1979 to show him what I was working on,
he was very encouraging of the approach. Twisting his words, from vision to hearing,
illustrates how his thinking influenced mine:

What does it mean to hear? The plain man’s answer (and Aristotle’s, too) would be, to know what
is where by listening. In other words, hearing is the process of discovering from sounds what is
present in the world and where it is.

Hearing is therefore, first and foremost, an information processing task, but we cannot think
of it just as a process. For if we are capable of knowing what is where in the world, our brains
must somehow be capable of representing this information—in all its profusion of color and form,
beauty, motion, and detail.—modified from Vision, David Marr (1982)

I honor Marr’s introduction to his ground-breaking book Vision in the quotation
above, having changed see to hear, looking to listening, vision to hearing, and images
to sounds. I’ve left the last phrase unchanged, as I believe that “color and form, beauty,
motion, and detail” is a much more apt description of what our brains extract and rep-
resent about sound than the usual more pedestrian properties of loudness, pitch, and
timbre.

Marr’s computational and representational approach to vision helped to define the
vibrant field of computer vision, or machine vision as it’s also called, more than thirty
years ago. My book is motivated by the feeling that something along these lines is still
needed in the hearing field. It’s a daunting challenge to try to live up to David Marr,
even if I’ve had a few extra decades to prepare, but it’s time to give it a shot.

Compared to other mammals, humans have put vision to some very special applica-
tions, like reading written language, and analogously have put hearing to use in spoken
language and in music. These pinnacle applications should not exclusively drive the
study of vision and hearing, however, and perhaps are best addressed only after low-
level preliminaries are well understood, and more general applications are under con-
trol. Therefore, we focus on these more general and lower-level aspects, and on broader
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applications of hearing, as Marr focused on the more general aspects of vision. At the
end, we come back and touch on applications in speech and music.

David Mellinger (1991) should be credited with helping drive this approach via
his dissertation, pointing out that “Advances in machine vision have long stemmed
from a physiological approach where researchers have been heavily influenced by
Marr’s computational theory. Perhaps the same transfer will begin to happen more in
machine hearing.” But this transfer has been incomplete, so we need to drive it some
more.

Martin Cooke (1993) has provided an excellent review of Marr’s approach to vision
and its influence on work in speech and hearing. Marr’s identification of three levels
at which the sensory system is to be understood—function, process, and mechanism,
also described as computation, algorithm, and implementation—certainly does help us
organize our study of hearing. In an interesting twist, Peter Dallos (1973) used a similar
division of concerns into function, mode of operation, and anatomy to describe the
auditory periphery, before Marr’s work. His scheme is still used this way and credited
in current hearing books (Yost, 2007), as shown in Figure 1.3.

Cooke reviews several applications of Marr’s levels and principles to speech pro-
cessing, but provides relatively little connection to hearing. The repurposing of Marr’s
primal sketch concept into a speech sketch, by Green and Wood (1986), points up a dis-
connect: Marr didn’t go from primitive images directly to reading, and we shouldn’t go
from primitive sound representations straight to speech; primal should imply a much
lower level. A sketch is a “sparsified” version of an image, which may be used as
part of a feature extraction strategy at the input to a learning system, as described in
Section 25.7.

In vision, objects and images must be analyzed at many different scales. Referring
to Marr, Andy Witkin (1983) said, “The problem of scale has emerged consistently as
a fundamental source of difficulty, because the events we perceive and find meaningful
vary enormously in size and extent. The problem is not so much to eliminate fine-scale
noise, as to separate events at different scales arising from distinct physical processes.”
In hearing, we have the same issue, especially in the temporal dimension, where sounds
have periodicities and structure on all time scales.

The idea of an “auditory primal sketch” has been introduced by Neil Todd (1994)
as a way to represent the rhythm and temporal structure of music and speech. I had
published a related idea on multiscale temporal analysis, as part of a speech recogni-
tion approach (Lyon, 1987). Both of these are based on Witkin’s scale-space filtering,
which was descended from Marr. Both fall far short of a comprehensive framework for
machine hearing, but help to inspire some of the sorts of representations that we will be
working with.

Albert Bregman (1990), in his book Auditory Scene Analysis: The Perceptual Orga-
nization of Sound, discusses how aspects of hearing are valued from an evolution-
ary perspective, yielding certain advantages of hearing over vision. The auditory sys-
tem evolved in a context in which better understanding of meaning from an auditory
scene—better answers to what and where—led to a better chance of survival. When
I refer to human hearing in my title, I mean to include the cortical-level processing
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Figure 1.3 Ear diagram by Yost (2007). While the anatomy and modes of operation are important,
we are most interested in emulating the function, described in the bottom row. The information
processing in the central nervous system—the bit where meaning is extracted—is the part that
remains most open to exploration and speculation. [Figure 6.1 (Yost, 2007) reproduced with
permission of Wiliam A. Yost.]

systems that have evolved to handle speech, music, and other big-brain functions; but I
do not mean to diminish the importance of the lower levels of auditory processing—
in the ear, the brainstem, and the midbrain—that underlie the exquisite hearing
capabilities of our pets (and pests), and that form the basis for robust representations
of sound from which actionable information can be extracted. Even animals that don’t
normally use speech can learn to reliably recognize their own names, and discriminate
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1.2 Top-Down versus Bottom-Up Analysis 11

them against other speech sounds; for example, Shepherd (1911) taught four raccoons
that their names were Jack, Jim, Tom, and Dolly.

We can question Marr’s insistence that a symbolic representation or description be
generated (Hacker, 1991). Some approaches to machine hearing systems successfully
use representations that remain completely abstract and nameless until the final output—
the information that the system is trained to extract—with intermediate steps being sub-
sumed in the learning system. Other approaches will use explicit and named concepts,
such as objects, events, musical instruments, notes, talkers, and so forth, that artificial
intelligence systems can reason with. Different theories of mind, or different compu-
tational frameworks that we have available, will bias our machine hearing applications
one way or the other. We are not yet in a position to say which way is likely to be more
fruitful for any given area, and hope to encourage exploration in all such directions.

Comments on hearing’s analogy with vision are not new. For example, in 1797, the
effect of auditory masking on sensitivity was observed and compared to visual masking
effects in “annotations” on Perrole’s “Philosophical Memoir” on sound transmission
(Perrole, 1797):

Sounds seem more intense, and are heard to a greater distance, by night than by day. . . . It is a
practical question of some importance to ascertain whether this difference may arise from the
different state of the air, the greater acuteness of the organ, or the absence of the ordinary noises
produced in the day. By attentive listening to the vibrations of a clock in the night, and remarking
the difference between the time when no other noise was heard, and when a coach passed along,
it has appeared clear to me that this difference arises from the greater or less stillness only, and
that no voluntary effort or attention can render the near sound much more audible, while another
noise acts upon the organ. In this situation the ear is nearly in the state of the eye, which cannot
perceive the stars in the day time, nor an object behind a candle.

In that memoir, Perrole also introduced the term timbre from the French to explain
what he meant by tone in English: “The tone (timbre) was changed in the water in a
striking manner.” This “catch-all” term, as it has been called, captures everything about
what a sound “sounds like,” except for its pitch and loudness—sort of like texture in
vision, which captures much of what shape, size, and brightness don’t. It is the job of
our machine hearing systems to map timbre (along with pitch and loudness and direc-
tion, and their evolution and rhythm over time) into useful information about what the
sound represents, be it speech, music, environmental noises, or evidence of mundane or
exceptional events.

1.2 Top-Down versus Bottom-Up Analysis

Top-down processing evaluates sensory evidence in support of hypothesized interpre-
tations (meaning), while bottom-up processing converts sensory input to ever-higher-
level representations that drive interpretation. Real systems are not necessarily at either
extreme, but the distinction can be useful.

Marr says, with respect to general-to-specific (or coarse-to-fine) stereo matching
approaches (Marr, 1982),
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Nomenclature: What to Call This Endeavor

The terms computer vision and machine vision are in wide use, not quite interchange-
ably, the former having a more computer-science connotation, and the latter a more
industrial or applications connotation. Terms like computer hearing, computational
hearing, and computer listening seem awkward to me, especially since I spent a lot of
years building analog electronic models of hearing, probably not qualifying as com-
puters. And what about listening or audition as a better analogy to vision? Several
of these terms have overloaded meanings: we can convene a hearing, or perform
in an audition, or plant listening devices. The term machine listening is sometimes
used, but mostly in connection with music listening and performance.

The term machine hearing has a strong history at Stanford’s computer music lab,
CCRMA. In their 1992 progress report, Bernard Mont-Reynaud (1992) wrote a sec-
tion on machine hearing, which noted that “The purpose of this research is to design
a model of Machine Hearing and implement it in a collection of computer pro-
grams that capture essential aspects of human hearing including source formation
and selective attention to one source (the ‘cocktail party problem’) without tying the
model closely to speech, music, or other domain of sound interpretation.”

We hope that by calling the space of computer applications of sound analysis
machine hearing, following Mont-Reynaud, we will leverage this good name and
good direction, and help the field build around a good framework, as Marr did with
what we refer to as machine vision.

This type of approach is typical of the so-called top-down school of thought, which was prevalent
in machine vision in the 1960s and early 1970s, and our present approach was developed largely
in reaction to it. Our general view is that although some top-down information is sometimes used
and necessary, it is of only secondary importance in early visual processing.

Here we totally agree. Although I have nothing but respect for the strong case for
the power of top-down information and expectations in human hearing (Slaney, 1998;
Huron, 2006), and though there are prominent “descending” pathways at all levels of the
auditory nervous system (Schofield, 2010), my understanding is that the more extensive
and complex feedback is within the cortical levels of the central nervous system, and
that early audition, like early vision, is best conceived as a modular set of mostly feed-
forward bottom-up processing modules. There is feedback, to be sure, but its function
can often be treated as secondary, as Marr says. At some levels, feedback may be about
parameter learning and optimization; from cortex to thalamus, top-down projections
may be about attention. These are important, but not where we start, especially in “early”
layers as Marr says.

In the mammalian brain, these early hearing modules include the periphery (the
ear) as well as auditory structures in the brainstem and midbrain, and maybe even
some stages of cortical processing, such as primary auditory cortex. These levels were
successful stable subsystems long before the evolution of the big neocortex that led to
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speech and music. The “near decomposability” condition (Simon, 1981) is what allows
complex systems to evolve. That’s why we rely so much on data from bottom-up exper-
iments in animals to help us understand human hearing; we accept that the amazing
abilities of humans evolved on top of these stable mammalian subsystems, which are
themselves not so different from reptilian, bird, and even fish auditory systems.

Like Marr, we are partly reacting to an overreliance on top-down information in
sound processing systems. For example, automatic speech recognition (ASR) systems
have been gradually improved over the years by reliance on larger and more complex
language models and by statistical models that can capture complex prior distribu-
tions, while their front-end processing remains relatively stagnant, stuck with spectro-
temporal approaches that have no way to improve in terms of robustness to noise and
interference, since they don’t represent the aspects of sound that help our auditory sys-
tems tease sound mixtures apart. Such problems demand that we understand hearing
better, and build systems that can hear and understand multiple sounds at once; how
else can we expect a speech recognizer to give us a transcript of a boisterous meeting?
Of course, good prior distributions from top-down information will continue to play an
important role, too.

Is the auditory system complex? Herb Simon (1981) characterizes a complex system
this way:

In such systems, the whole is more than the sum of the parts, not in an ultimate, metaphysical
sense, but in the important pragmatic sense that, given the properties of the parts and the laws of
their interaction, it is not a trivial matter to infer the properties of the whole.

I think this applies to the auditory system as a whole, when the cortex is included,
especially in a living organism in which the auditory system is interacting with visual,
motor, and other systems, with strong top-down and feedback effects. But for the various
bottom-up modules of lower-level auditory processing, perhaps the system is merely
complicated, but not so complex that we can’t describe its function, and its process, in
terms of its mechanisms. I think this is how Marr saw early vision, too. Otherwise, it
would be hard to be optimistic about our ability to assemble machines to do similar
jobs.

1.3 The Neuromimetic Approach

A strategic element of our machine hearing approach is to respect the representation of
sounds on the auditory nerve, which involves both a tonotopic (arranged by frequency)
organization and detailed temporal structure, as extracted by the rather nonlinear inner
ear. At this level, the approach can be said to be neuromimetic (Jutten et al., 1988), or
neuromorphic (Mead, 1990), in the sense that we may be building a copy of a com-
plicated neural system, mimicking its function—or mimicking its structure when we
can’t quite describe the function. In the neuromorphic case, copying the structure of the
neural system, the expectation is that the structure will have an appropriate emergent
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behavior and therefore a useful information-processing function. Here emergent means
that the behavior is not explicitly designed in, but emerges from the simpler behaviors
of the lower-level elements as a consequence of the structural pattern of interconnection
of those elements (Bar-Yam, 1997).

This neuromimetic approach is somewhat distinct from the Marr approach, but some-
times a useful supplement. When a system built this way is found to have a useful
function due to its emergent behavior, it can sometimes be further analyzed, and the
important parts of its function abstracted, described, and reengineered more efficiently.
I believe we are part of the way through this process with neuromimetic hearing front
ends. At the level of the cochlea, for example, the function is largely understood, but
the description is still as much structural as functional. We do not have the clean sepa-
ration of function, process, and mechanism that Marr recommended, but we do have a
structure for which we can understand the function.

Beyond the cochlea, we still have a mixed structural and functional view, though it is
somewhat speculative, of what the function is—the little “information processing” box
in the lower right corner of Bill Yost’s diagram, Figure 1.3, is where we ultimately extract
meaning. We have pretty good ideas from physiological data about what kinds of audi-
tory images are formed in the brainstem. The main thing we use that is neuromorphic is
the very idea of an auditory image: a neural pathway with two spatial dimensions, like
the optic nerve from the retina, projecting a time-varying pattern to a two-dimensional
sheet of cortical tissue, the primary auditory cortex, for further processing.

An early proponent of a neuromimetic, or bionic, approach to machine hearing sys-
tems was John L. Stewart (1963), who published a number of reports, papers, patents,
and a book on the topic in the 1960s and 1970s. He explains the reasoning behind this
approach (Stewart, 1979):

The model becomes an intermediary—a surrogate reality. . . . It is my belief that effective expla-
nations for the traits of living organisms demand the construction of models which behave as
do their living counterparts. For, in no other way can the research be disciplined to produce an
effective holistic theory!

Stewart (1979) anticipated much of our current approach, including a cochlear
transmission-line analog with nonlinearities, a “neural-like analyzer” stage following
the cochlea (Stewart, 1966), and the idea of efferent (feedback) adaptation to condi-
tions, via coupled frequency-dependent gain control (Stewart, 1967).

1.4 Auditory Images

In our approach to hearing, we incorporate the notion of an auditory image: a pre-
sumed representation developed in the subcortical parts of the auditory nervous sys-
tem (cochlea, brainstem, and midbrain), projecting to primary auditory cortex in the
same way that the retinal image projects to primary visual cortex. This approach brings
together the strategies of Marr with the two-dimensional neural circuits of the place
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theory of sound localization of Jeffress (1948) and the duplex theory of pitch perception
of Licklider (1951).

A spectrogram is a picture of sound on a time–frequency plane. But this two-
dimensional image is not what we call an auditory image, as it has too few dimensions
to be analogous to the image that the eye sends to cortex. In the spectrogram, one axis is
time, and there is only one other axis (frequency, mapped to spatial location). To make
auditory images, we develop one more dimension, to map to a spatial axis orthogonal to
the frequency axis, resulting in a movie-like representation, an image that changes with
time. This added spatial dimension can represent direction (lateral or azimuth direction
of arrival of a sound) in a binaural auditory image like those of Jeffress, or can represent
pitch period and other temporal texture as in Licklider’s duplex images. But these are
just examples, not the limit of what an auditory image might be.

A possible next (cortical processing) step is to reduce the auditory image to a sketch,
or line drawing, as Marr does, but that is not the only approach.

Our study of hearing will necessarily involve a lot of function, process, and mecha-
nism to arrive at auditory images, corresponding mostly to levels below primary audi-
tory cortex. This complicated architecture is a bit different from the vision case, where
the information starts as an optical image that makes a 2-D response image on the
retina, and further processing is mostly in cortex. Even in secondary and later lev-
els of auditory and visual cortex, much of the mammalian brain’s processing is about
what and where, and only humans, with huge areas of more highly evolved cortex,
implement the much higher levels of interpretation that support language and music
(Rijntjes et al., 2012).

Marr was very much in touch with the developing sciences of visual psychology
and visual neurophysiology, which informed his approach, especially at the level of
multiscale edge analysis in visual cortex, on which he modeled his primal sketch. Sim-
ilarly, our approach to machine hearing draws on the fields of auditory psychology and
physiology, where so much is known about many levels of hearing, and where I’ve been
so lucky to know and interact with so many of the great scientists over the last several
decades. Part of our goal with this book is to help these fields in return, by providing
a conceptual framework in which much of their detailed knowledge can find a place,
and be better understood and promulgated in terms of signal processing, information
extraction, and sound understanding.

The physiological data informing this approach are from animal studies, in mam-
mals, birds, reptiles, and other groups. Most of the auditory brainstem and midbrain was
already stable before the mammals split off from the reptiles, so studies in many ani-
mals contribute to our understanding of human hearing, and are included in our scope.
For example, the notion of auditory images as a representation of objects in space, as
extracted from binaural (two-ear) signals, has been well developed to describe the func-
tion and organization of the auditory nervous system in the barn owl (Konishi, 1995).
We humans may not swoop down and catch mice in the dark, but we do have an audi-
tory spatial sense that’s not so different from that of the barn owl, using very similar
structures in our brains.
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1.5 The Ear as a Frequency Analyzer?

At the functional level of description, it can be hard to say what the ear is doing.
A traditional view is that the cochlea in the inner ear acts as a Fourier analyzer or
frequency analyzer (Gold and Pumphrey, 1948; Plomp, 1964). We believe that as a
top-level functional description, that’s often misleading. One goal of this book is to help
displace this view with a better description of the kind of information the ear sends to the
brain.

In the late nineteenth century, it was not unusual to find statements such as “the
function of the cochlea is to determine the pitch of the sound” (Draper, 1883), or “the
function of the cochlea is to receive and appreciate musical sounds” (Murché, 1884).
Generally, the cochlea was interpreted as a frequency analyzer. A few interpretations
were a bit broader, with statements like “the function of the cochlea is to appreciate the
qualities of sounds” (Bale, 1879).

The simple frequency view was largely derived from Helmholtz (1863), though his
book on the subject was much more thoughtful than these simplifications. He did
address function head-on, but his book was about connecting hearing to music, so he
can’t be faulted for describing the function in relation to musical tones:

Hence the ear does not distinguish the different forms of wave in themselves, as the eye distin-
guishes the different vibrational curves. The ear must be said rather to decompose every wave
form into simpler elements according to a definite law. It then receives a sensation from each of
these simpler elements as from an harmonious tone. By trained attention the ear is able to become
conscious of each of these simpler tones separately. And what the ear distinguishes as different
qualities of tone are only different combinations of these simpler sensations.

This phase-blind frequency-analysis view of hearing had originally been articulated
by Georg Ohm (1843), inspired by Joseph Fourier’s 1822 finding that periodic functions
could be described as sums of sinusoids. While the idea does have some merit as a
model of hearing, it is also easily found to disagree with various experiments, so has
often been regarded as a half-truth, or sometimes worse, as in this statement by W.
Dixon Ward (1970):

For years musicians have been told that the ear is able to separate any complex signal into a series
of sinusoidal signals—that it acts as a Fourier analyzer. This quarter-truth, known as Ohm’s Other
Law, has served to increase the distrust with which perceptive musicians regard scientists, since
it is readily apparent to them that the ear acts in this way only under very restricted conditions.

Ohm’s and Helmholtz’s view of hearing as Fourier analysis, and the confusion of
frequency with pitch, continued to permeate, if not dominate, thinking about hearing
in the early twenty-first century, even though problems with the approach had been
repeatedly demonstrated, and arguments against it published continually over a century
and a half.

August Seebeck (1841), using his acoustic siren, demonstrated several effects that
were hard to explain in Ohm’s model. In fact, Ohm published his law in response to See-
beck’s first paper in 1841, and they engaged in a back-and-forth in print for a number of
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years. Helmholtz later sided with Ohm, and tried to explain Seebeck’s results in his book
(Helmholtz, 1863) in a way that would resuscitate Ohm’s point of view. These disputes
have been frequently recounted (Scripture, 1902; Jungnickel and McCormmach, 1986;
Cahan, 1993; Beyer, 1999), so we don’t need to go into detail here. Heller (2013) has
a particularly cogent discussion of the evolution of the thinking of Seebeck, Ohm, and
Helmholtz, as influenced by Fourier’s mathematics (and it is a great undergraduate-level
book on sound and hearing in general).

Many modern papers and books sidestep the description at a functional level, with
sections entitled “the function of the cochlea” typically describing lots of phenomena,
process, and mechanism, but with very little commitment to an idea of function. State-
ments of function are sometimes made, but are kept very general and conservative, such
as “The primary function of the cochlea is hearing” (Van De Water and Staecker, 2006),
and “The function of the cochlea is to convert the vibration of sound into nerve impulses
in the auditory nerve” (Cook, 2001), and “the essential function of the cochlea can be
conceptualized as a transduction process” (Phillips, 2001). Some invoke the traditional
Fourier analyzer concept, as in “Its principal role is to perform a real-time spectral
decomposition of the acoustic signal in producing a spatial frequency map” (Dallos,
1992).

In a very few cases, we find a bit about capturing the quality of sound and something
about temporal properties, as in “The main function of the cochlea is to translate audi-
tory events into a pattern of neural impulses that precisely reflects the nature and timing
of the sound stimulus” (Probst et al., 2006). This concept is better, especially in being
tied to general properties of the sound instead of to narrower musical properties based
on frequency. We need this kind of more general functional thinking if we’re going to
process arbitrary real-world sounds—the kinds of sounds for which hearing evolved,
long before music and speech came along.

An important function of the cochlea that is often missed in functional characteriza-
tions has recently been given first-class status: loudness compression. Jont Allen (2001)
says:

The two main roles of the cochlea are to separate the input acoustic signal into overlapping fre-
quency bands, and to compress the large acoustic intensity range into the much smaller mechani-
cal and electrical dynamic range of the inner hair cell.

Allen’s conceptualization of function is a much better starting place, and explains
part of why nonlinearities are so important in hearing. A proper focus on function will
be key to our progress in machine hearing. In support of the function “to separate the
input acoustic signal into overlapping frequency bands,” we discuss the progression
from Fourier analysis, to short-time Fourier analysis, to linear bandpass filterbanks; and
in support of the function “to compress the large acoustic intensity range,” compressive
nonlinear filterbanks. We further connect filterbanks to filter-cascade structures, to make
a more realistic relationship of the filtering function to the underlying mechanisms. Part
II of the book develops the necessary systems theory, and Part III applies these concepts
to develop good computational models of cochlear function.
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Figure 1.4 Tartini’s 1754 publication of his observation of un terzo suono, a third sound, shown
as filled notes below the first two sounds playing on violins or horns—among the earliest
recognitions of a nonlinear effect in hearing. The note pitches that Tartini illustrated represent
the ratios 4:5:2, 5:6:2, 3:4:2, 5:8:2, and 3:5:2 ( f1 : f2 : f3, for f1 being the pitch of the lower
played sound and f2 being the pitch of the upper one, and f3 being the pitch of the low third
tone). The third-tone pitch corresponds to the quadratic intermodulation product f2 − f1, or the
cubic intermodulation product 2 f1 − f2, and/or an octave above one of those. As Helmholtz
(1863) remarked of these observations, “It is very easy to make a mistake of an octave. This has
happened to the most celebrated musicians and acousticians. Thus it is well known that Tartini,
who was celebrated as a violinist and theoretical musician, estimated all combinational tones an
octave too high.” Sorge’s 1745 observation of c′′ and a′′ making an f would be 3:5:1, with den
dritten Klang, a third-order (cubic) distortion product, at 2 f1 − f2.

1.6 The Third Sound

The importance of nonlinearity is not yet well integrated into the typical understanding
of the functions and processes of hearing. One of the earliest phenomena to bring the
problem to the attention of scientists was the third sound, observed by Sorge (1745) (den
dritten Klang) and by Tartini (1754) (un terzo suono). This third sound is a low-pitch
tone heard when two other tones are sustained, for example by two horn players; pitches
of such tones are illustrated in Figure 1.4. It turns out to be usually a pitch equal to the
difference of the pitches of the first two tones or of some of their harmonics, and is what
we call a combination tone, a difference tone, or a distortion product.

We’ll see that there are good reasons for the existence of several types of nonlineari-
ties in hearing, and for modeling them in machine hearing systems. But before we tackle
nonlinearity, we have to understand what linear systems are, and how such systems give
rise to sinusoidal analysis. We’ll cover the theory of linear and nonlinear systems in Part
II, and apply them in subsequent parts of the book.

1.7 Sound Understanding and Extraction of Meaning

We conceptualize the machine hearing space as sound understanding, or informa-
tion extraction, or extraction of meaning, in a very general sense. Here understand-
ing signifies extraction of actionable information, as is sometimes implied in speech
understanding systems as distinguished from speech recognition systems. That is, it
means that from a sound we are able to provide useful information for some practical
application.
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It’s not just humans and machines that do this—my dog is pretty good at processing
sounds, too. If her practical application is to greet someone at the front door, she gets
the information she needs from the sound of either a knock or the doorbell. For the
application of when to eat, she recognizes the sound of her dish being set down. She’s
pretty clever about learning the sound cues for when she’ll be taken for a walk, and
other things she cares about. Does she understand sounds? Yes—in the same sense that
humans do, and that machine hearing systems do: from sounds, she extracts what she
needs to know.

If we can make machines hear half as well as my dog does, that will be progress.
Humans are involved because we want to build up to where we can replicate a human’s
ability to extract information from speech, music, video soundtracks, and the every-
day environment that humans live in. And humans provide a wealth of psychophysical
experimental data that can be leveraged in the design of machine hearing systems.

Winnie-the-Pooh has introspected on the extraction of meaning from sound (Milne,
1926):

“That buzzing-noise means something. You don’t get a buzzing-noise like that, just buzzing and
buzzing, without it meaning something. If there’s a buzzing-noise, somebody’s making a buzzing-
noise, and the only reason for making a buzzing-noise that I know of is because you’re a bee. . . .
And the only reason for being a bee that I know of is making honey. . . . And the only reason for
making honey is so as I can eat it.”

How did Pooh interpret a “buzzing-noise” as indicating the availability of honey?
We interpret this question as having two main parts: first, analyzing and representing
sound in such a way that this “buzzing-sound” is distinguishable from other sounds;
and second, learning one or more decision functions that address the question of when
and where food might be available, based on the sound present. The connection from
“buzzing-noise” to food is probably the result of a fairly opaque learned decision func-
tion, in a brain or a hearing machine; Pooh’s semilogical chain of reasoning should
probably be regarded as a post-hoc rationalization of the decision, not an explanation of
how the decision was arrived at. It seems likely that at this level of abstraction, humans
and other mammals probably perform such functions about the same way as Milne’s
anthropomorphized fictional characters do.

When decisions are reached, and those decisions are useful, then we can say that
meaning, or information, has been extracted from the sound. Sometimes the meaning is
more indirect, as by inference from the linguistic content carried by words in the sound
of speech. In speech recognition, we can say that meaning has been extracted when the
recovered word sequence serves to further the successful execution of a task.

1.8 Leveraging Techniques from Machine Vision and Machine Learning

At the applications end of machine hearing, there are many overlaps of problems,
and techniques, with other fields. Therefore, we have many opportunities to leverage
techniques that have been developed in those fields. In particular, machine vision and
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machine learning, especially as applied to problems in situations involving both images
and sound, whether live or recorded, give us a good set of tools to apply. Leveraging
these much larger fields is a key part of our strategy in trying to bring the field of
machine hearing forward.

The machine vision field gives us a number of successful feature extraction
approaches, and trainable system structures, some of which will map well into hear-
ing problems. In systems such as video analysis, or surveillance, where both vision and
hearing can be applied together, we have opportunities to fuse information from the dif-
ferent senses, on the way to the extraction of meaning. Even the simple concatenation of
sound features onto image features has already been shown to improve the performance
of video classification systems (Gargi and Yagnik, 2008); they may still be half blind
and “hard of hearing,” but they’re no longer completely deaf.

1.9 Machine Hearing Systems “by the Book”

After we survey a range of conventional and novel sound analysis and representation
techniques in Part I, we review in Part II the linear system theory that explains why
the idea of analyzing sounds into frequencies, or overlapping frequency bands, makes
sense, and how important nonlinear concepts such as compression need to be integrated
into that view.

In Part III, we go on to apply that concept at other levels of description, culminating
in a model of the cochlea that runs as an efficient machine algorithm for processing
sounds into a representation that respects what we know about signals on the auditory
nerve.

Part IV of the book attempts to do the same for the next levels of processing, in
the lower parts of the auditory nervous system: to provide a functional concept, and
an efficient process and mechanism that will extract the “auditory image” sound rep-
resentations needed by the higher levels of hearing, to connect to the information that
applications need to understand sound.

In Part V, we get into applications, which we can think of as paralleling the uses to
which humans apply the information they extract from sound. We may not yet know
enough about the function of neocortex to really leverage that knowledge for building
intelligent machines, so at the application level we turn mostly to techniques we under-
stand better, from the field of machine learning. We use various methods to convert the
sound representations from the subsystems in Parts I and III into the kinds of features
that machine learning systems can easily use, and from there we train transformations
that extract the information we want. None of this has much to do with frequency anal-
ysis, so we should be careful to not let that concept dominate our thinking about the ear.

Our book develops the idea of a machine hearing system made of four modules, or
layers; from the bottom up, as illustrated in Figure 1.5 and detailed here:

1. A model of the cochlea, or auditory periphery, built as a cascade of nonlinear filters,
as developed in Part III;
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Figure 1.5 The four-layer model of machine hearing systems developed in this book—from sound
to meaning, and sometimes back the other way. The big feedback loop from meaning to sound is
for a system that can make sound and hear itself, for example, a speech conversation system.

2. A model of the auditory brainstem, extracting one or more auditory images appro-
priate to the range of sounds and tasks to be addressed as developed in Part IV;

3. A feature extraction layer to convert auditory images to a form more suited to the par-
ticular application and tailored to the machine learning system chosen, as developed
in Part V;

4. A machine learning system that is trained to extract the kind of decisions or meaning
needed for the target application, as addressed also in Part V.

This layering will focus us on a known-working and factored structure, based closely
on human hearing where possible, not specific to the higher-level properties of speech
and music, that is open-ended enough to allow expansion into arbitrary applications.
From the point of view of many applications, such as speech recognition, most of the
action is at the top, in level 4, and the lower three levels just make a black-box front end.
The challenge there will be to make sure that the features that come out of level 3 are
what the recognizer needs.

Our machine hearing systems are characterized by several special features, in the first
two modular layers: the cascade filterbank structure with nonlinearities, and the auditory
image approach. Hence, much of our emphasis is on developing an understanding of
these hearing-based ideas and their historical precedents, in the corresponding book
parts.

These special features are not new or radical, but are not yet widely enough appre-
ciated and used in hearing systems. Both were discussed in the middle of the twentieth
century. The notion of a cascade as an alternative to the more common parallel-resonator
filterbank was presented by Licklider (1956) as a model of cochlear filtering. He also
adopted what we now call auditory images in his “duplex theory of pitch perception”
and combined this approach with Jeffress’s “place theory of sound localization,” to form
his “triplex theory” of pitch perception (Licklider, 1956):

. . . It outlines a mechanism that accounts for the three ways in which acoustic stimulation can
give rise to subjective pitch and, at the same time, brings into mutual relation a number of facts
from other parts of auditory experience. . . . If the aim is to understand the process of perception,
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the inquiry must extend into the higher centres of the brain. At the present time, this is sure to
lead one into speculation. However, if there is a lack of anatomical and physiological facts, there
is an abundance of psychophysical ones.

It took a few more decades for the understanding of the auditory nervous system, and
of the cochlear nonlinearity, to evolve. Auditory image maps in the auditory nervous
system are now known and being actively investigated (Knudsen, 1982; Sullivan and
Konishi, 1986; Schreiner, 1991; Langner et al., 1997; Velenovsky et al., 2003), as dis-
cussed in Part IV. Incorporating appropriate nonlinearities into the cascade filterbank,
with results reflected in the auditory image, is straightforward, once the different types
of nonlinearity are understood, as emphasized in Part III.

Pierce and David (1958) commented on the fact that different types of meaning
extraction involve different types of processing:

Undoubtedly the nervous system uses a multiplicity of methods in dealing with the range of audi-
tory stimuli presented to it. We don’t “perceive” vowels in the same way as gunshots. A machine
to emulate the nervous system in these functions would be an intelligent machine indeed. Can
we ever understand enough to make such a machine? Before science can answer unequivocally it
must look farther, directly or indirectly, into both the problems involved in such recognition and
the way in which human beings manage to solve them.

These differences, which we now know more about from studies of psychoacous-
tics and of the nervous system, would be reflected in the application-dependent feature
extraction layer, where we extract different features to localize a gunshot than to classify
a vowel, and in the trainable decision system in the final layer.

On the prospects of building machines to do it, Pierce and David (1958) knew it
would be a long hard road:

We have already taken the first few faltering steps toward building machines which will respond
to and correctly interpret the sounds of speech. Through further diligent work it may indeed
become possible to construct devices which will respond to and reply in human speech, perhaps
even to make useful voice typewriters, and maybe, later on, to build that staple of science fiction, a
device which translates spoken words of one language into spoken words of another. Whether such
machines are ever actually built will depend upon how complex they need be; and, in essence, how
much human time, effort, and money man is willing to expend in simulating human functions.

But this was more than a half century ago; the value of building such systems is now
generally known to exceed the costs in many application areas. It would be good to
reflect on the various dimensions of progress since then, as well as on the remaining
difficulties, as we set out to build more such machines.

In proceeding to build such machines, we will learn much about hearing. I hope the
first lesson has sunk in already: sounds are not just sums of tones of different frequen-
cies, and the ear is not a frequency analyzer.
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