2

Variation in Nature

No one supposes that all the individuals of the same species are cast in
the very same mould. These individual differences are highly important
for us, as they afford material for natural selection to accumulate, in the
same manner as man can accumulate in any given direction individual
differences in his domesticated productions.

Charles Darwin, Origin of Species, 1859, p. 45

Charles Darwin started the Origin of Species with two chapters on variation,
the first on variation under domestication, and the second on variation
in nature (Darwin, 1859). He followed this with publication of a full two-
volume treatise on the Variation of Animals and Plants under Domestication
(Darwin, 1868). The first volume of Variation is a descriptive species-by-
species survey of domesticated animals and plants, but the second volume is
more thematic in dealing with inheritance, cross-breeding, selection in domes-
tication, variation, and finally Darwin’s theory of pangenesis as a mechanism
of inheritance.

Darwin (1868; 1875) summarized the subject of variation in terms of laws, but
given what he knew concluded:

When we reflect on the several foregoing laws, imperfectly as we understand them, and
when we bear in mind how much remains to be discovered, we need not be surprised at the
intricate and to us unintelligible manner in which our domestic productions have varied,
and still go on varying.

Darwin, 1875, v. 2, p. 348

Darwin was concerned with the origin of variants and varieties as a step toward the
origin of species. He emphasized that individual differences are essential for
natural selection but never made much progress finding patterns in the variation
that he studied so carefully.

26
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2.1 Quantification of Human Variation

Some of Darwin’s contemporaries were more gifted quantitatively. These included
the Belgian polymath Adolphe Quetelet, the American statistician Ezekiel Elliott,
and Darwin’s cousin Francis Galton. All three focused their studies on humans,
a large species living in large populations that are both accessible and easy to
measure.

2.1.1 Adolphe Quetelet

Adolphe Quetelet (1846) combined measurements of chest circumference for a
number of local militias in Scotland, taken from the Edinburgh Medical and
Surgical Journal for April 1817. The journal reported observations for 5,758
men, measured to the nearest inch (imperial inch, 25.4 mm), and Quetelet grouped
all of the measurements by inch. He then constructed a table showing the number
(frequency) of men in each group, and calculated the weighted mean of the
measurements. The mean value for chest circumference based on Quetelet’s table
is 39.84 inches (1.012 m), with a probable error or median deviation of 1.381
inches (35.08 mm). The mean falls within the most frequent or modal group, and
observations differing from the mean decrease in number as their difference
increases (Figure 2.1a). In Quetelet’s time, “probable error” was the value used
to characterize the dispersion of observations about the mean value. The probable
error is equal to 0.6745 times the standard deviation (see below).

Quetelet also studied measurements of stature for 100,000 military conscripts
from France compiled by Antoine-Audet Hargenvilliers in 1817 and published by
Louis Villermé (1829). Here the original measurements were in French inches
(pouce, 27.07 mm), but this time the groups were centered on midpoints of the
successive one-inch ranges. No increments were reported for statures less than
58 inches nor for statures greater than 65 inches, reducing the sample size from
100,000 to 68,890 and making calculation of relevant statistics problematical.
Villermé reported a mean of 59.67 inches (1.615 m), to which Quetelet added a
probable error of 1/33 times the mean. Graphing frequencies for measurements
reported to the nearest inch yields the distribution shown in Figure 2.1b, where it
appears that a mean of 60.1 inches (1.626 m) fits the distribution better than that
reported by Villermé. Quetelet’s probable error should then be 1.821 inches (49.29
mm). Quetelet did not graph either of the distributions shown in Figure 2.1 but
showed equivalents in tabular form.

Quetelet (1846) found variation in the empirical measurements of chest circum-
ference and stature satisfying because their patterns mimicked the distributions of
error recorded in astronomy and physics. He believed in natural laws, among them
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Figure 2.1 Histograms of the measurements compiled by Quetelet (1846). (a)
Chest circumference of Scottish militiamen, based on measurements in imperial
inches published anonymously in Edinburgh in 1817. (b) Standing height or
stature of French military conscripts in French inches published by Villermé
(1829; censored by failure to report shorter and taller statures). Mean stature for
the French recruits would be 64.1 inches on an imperial scale. Numbers of men in
each category are shown near the base of the corresponding column. Note the
bell-shaped distributions of variation in both sets of measurements: variation
considered to mimic distributions of error in astronomical measurements. Prob-
able error was an early measure of dispersion, superseded by the standard
deviation.

conservation of a human “type,” and he went so far as to call such laws divine
(Quetelet, 1870, p. 21). Quetelet is famous for his interest in social science or
“social physics” (physique sociale) and for his concept of the “average man”
(I’homme moyen; Quetelet, 1835). He accepted distributions of “error” in human
measurements as mathematical confirmation of the applicability of physics-like
laws to both the human type and the average man. However, Quetelet’s idea
of an “average man” or human “type” was misguided and the antithesis of
Darwin’s subsequent emphasis that individual differences are important for
natural selection.
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Before leaving Quetelet (1846), it is interesting to note his preoccupation with
human giants and dwarfs. He went so far as to calculate, from the sample of French
conscripts, that a population with a mean stature of 1.62 meters might be expected
to include Frenchmen ranging in stature from 1.21 to 2.03 meters (deviations of
40.41 meters from the mean). The smaller men Quetelet considered to be dwarfs,
and larger men to be giants. Herschel (1850, p. 27) challenged this, citing
examples, and argued that “the ‘probable’ deviation of nature’s workmanship from
her universal human type cannot possibly be less than double that resulting from
the French measurements.” If we follow Herschel, then Quetelet’s range of human
stature should reach 0.80 meters for dwarfs and 2.44 meters for giants. We need
not worry about Quetelet’s or Herschel’s numbers here but will return to the
subject of dwarfs and giants.

2.1.2 Ezekiel Elliott

Ezekiel Elliott was an American statistician and a government delegate to the
International Statistical Congress that met in Berlin in 1863. There he presented a
study of American military statistics (Elliott, 1863; 1865). Elliott included meas-
urements of the stature of a large sample of Civil War volunteers. Here again
measurements were in inches, and the measurements were grouped by the inch
(imperial inch, 25.4 mm). Following Quetelet (1846), Elliott constructed a table
showing the number of men in each group. Observations differing from the mean
decreased in number as the difference increased (Figure 2.2a), as Quetelet had
shown for chest circumference and, less well, for stature. Elliott did not graph the
distribution of variation for his large sample, but he did construct a graph like that
in Figure 2.2a for a smaller and more manageable set of measurements.

Elliott was impressed by Quetelet, with his emphasis on the human type, and by
the regularity of variation about the type:

Statistical researches, conducted by M. Quetelet of Belgium, have established the fact,
previously contested, of the existence of a human type, and that the casual variations from
it are subject to the same symmetrical law in their distribution as that, which the doctrine of
probabilities assigns to the distribution of errors of observation. In the accompanying
tables, showing the distribution of heights and of measurements of the circumference of
chests of American soldiers, the conclusions of this eminent statist and mathematician are
strikingly confirmed.

Elliott, 1863, p. 14

The distributions are the same for variation within a species and for errors of
astronomical observation, but it is a mistake to conflate variation and error. We
shall return to this below.
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Figure 2.2 Histograms of standing heights in (a) American Civil War recruits
(Elliott, 1863); and (b) eight-year-old St. Louis school girls (Porter, 1894).
Measurements were reported to the nearest inch or centimeter, respectively, and
numbers in each category are shown near the base of the corresponding column.
Porter’s school girl measurements were analyzed by Karl Pearson (1895), who
was interested in their skewness. Probable error was an early measure of disper-
sion, superseded by the standard deviation.

Elliott analyzed both the physical measurements of Civil War volunteers and
their ages. He was more perceptive than his contemporaries in distinguishing a law
of error for ages based on differences from a law of error for human forms
(“types”) based on proportions:

According to the law, already stated, which appears to obtain with the distribution of the
ages of the volunteers, the differences of the numbers at consecutive equidistant ages are
very nearly in equi-rational or [arithmetical] progression. — In the distribution of the
representatives of a type, where the law assigned by the theory of probability strictly holds,
the quotients (not the differences) of the proportionate numbers at consecutive equidistant
points of measurement are in equi-rational progression.

Elliott, 1863, p. 15

This represents, in cryptic form, the kernel of a key insight of Francis Galton to be
developed below.
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2.2 Probability and the Law of Error

We need some background to understand Quetelet’s fascination with what he
called the “binomial law”, “law of probability,” or “mathematical law of size.”
Quetelet used all three names for what is essentially the same concept; others have
called this the “law of error.”

Start with a coin. It has two sides, two “faces,” and a negligible edge separating
these. Call one side a tail (T), and the other side a head (H). If you flip a coin in the
air, it will land and fall flat, with a tail facing upward or a head facing upward. On a
fair coin the probabilities of these alternative events are equal. We can note the
possible outcomes of one coin flip as a “T” for tail or an “H” for head.

What happens if we flip two coins? There is one way we can get two tails: TT.
There are two ways to get a tail and a head: TH if the tail comes up first and the
head comes up second, or HT if the head comes up first and the tail second. And
there is one way to get two heads: HH. We can summarize this by calling TT, TH,
HT, and HH the four possible permutations resulting from flipping two coins. Two
tails, a tail and a head, and two heads, are the corresponding three combinations.
We may not know what permutations went into the combinations we see, but we
know that for two coins we can expect the permutations to be related to the
combinations in the proportions 1:2:1.

If we flip three coins, then we may find any of eight permutations, TTT, TTH,
THT, HTT, THH, HTH, HHT, and HHH, in one of four combinations of three
heads, two heads and a tail, one head and two tails, or three tails. Without knowing
the history, again we don’t know what the permutations were, but we can expect
the permutations to be related to the combinations in the proportions 1:3:3:1.

Extending this logic, we can expect flipping ten coins to yield combinations
of heads and tails in the proportions 1:10:45:120:210:252:210:120:45:10:1, for
a total of 1,024 permutations (Figure 2.3). Each combination has a probability
or relative likelihood or “density” equal to the number of permutations yielding
the combination, divided by the total number of permutations. In Figure 2.3,
the combination with the greatest probability is five tails and five heads, for
which the probability is 252/1024 = 0.246. This indicates too that the combin-
ation of five tails and five heads has the greatest likelihood in relation to other
combinations.

The permutations and combinations of a coin-flipping exercise are interesting
for many reasons, but the point to be made here is illustrated in Figure 2.4. Flipping
a single coin yields two permutations and two combinations, one in each case a tail
and one a head. Graphing yields a simple symmetrical histogram of one permuta-
tion for each combination. Graphs for the permutations and combinations of two
and three coins are slightly more complicated, but the first inkling of the relation-
ship of interest emerges in a graph of the permutations and combinations for four
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Figure 2.3 Permutations and combinations of tails (T) and heads (H) for ten coins.
There is one permutation yielding the combination “all tails”; ten permutations of
“nine tails and one head” (the head can be in any of 10 positions in the row); etc.
The numbers of permutations that can yield the observed proportion of tails and
heads in each combination are listed to the right of the coins, along with the
associated probability for each combination. The latter is calculated as the number
of permutations in a particular combination (e.g., 1, 10, 45, etc.), divided by the
total number of permutations in the experiment (1,024).

coins. The graph for four coins has vertical bars differing by small, then large, then
small amounts flanking the modal value. This becomes increasingly clear for
permutations representing larger numbers of coins, and the permutations for 9 or
10 coins follow the bell-shape of a “normal” distribution. In a binary coin-flipping
experiment like this the permutations for each combination are known as the
“binomial coefficients” for a given number of trials. Historically, the mathematical
shape of what we today call a “normal distribution” was derived by finding the
limiting shape of the continuous curve of permutations for an infinite number
of coins.

The same distribution and curve can be derived by rolling dice (Figure 2.5). One
die has six sides or faces, with negligible edges separating these. The sides are
generally numbered from 1 to 6. If you roll a die on a table, it will land and fall flat,
with one of the numbers facing upward. On a fair die the probabilities of the
alternative events are equal. We can note the possible outcomes for rolling one die
by recording the resulting number: There is one way to score a “1,” one way to
score a “2,” etc. Each has the same probability, and graphing yields a simple
symmetrical histogram of one permutation for each combination (Figure 2.5a).

A graph for the permutations and combinations of two dice is slightly more
complicated because there is one way to achieve a score of two, by rolling a one
on each die (“1 + 1”). A combination score of three can be achieved in two ways,
by rolling “1 + 2,” or “2 + 1.” The modal combination score is seven, which can
be achieved six ways, as “1 +6,” “2 + 5, “3 +4,”“4 +3,”“5+ 2, or “6 + 1.” The
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Figure 2.4 Histograms of permutations for increasing numbers of coins and
combinations in a coin-tossing experiment. For n coins, the number of combin-
ations of tails and heads increases as n + 1, but the number of permutations
increases as 2". Note that the histogram of permutations converges to a normal
curve (dashed line) as the number of coins increases.

sequence of successive permutations for each combination forms a symmetrical
pyramid rising on one side to the mode and descending on the other (Figure 2.5b).

The relationship of interest emerges clearly in a graph of the permutations and
combinations for three dice. Now the permutations for each combination form the
series 1:3:6:10:15:21:25:27:27:25:21:15:10:6:3:1, for a total of 216 permutations.
These are no longer pyramidal on a graph but now approximate a normal distribu-
tion (Figure 2.5c), with the heights of the vertical bars approximating a normal
curve (dashed line). The fit to a normal curve for permutations of three dice is even
better than the fit for permutations of 9 or 10 tosses of a coin. Here again, the
mathematical shape of the normal curve can be derived by finding the limiting
shape of the continuous curve for an infinite number of dice.
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Figure 2.5 Histograms of permutations for increasing numbers of dice and
combinations in a dice-rolling experiment. For n dice, the number of combin-
ations of scores “1” through “6” increases as 5n + 1, but the number of permuta-
tions increases as 6”. Note that the histogram of permutations converges rapidly to
a normal curve (dashed line) as the number of dice increases.

The importance of this exercise is that it shows how normal distributions of
variation can be derived from the relative frequencies of small differences accu-
mulating in the simple combinations expected by chance. The distributions of
variation we see in biological populations reflect the contributions of many small
genetic differences in constituent individuals.

2.3 The Normal Curve

“Normal” is an adjective, derived from Latin, that is commonly used in European
languages to represent a “norm” or expected occurrence. As we have seen, this
bland label is assigned to curves and distributions like those in the preceding
figures. Common usage means it should come as no surprise that “normal” has no
fixed point of origin in the history of statistics. Gustav Fechner (1860, p. 125)
wrote of a “normaler Fehlervertheilung” (normal distribution of error). Quetelet
(1869, p. 36) wrote of “déviations d’une grandeur normale” (deviations from a
normal size; translated from Herschel’s 1850, “deviations from a standard”).
Charles Peirce (1873, p. 206), who read Fechner, wrote of comparing an observed
curve of errors to “the normal least-squares curve.” Wilhelm Lexis (1877, p. 34ff.),
who read both Fechner and Quetelet, repeatedly compared “normaler Dispersion”
(normal dispersion) to a dispersion greater or less than normal. Normal is an
adjective that grew slowly into a name. By the time Francis Galton wrote Natural
Inheritance, normal variability was the title of a chapter, the name of a curve, and
the name of a distribution (Galton, 1889). In this he was followed by Karl Pearson
(1894) and many others.

A normal distribution is sometimes called a Gaussian distribution, named for
Carl Friedrich Gauss. Gauss (1809) is the one credited with inferring the form of
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Figure 2.6 Landmarks of a normal distribution. The maximum value of the curve
on the vertical axis gives the “location” of the distribution, which is the mean
value of the probability density under the curve (here O on the horizontal axis).
Left and right inflection points of the curve give the “dispersion” of the distribu-
tion. Each inflection point is one standard deviation from the mean (41 on the
horizontal axis). The curve here is standardized to a unit integral or unit area
under the curve (making the total probability density = 1). Note that 68.3% of the
area under the curve lies within 41 standard deviation of the mean, 95.4% lies
within +2 standard deviations, 99.7% lies within +3 standard deviations, and
virtually all lies within 4 standard deviations. Reducing the standard deviation
will narrow the dispersion, and increasing the standard deviation will broaden it,
but the probability density within a given standard deviation range does not
change.

the error curve, which he wrote as o(A) = (h/\/m)-e ""*2 (parentheses and
multiplication symbols added), where phi denotes a function of delta, & is a
measure of precision (or dispersion), pi is the familiar ratio of circumference
to diameter of a circle, and e is the base of natural logarithms. Abraham de
Moivre published something similar in 1733 as an approximation to the binomial
distribution, as did Laplace in 1810 in the form of the central limit theorem
(Stigler, 1986).

2.3.1 Landmarks of a Normal Curve

If we look at any continuous normal curve (Figure 2.6), we see that it is
symmetrical, with three landmarks familiar from calculus. The most prominent
landmark is the highest point on the distribution. This point, the maximum value
of the curve, is also, from symmetry, the mean value of the distribution on the
horizontal axis, a parameter represented by u. The mean specifies the location
of the curve. Secondary landmarks are the two inflection points equidistant from
the mean. These differ from the mean on the horizontal axis by minus one
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and plus one standard deviation, a parameter represented by o, and the square
root of the variance o°.

For a distribution of constant size (standard area under the curve), the standard
deviation specifies the dispersion of the distribution. There is no negative or
positive limit to the distribution because the extreme values are asymptotic to the
horizontal axis. Note that 68.2% of the area under the curve lies within +1
standard deviation, 95.5% lies within 2 standard deviations, 99.7% lies within
43 standard deviations, and virtually all of the area under the curve lies within
+4 standard deviations. These proportions hold for any normal curve or
distribution.

The general form of the probability density function comprising the normal
curve and normal distribution is:

fx) =—=e @.1)

The curve is fit to an empirical sample by substituting sample values x and s for the
parametric mean y and standard deviation o, respectively. For y = 0 and o = 1,
Equation 2.1 simplifies to:

(2.2)

Both equations yield normal distributions standardized to a unit integral or a unit
area under the curve, making the total probability density equal to one as well.

2.4 Logarithms and Coefficients of Variation

Logarithms and exponentials of the same base are inverse or mirror transform-
ations. That is, log x, or simply “log x” here, is the inverse of 10*. Log, x, or “In
X" here, is the inverse of e*. Log, x is the inverse of 2*. The choice of bases is not
completely arbitrary but depends on the range of numbers being compared. Logq
is most useful when the range spans several orders of magnitude. Log, is most
useful when the range spans several doublings but lies within an order of
magnitude.

Napierian or natural logarithms, log. or In, are “natural” because they have
special properties. First, the natural logarithm for a number a > 0 can be defined as
the area under the curve y = 1/x as x increases (or decreases) from 1 to a (with the
area being negative for a < 1). Second, the slope of the curve y=Inxis 1 /x, and
the slope is 1 for x = 1 when and only when the base is e (y itself is O at this point,
as it is for logarithms of all bases). Natural logarithms are “natural” too with
respect to the population or sample variation that interests us here.
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For normal distributions of different sizes and shapes, the standard deviation s
increases in proportion to the mean x as well as the dispersion. The ratio of the two,
V = s/X, is commonly called the coefficient of variation (and sometimes multi-
plied by 100 to represent s as a percentage of x). The ratio is considered a measure
of dispersion independent of the mean. It is a special property of natural logarithms
that the variance of In transformed measurements approximates the squared coef-
ficient of variation V> (Lewontin, 1966), from which it follows that the standard
deviation of In-transformed measurements is a close approximation to the coeffi-
cient of variation V. The opposite is also true: The coefficient of variation V is a
close approximation to the standard deviation of In-transformed measurements.
For this reason, natural logarithms of base e are the preferred transformation for
measurements in biology rather than log, or log,.

Empirically, linear measurements of organisms commonly have V =~ 0.05,
meaning that for linear measurements a standard deviation will be about 0.05 units
on a natural log scale. Measurements of area commonly have V ~ 0.10, and a
standard deviation will be about 0.10 units on a natural log scale. And finally,
volumetric measurements of organisms such as weight commonly have V = 0.15,
and a standard deviation will be about 0.15 units on a natural log scale. Yablokov
(1974) provides extensive documentation. Note that for organisms that vary in size
but have similar shapes, the coefficients of variation 0.05, 0.10, and 0.15 are
proportional to the dimensions of the measurement: 1, 2, and 3 (Schmalhausen,
1935; Yablokov, 1974; Lande, 1977).

2.5 Arithmetic Normality versus Geometric Normality

Arithmos is the Greek word for number, and arithmetic is the science of counting
and calculation that involves addition and subtraction (and multiplication and
division), moving forward and backward on what is commonly called a “number
line.” An arithmetic progression is one that involves successive numbers differing
by equal amounts, such as 1, 2, 3, 4; or —10, —20, —30, —40.

Ge or gaia is the Greek word for Earth, and geometry is the science of
measurement, shape, and proportion. It started as measurement of land on the
Earth’s surface but progressed to measurement and comparison of sizes and shapes
of all kinds. The emphasis on proportion is evident in geometric progressions, such
as 1, 2,4, 8; or 1, 10, 100, 1000; or 0.050, 0.135, 0.368, 1.000.

A number line and arithmetic operations on it are relatively easy to relate to our
everyday experience of addition and subtraction, and slightly more complicated
versions of addition and subtraction in the form of multiplication and division.
Most of our measuring devices, such as rulers and weighing balances, are cali-
brated arithmetically and we read them by counting in units of convenience.
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This works well enough for comparisons that are inherently linear, yielding
numbers in arithmetic progression, but it does not work well for comparisons that
are inherently areal or volumetric, yielding numbers in geometric progression.
Geometry is called geometry because it is different from arithmetic. It involves
arithmetic, but it involves more and is an extension of arithmetic.

2.5.1 Francis Galton’s Giants and Dwarfs

The extraordinary limits [to the height of man], beyond which are found
monstrosities, seem to me difficult to fix ... When we suppose the
number of observations infinite, we may carry the differences to equally
infinite distances from the mean, and find the corrresponding probabil-
ities. This mathematical conception evidently cannot agree with that
which is in nature.

Adolphe Quetelet 1846 [1849], p. 102; italics added

The ordinary law of Frequency of Error, based on the arithmetic
mean, ... asserts that the existence of giants, whose height is more than
double the mean . .. implies . .. the existence of dwarfs, whose stature is
less than nothing at all.

Francis Galton 1879, p. 367; italics added

Quetelet took 5 feet 4 inches (1.62 m) as an average human height, and he accepted
1 foot 5 inches (0.43 m), exaggerated or not, as the height of the smallest dwarf.
This is a difference of 3 feet 11 inches. Quetelet then added 3 feet 11 inches to the
average height and predicted the limit to the size of giants to be 9 feet 3 inches
(2.82 m). Quetelet recognized, intuitively at least, that there was some disagree-
ment between the symmetry of his mathematical expectation and the asymmetry of
limits actually observed in nature.

Galton exaggerated slightly in claiming giants to exist that are twice as tall as the
average person, but he was clever in making an important point. Quetelet’s “average
man” was 1.62 meters or 162 cm tall. If a giant could be more than double this mean,
say 162 + 164 = 326 cm, then symmetry of the normal curve would imply that a
dwarf could be 162 — 164 = —2 cm tall: a Galtonian dwarf “whose stature is less
than nothing at all.” The conundrum is illustrated graphically in Figure 2.7a. How-
ever, experience now interferes — because we do not see people of negative stature,
nor do we see people that we might consider to be approaching zero or negative
stature. Galton’s exercise demonstrates that the “normal” curve of human stature
cannot be symmetrical. In arithmetic terms, there are fewer standard deviations to the
lower limit of human stature than there are to the upper limit.

The geometric equivalent of Figure 2.7a is illustrated in Figure 2.7b. The two
graphs have the same arithmetic axes, but vertical-axis values in Figure 2.7b are
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Figure 2.7 Comparisons of human stature in hypothetical human giants and
dwarfs. On an arithmetic scale (a), where stature is added and subtracted in equal
amounts, the postulated existence of giants more than double the mean implies, as
Francis Galton argued, the existence of dwarfs whose stature is negative or “less
than nothing at all.” In contrast, on a geometric scale (b), when stature is added
and subtracted in equal proportions, the existence of giants more than double the
mean implies, more plausibly, the existence of dwarfs whose stature is less than
half the mean. Vertical bar widths and step heights are standard deviations, with
heights in (b) calculated geometrically. The observed mean and standard devi-
ation are those of Quetelet’s French military conscripts, 162 cm and 7.28 cm, and
extreme statures assuming arithmetic normality are -1.8 and 326 cm. Equivalents
assuming geometric normality, expressed on a proportional (natural-log) scale,
are 5.09 and 0.045, with extreme statures of 4.39 and 5.78. Note that the existence
of a geometric giant is more likely than the existence of an arithmetic giant
because the doubling defining a geometric giant begins fewer standard deviations
from the mean (15.5 versus 22.5; neither is really likely).
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scaled geometrically. The vertical steps increase and decrease not by equal
amounts but by equal proportions. There are fewer standard-deviation steps to
the upper limit of 325 or 326 cm, and hence fewer steps to the lower limit when
both are scaled proportionally. Fewer standard-deviation steps to these limits, 15.5
in Figure 2.9b versus 22.5 in Figure 2.7a, means that the geometric limits are more
likely. Importantly, in the geometric case a lower limit of one halving matches an
upper limit of one doubling.

Galton (1879) and the Cambridge mathematician Donald McAlister (1879)
recognized that distributions of error and variation in terms of proportion
are just as plausible as distributions of error and variation in terms of amount.
Both men recognized that the appropriate measure of central tendency in such a
case is the geometric mean (exponentiated mean of the logarithms of measure-
ments) rather than the arithmetic mean of the raw observations. McAlister
(1879) then showed that the ordinary law of error applies to the logarithms
of measurements in the geometric case just as it does to raw measurements in
the arithmetic case.

Neither Galton nor McAlister used the term “lognormal,” but their work
implicitly introduced the concept. Both surely recognized that geometric normality
leads to an expectation of asymmetry, not symmetry, on an arithmetic scale.
However Galton, oddly, in his subsequent work followed a facile path and ignored
lognormality, writing, for example, “it was found that the distribution of stature
was sufficiently normal to justify our ignoring any shortcomings in that respect”
(Galton, 1889, p. 117). And “had I possessed better data, I should have tried the
geometric mean throughout” (Galton, 1889, p. 119).

Empirical distributions of biological variation like those in Figures 2.1 and 2.2
here, and similar distributions published by Weldon (1893; 1895) and others,
motivated Karl Pearson to develop an application of moments, borrowed from
physics and mechanics, to investigate normality and departures from normality.
He hoped, optimistically, to factor complex curves into normal components. The
first moment of a normal curve is the mean, and the second moment is the
variance. Pearson focused on the standard deviation, the positive square root of
the second moment, as the most appropriate measure of dispersion (Pearson,
1894), and then on a standardized third moment as a measure of asymmetry or
skewness (Pearson, 1895). Right or positive skewness was common if not
ubiquitous in the empirical distributions studied by Quetelet, Galton, Weldon,
Pearson, and others.

It may seem surprising that little attempt was made to analyze the distributions
as lognormal rather than normal, but this requires substantial samples structured
appropriately; it requires goodness-of-fit tests that were not available at the end of
the nineteenth century; and it also requires computational power that was not yet
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available. Pearson’s final word on lognormality, published in his biography of
Galton, reads as an epitaph:

I am unaware of any comprehensive investigation being ever undertaken to test the
“goodness of fit” of [Galton and McAlister’s] geometric mean curve to actual
observations. McAlister gives no numerical illustration, and I do not think Galton ever
returned to the topic. It would still form the subject of an interesting research, but /I fear the
Galton-McAlister curve would be found wanting.

Karl Pearson 1924, pp. 227-228; italics added

2.5.2 Empirical Support for Lognormality

One comparison of the normality and lognormality of biological variation started as
an attempt to use a large set of measurements to reject one or the other hypothesis.
Gingerich (2000) analyzed an extraordinary set of human measurements published
in a series of monographs resulting from the mid-twentieth-century All India
Anthropometric Survey. This professional government survey involved measure-
ment of numerous homogeneous sets of 50 adult human males of the same caste
and village, from villages broadly distributed across political states and geographic
regions of India. These were compiled and finally published, state by state, in
volumes issued by the Anthropometric Survey of India. Gingerich (2000) chose to
analyze two of the larger samples from the states of Maharashtra (Basu et al., 1989)
and Uttar Pradesh (Banerjee and Basu, 1991). The former provides 14 measure-
ments and 14 indices for 6,869 individuals and the latter provides the same
measurements and indices for 7,766 individuals.

The usual approach to the problem of normality is to consider arithmetic
normality as a null hypothesis, H, test this against a set of measurements, fail to
reject the null hypothesis, and then proceed as if variation is arithmetically normal
because the hypothesis was not rejected. However, failure to reject normality as a
null hypothesis rarely means anything because the samples employed are usually
too small to provide the statistical power required for rejection (Gingerich, 1995).

Empirical distribution function (or EDF) tests are among the most powerful
non-parametric goodness-of-fit tests for normality (D’ Agostino, 1986). Each test is
based on the fit of a stepped cumulative empirical curve to a model cumulative
normal curve with parameters estimated from the empirical sample. Lilliefors’
version of the Kolmogorov—Smirnov goodness-of-fit test involves a supremum
statistic representing the maximum deviation from expectation for all steps of an
EDF. Cramer-von Mises and Anderson—Darling tests employ quadratic statistics
representing sums of differently weighted squared differences. A full set of original
measurements or indices is required for computation of these statistics, and the
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goodness-of-fit is calculated first for the original measurements or indices, and then
for the logarithmically transformed measurements or indices. Details are given in
Gingerich (2000).

Goodness-of-fit tests of normality that treat arithmetic normality or geometric
normality (lognormality) as a null hypothesis often fail because: (1) as mentioned
above, small sample sizes mean neither hypothesis can be rejected or (2) when
sample sizes are large, both hypotheses can be rejected. The appeal of a model
is its generality, and empirical distributions rarely fit a general model exactly.
Thus, large samples often provide the power to reject all models. In Gingerich
(2000) measurements of low variability behaved differently from measurements
of higher variability. Stature is a low-variability measure with relatively small
coefficients of variation on an arithmetic scale and small standard deviations on
a geometric scale. The shapes of the distributions on the two scales are similar
(Figure 2.8), and the large Maharashtra and Uttar Pradesh samples taken as a
whole generally failed to reject either of the alternatives as a null hypothesis.
For measurements of higher variability such as body weight, involving larger
coefficients of variation and larger standard deviations (Figure 2.9), the large
Maharashtra and Uttar Pradesh samples generally forced rejection of both
hypotheses. Hence the large-sample tests failed in different ways, depending at
least in part on the variability of the measurement or index being examined.
Whatever the reason, most large-sample tests failed to distinguish normality from
lognormality.

An alternative approach to the normality versus lognormality problem is to
compare the two as alternative hypotheses and ask which is better supported by the
empirical information at hand. This is a classic likelihood solution (Edwards, 1972;
1992) to a problem where ordinary hypothesis testing fails. Alternative hypotheses
(H,, H,, etc.) are tested not by comparison to some statistical-model critical value,
but by comparison of the hypotheses to each other to see which has greater relative
likelihood or support. Support is the difference in the natural logarithms of the
probabilities associated with each hypothesis (arithmetic minus geometric) or,
equivalently, the natural logarithm of the likelihood ratio of probabilities favoring
one hypothesis over the other (arithmetic over geometric). Support scores are
additive. A positive support score favors arithmetic normality, and a negative
support score favors geometric normality.

Large-sample support scores for the Maharashtra measurements total —11.63
(for 12 of 14 measurement scores) and for the Uttar Pradesh measurements total
—25.56 (12 of 14 scores). Large-sample support scores for the Maharashtra indices
total —51.60 (6 of 14 index scores) and for the Uttar Pradesh indices total —55.24
(6 of 14 scores). Some measurement and index scores are missing because the
probabilities required for their calculation are too small to be computed.
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Figure 2.8 Likelihood comparison of arithmetic and geometric normality of
human stature, based on a sample of 6,863 adult men from Maharashtra (Basu
et al., 1989; Gingerich, 2000). (a and b) Normalized density histogram and
cumulative empirical distribution function (EDF; stepped line) for raw measure-
ments. (¢ and d) Normalized density histogram and cumulative EDF (stepped
line) for In-transformed measurements. Goodness-of-fit statistics are Lilliefors D,
Cramer-von Mises W, and Anderson-Darling A* (D’ Agostino, 1986). Support
for hypothesis H; (arithmetic normality) relative to H, (geometric normality or
lognormality) is given by the log-likelihood ratio, the natural logarithm of the
ratio of probabilities for the corresponding test statistic (e.g., —0.6388 = In
[0.2598/0.4921]). Mean support of 0.9585 for all three tests suggests that H;
(arithmetic normality) is about 2.61 times more likely than H, (geometric nor-
mality) for these measurements. The only goodness-of-fit statistic with a prob-
ability less than the critical value for significance (o < 0.05, asterisk) is
Anderson-Darling A%, Subsamples are more homogeneous and their relative
likelihoods are more tractable computationally (see text). Figure is modified from
Gingerich (2000), reproduced by permission of Elsevier Publishing

Fortunately, both the Maharashtra and the Uttar Pradesh surveys were carried
out caste by caste and village by village, and then published as a collection of
smaller and more homogeneous subsamples preserving this information. Most
subsamples include measurements and indices for 50 individuals. The best way
to take advantage of all of the information is to calculate support scores for each
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Figure 2.9 Likelihood comparison of arithmetic and geometric normality of
human body weight, based on a large sample of 6,857 adult men from Maharash-
tra (Basu et al., 1989; Gingerich, 2000). (a and b) Normalized density histogram
and cumulative empirical distribution function (EDF; stepped line) for raw
measurements. (c and d) Normalized density histogram and cumulative EDF
(stepped line) for In-transformed measurements. Goodness-of-fit statistics are
Lilliefors D, Cramer-—von Mises Wz, and Anderson—Darling A? (D’ Agostino
1986), as in Figure 2.8. All test statistics for H; and H, have probabilities much
less than the critical values for significance (o < 0.05 and o < 0.01, double
asterisk), indicating that the empirical distributions do not fit either model.
Probabilities are too small to compute in four of the six tests, compromising
calculation of mean support. Subsamples are more homogeneous and their rela-
tive likelihoods are more tractable computationally (see text). Figure is modified
from Gingerich (2000), reproduced by permission of Elsevier Publishing

measurement or index for each subsample and then add these together. Pooled
support scores for 143 Maharashtra samples of measurements total —288.90 (14 of
14 scores) and for 153 Uttar Pradesh samples of measurements total —136.40 (14
of 14 scores). Pooled support scores for 143 Maharashtra samples of indices total
—539.08 (14 of 14 scores) and for 153 Uttar Pradesh samples of indices total
—338.50 (14 of 14 scores).

For Maharashtra 5 of 14 subsample support sums for measurements are positive
and 9 are negative. Two subsample support sums for indices are positive and
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12 are negative. For Uttar Pradesh 4 of 14 subsample support sums for measure-
ments are positive and 10 are negative. One subsample support sum for indices is
positive and 13 are negative.

There is some variation in likelihood support scores, but for large samples
studied to date, whether analyzed as a whole or divided into homogeneous sub-
samples, virtually all support scores are negative. Thus, empirically, geometric
normality is favored over arithmetic normality. This supports the Elliott (1863),
Galton (1879), and McAlister (1879) claims that distributions of variation should
be studied in terms of proportion, and supports the Galton—-McAlister application
of the “law of error” to the logarithms of measurements. Deficiencies of the
arithmetic methods of measurement we use to study geometric phenomena are
easily compensated by transforming measurements to logarithms.

2.6 Applications of Normality and Lognormality

The normality of biological variation has a number of important consequences,
following first from normality itself, and then from the geometric nature of normality.

2.6.1 Phenotypes and Genotypes

The classical Greek words phaino and phaneros, meaning manifest and evident,
are the roots of common English words such as phenomenon and phenomenal.
Phenomena are observable, perceived through the senses rather than inference or
intuition. Phaenotypus was introduced in biology by the Danish botanist Wilhelm
Johannsen (1909, p. 123), and “phenotype” is the name commonly given to the
observable form and behavior of a single organism or a statistical population of
organisms. The word was introduced to distinguish what is seen (the phenotype)
from what is unseen (Johannsen’s Genotypus or genotype) in an organism or
population, reflecting how genetic inheritance and development were understood
at the time.

Johannsen (1909, p. 130) was most impressed by the divergent phenotypes of
sexually dimorphic organisms, and he reasoned that the way the phenotypes are
manifest says nothing (“absolut nichts”) about the underlying genotype. Johannsen
argued that phenotypic differences can be seen where no genotypic differences
exist, and genotypic differences exist where no phenotypic differences can be seen.
More is known today, and one is reluctant to criticize someone writing a century
ago, but Johannsen was wrong to think phenotypes tell us nothing about under-
lying genotypes. Normal distributions of variation like those in Figures 2.1-2.2
and 2.8-2.9 are constructed from the addition of many genetic differences of small
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effect. Additive genetic variance underlies virtually all of the polygenic, normally
distributed traits of interest in quantitative evolutionary studies.

2.6.2 Quetelet’s “Average Man”

Measurement error and biological variation are both normally distributed, and
hence “error” and “variation” are commonly conflated. However, they are not
the same. One reflects the error inherent in repeated observation of a system
(possibly combined with variation in behavior of the system itself). The other
reflects true variation in a system (possibly combined with error in observation of
the system). This is important in considering the meaning of constructs like
Quetelet’s (1835) “average man.” There is an average value for any characteristic
we can measure, but what is its meaning?

The mean value for a normal distribution of error is taken to represent the true
value being measured, and there is only one expected or “normal” value. On the
other hand, the mean for a normal distribution of natural variation is just one of
many expected values, and the whole of the observed distribution is what is
“normal.” If the chest circumference in Figure 2.1a were an error distribution,
the expected value would be the mean value of 39.84 inches. However, it is not an
error distribution but a distribution of natural variation, and the expected value is
the whole bell-shaped exponential curve centered on the mean.

2.6.3 Species Comparisons

It is sometimes challenging to compare the variability of traits in one biological
species or population with the variability of traits in another because the variability
of the traits so often depends on the size of the organisms involved: standard
deviations depend on their associated means. In the example of Figure 2.10a the
white-tailed deer Odocoileus virginianus on the right side of the chart has a much
broader range of variation in cranial length than does the deer mouse Peromyscus
maniculatus on the left side of the chart. The two distributions of variation are very
different in shape, with standard deviations of 1.53 and 20.45, respectively, and no
consistent expectation. The problem is more difficult of course when attempting to
understand how questionably identified organisms might group into species. One
commonly accepted solution is to consider variability in relation to the mean by
calculating a coefficient of variation: the standard deviation divided by the mean.
When we do this for the deer mouse and the deer we see that the coefficients of
variation for cranial length, 0.078 and 0.073, are closely comparable, and we can
safely expect other species to have similar coefficients of variation.
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Figure 2.10 Comparison of empirical cranial length distributions for five mam-
malian species commonly found in Michigan. (a) Cranial length on the arithmetic
scale of measurement, where small species have a relatively narrow range of
dispersion and large species have a much greater range. (b) Cranial length on a
geometric scale following transformation of measurements to base-e natural
logarithms. Note that In-transformed measurements have distributions that are
similar across species, facilitating interpretation of species differences and species
boundaries. The ranges of In-transformed linear measurements like those shown
here average about 0.3—-0.4 units on an In scale (£3 = 6 standard deviation units).
The same standardization can be achieved with base-2 and base-10 logarithms,
but base-e is preferred because one standard deviation closely approximates the
ordinary coefficient of variation. (Lewontin, 1966)

An equivalent and more powerful approach to standardization is to compare
the species on a logarithmic geometric scale rather than the arithmetic scale
of measurement. This comparison is shown in Figure 2.10b, where now the
distributions for all five species are much more similar. Natural-log transform-
ation of measurements is preferred because the resulting standard deviations
approximate the coefficients of variation just calculated (0.078 and 0.073,
respectively; see Lewontin, 1966, for an analytical explanation). Base-2 and
base-10 logarithms are equally effective in standardizing variation and making
species comparable, but they do not have the advantage of practical equivalence
to the coefficient of variation.

Why is the variability of a trait proportional to the size of the trait? This is an open
question that may be related to the generation of variation, or to functional limits
governing interactions within a population, or both. It is important to acknowledge,
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first, that variability is proportional to size and, second, that logarithms provide a
simple way to standardize this proportionality.

2.6.4 Allometry

The paleontologist Henry Fairfield Osborn (1925) introduced what he called the
“principle of allometry” to emphasize the importance of “‘change of proportion” in
vertebrate evolution. Julian Huxley (1924, 1932) first called this “heterogony,”
following Albert Pézard, but later adopted the word “allometry” (Huxley and
Teissier, 1936). Allometry is a biological equivalent of geometry in mathematics
— each is given a name to distinguish it from simple additive arithmetic.

In a study of fiddler crabs, Huxley (1924) found that the variable y, representing
the weight of the large chela of males, was related to x, body weight less the weight
of the chela, by the relation:

logy = klogx + logh (2.3)
Huxley then expressed this in what he called its “simplest” form as:
y = bx* (2.4)

It is debatable whether a power function is simpler than a linear equation, although
it may have seemed so in Huxley’s day when logarithmic transformation required
book-length tables. Equations 2.3 and 2.4 are alternative representations of the
same relation, one geometric and one arithmetic. One involves logarithms and the
other does not.

Logarithmic transformation converts ranges of equivalent proportion to ranges
of equivalent size. Exponentiation does the opposite, transforming ranges of equal
size to ranges of equal proportion. The mouse-to-elephant simulations in
Figure 2.11 show the effects of logarithmic and exponential transformation. The
curved progression of small-to-large species in Figure 2.11a, each of equivalent
coefficient of variation, becomes straight and uniform when measurements are
transformed to proportions, logarithmically, in Figure 2.11b. The straight and
uniform series of species in Figure 2.11b, each of equivalent range, becomes a
curved progression of small-to-large species when proportions are transformed to
measurements, exponentially, in Figure 2.11a.

The ellipses representing species in the simulation of Figure 2.11b have 95%
confidence ranges of about 0.20 units on both the length (x) and width (y) axes.
A 95% confidence range corresponds to +2 standard deviations (Figure 2.6), for a
full range of four standard deviation units. The standard deviations of tooth length
and width in the simulation are each 0.05, and the coefficients of variation V are
0.05 as expected for a linear measurement. We would expect a standard deviation
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Figure 2.11 Relative sizes of 21 simulated “mouse-to-elephant” model species,
here labeled a — u, represented by measurements of first lower molars. (a) Species
on arithmetic axes representing the scales of measurement. (b) Species on geo-
metric or allometric axes representing the scales of functional relationship.
Ellipses enclose 95% confidence regions for 50 individuals drawn at random
from bivariate normal populations. Means u of successive species increase by the
Hutchinsonian ratio 1.28, and standard deviations in A and B are o =0.05 - y and
o = 0.05, respectively. The within-species correlation between x and y is constant
at p = 0.3. Note the consistent size ranges and uniform spacing of species when
plotted on geometric axes. This consistency simplifies comparison and interpret-
ation, and is itself an indication that the underlying functional relationships of
molar length and width are geometric. Figure is modified from Gingerich (2014),
reproduced by permission of John Wiley and Sons Publishing

of tooth crown area (length x width) to be about 0.10, and a standard deviation of
tooth crown volume (length x width x height) to be about 0.15. It would be
difficult to see such regularity and consistency in the very same tooth sizes when
plotted on arithmetic axes, as they are in Figure 2.11a.

2.6.5 Limiting Similarity

In 1958, G. Evelyn Hutchinson delivered a classic presidential address to the
American Society of Naturalists. His title, “Homage to Santa Rosalia,” recalled a
happy day spent collecting water bugs on Monte Pellegrino in Sicily (Hutchinson,
1959). Two species were present in a pond, one small and one a little larger. This
started Hutchinson thinking about why there are so few, and so many, species in
nature. He then asked himself about “limiting similarity.” What morphological
difference is required for closely related species to occupy adjacent niches at the
same level in a food web? Hutchinson found, empirically, that closely related
species living sympatrically differ in linear measurements by a factor averaging
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about 1.28, which he considered the minimum difference necessary to fill different
niches. Hutchinson expressed this as 1.28/1.00, or 1:1.28, and 1.28 is now known
as a “Hutchinsonian ratio.”

But what if the measurement comparing species is two dimensional instead of
linear? What if it is three dimensional? We can investigate this as Hutchinson
(1959) investigated the limiting similarity for linear measurements. Hutchinson’s
first example, comparison of males of two sympatric mustelid species found
in Great Britain, employed measurements published by Miller (1912). The
smaller of the species, Mustela nivalis, is the British weasel, and the larger of
the species, M. erminea, is the stoat or short-tailed weasel. Miller (1912)
provided measurements for crania of 12 male M. nivalis and 12 male
M. erminea, including condylobasal length, zygomatic breadth, and occipital
depth (Miller’s measurements are in tables starting on his pages 392 and 408).
The male M. nivalis crania average 39.5 mm in length, and the male M. erminea
crania average 50.5 mm in length, yielding the 1.28 ratio that Hutchinson
reported.

If we multiply Miller’s measurements of cranial length by zygomatic breadth,
we have a measure of cranial area. This averages 859.1 mm? for crania of male
M. nivalis, and 1474.1 mm? for crania of male M. erminea, yielding a Hutchinso-
nian ratio for area of 1.72. If we multiply Miller’s measurements of cranial length
by zygomatic breadth by occipital depth (height), we have a measure of cranial
volume. This averages 9,046 mm?® for crania of male M. nivalis, and 19,530 mm’
for crania of male M. erminea, yielding a Hutchinsonian ratio for volume of 2.17.
Results are shown graphically in Figure 2.12. Hutchinsonian ratios for lengths,
areas, and volumes are clearly sensitive to the dimension of the form being
represented.

The Hutchinsonian ratios of 1.28 for lengths, 1.72 for areas, and 2.17 for
volumes are sensitive to dimension. If we take the natural logarithms of these,
we find that a ratio of 1.28 for length measurements is equivalent to separation by
0.25 units on a natural log scale; a ratio of 1.72 for areas is equivalent to separation
by 0.54 units on a natural log scale; and a ratio of 2.17 for volumes is equivalent to
separation by 0.77 units on a natural log scale. These separations of 0.25:0.54:0.77
are almost exactly in the proportions 1:2:3, showing again their sensitivity to the
dimensions being measured.

If a standard deviation is equivalent to 0.05 units on a natural log scale, as
modeled above, then a separation of 0.25 for limiting similarity of cranial length
would be equivalent to a separation of 5 standard deviations. If a standard deviation
is equivalent to 0.10 units on a natural log scale, then a separation of 0.54 units for
limiting similarity of cranial area would be equivalent to a separation of 5 standard
deviations. And finally, if a standard deviation is equivalent to 0.15 units on a natural
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Figure 2.12 Quantification of limiting similarity for closely related species occu-
pying adjacent niches at the same level in a food web. Example is from Hutch-
inson (1959), extended to include differences in (a) cranial length, (b) cranial area,
and (c) cranial volume. Measurements from Miller (1912) compare male weasels,
Mustela nivalis, and male stoats, M. erminea, sympatric in Great Britain. Differ-
ences between species quantified as Hutchinsonian ratios (1.28, 1.72, and 2.17) or
in natural log units (0.25, 0.54, and 0.77) remain proportional to the dimensions
(1, 2, and 3) of the lengths, widths, and volumes involved. Vertical lines within
normal curves show standard deviations (see Figure 2.6; here averaged across the
two species). Note that quantification in standard deviation units removes the
effect of dimension and yields a consistent measure for limiting similarity of
about seven standard deviation units in all three cases.

log scale, then a separation of 0.77 units for limiting similarity of cranial area would
again be equivalent to a separation of 5 standard deviations. Empirically, the weasels
and stoats studied by Miller and Hutchinson are a little less variable than modeled
above, the standard deviations average 0.03, 0.07, and 0.11 rather than 0.05, 0.10,
and 0.15, and the limiting similarity for weasels and stoats is close to seven standard
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deviations for lengths, areas, and volumes. This example is important because it
illustrates how standard deviation units incorporate dimensionality and eliminate its
effect, making standard deviations the preferred units for expressing limiting simi-
larity. For this reason standard deviation units represent differences between variable
populations more effectively than any ratios or differences on a proportional scale.
This comes up again later when we consider how to quantify evolutionary rates.

2.7 Summary

1. Darwin emphasized variation, individual differences within species, as “highly
important” for natural selection. Variation is indeed essential for the process
to work.

2. Attempts to quantify biological variation in the nineteenth century focused on
resemblance of this variation to distributions of measurement error in astron-
omy and physics.

3. Measurement error is generated independently in astronomical and other phys-
ical observations, but in biology variable populations evolve from variable
populations. Quetelet’s “average man” was misguided: The expectation in
biology is not an average over and over, but a full distribution of variation in
each successive generation.

4. Normal distributions can be generated by summing permutations across com-
binations of flipped coins or rolled dice. By analogy, normal distributions of
variation in biological populations reflect “additive genetic variance” and the
sum of many small differences in constituent individuals.

5. Arithmetic is mathematics based on counting, and geometry is mathematics
based on proportion. Theoretically and empirically the normality of biological
variation is geometric rather than arithmetic: biological variation is lognormal
rather than normal, and individual differences are differences of proportion.
Logarithms employed to transform counts to proportions can be chosen to
reflect halving and doubling (log,), standardized deviations (In or log,), or
orders of magnitude (log;g).

6. Allometry is the biological equivalent of geometry, and the allometric equation
in simplest form is a linear equation relating dependent log Y to independent log
X, or dependent In Y to independent In X.

7. Finally, comparisons of populations in standard deviation units incorporate
dimension and remove its effect, making standard deviations the preferred units
for expressing the similarities and differences of variable populations.
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