
3
First Contact: the Proper Category

3.1 Overview

Having given some idea of the kinds of manifolds to which the Borel conjecture
applies directly in Chapter 2, we consider now the effect of modifying Borel’s
heuristic. Taking light of Prasad’s (1973) extension of Mostow rigidity to the
case of nonuniform lattices, we ask whether topological rigidity holds in this
context?

It was already noticed in the early 1980s that this is not the case. Making
use of Borel’s calculations of the stable cohomology of SLn(Z), Farrell and
Hsiang observed that for n >200 and Γ a torsion-free subgroup of finite index
in SLn(Z), the quotient SOn\SLn(R)/SLn(Z) is a not “properly rigid;” i.e. there
are infinitely many manifolds M not homeomorphic to SOn\SLn(R)/SLn(Z),
but proper homotopy-equivalent to it.

Actually this happens iff n ≥ 4 (and, moreover, the same is true for any
number rings in place of Z) as we will §3.7.1

The goal of this chapter is to explain this in its natural setting, using it as an
excuse to explain some aspects2 of the structure of K\G/Γ,3, Property (T),4 L2

cohomology5, and some surgery theory that we will need in later chapters. Not
as critical on utilitarian grounds, but nevertheless important, are discussions of

1 Actually, we will only explain the failure of proper rigidity if n > 3; its affirmative solution
depends on the “Borel conjecture with coefficients” and will have to wait till later.

2 The next several footnotes are intended for the more expert reader.
3 The discussion of which is also relevant to the proof of the Novikov conjecture for linear

groups explained in Chapter 8.
4 Which we will use, as is traditional, in the construction of expanders, which are relevant to the

failure of forms of the Baum–Connes conjecture.
5 Which is used in the proof of the flexibility theorem later that affirms a consequence of the

Farrell–Jones conjecture and of the Baum–Connes conjecture unconditionally.
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32 First Contact: the Proper Category

the cohomology of arithmetic groups (ultimately these discussions go to the
very meaning of the conjecture),6 and superrigidity.

The outline of the chapter is as follows: we will first explain the overall shape
of K\G/Γ (which is a far-reaching generalization of the classical nineteenth-
century reduction theory of binary quadratic forms) and give some informa-
tion about the Borel–Serre compactification of this manifold (Borel and Serre,
1973). Then we will discuss some generalities about the cohomology of arith-
metic groups and describe Borel’s results on these groups.

Assembling all of this with some surgery theory, we will see a critical
role played by the Q-rank. The case of Q-rank = 0 corresponds to the compact
manifolds, i.e. the Borel conjecture in its usual sense, and ifQ-rank < 3, it turns
out that these noncompact manifolds behave (for the purposes of topological
rigidity) just like the compact case, and results explained later in the book
will give their proper rigidity. Nonrigidity will immediately follow from the
combination of surgery theory with Borel’s calculations for very large n (as
mentioned above, n > 176).

Both for the purpose of lowering n and for allowing a wider range of Lie
groups (and for the purposes of later developments) we digress and explain
several important properties of lattices in higher-rank groups, and of certain
linear groups.

The first of these topics is strong approximation. This property of linear
groups will give us control on certain finite quotients of linear groups. We will
need this only in this chapter, so our discussion will be brief.

We then turn to Kazhdan’s Property (T). Our focus will merely be on defi-
nitions, and we leave to other sources serious discussions of the scope of this
property and its remarkable applications. These ingredients are then assembled
and combined with superrigidity7 to show that any lattice that has Q-rank ≥ 3
has a finite sheeted cover that is not properly rigid.

This proper rigidity we thus obtain is somewhat weaker than one would hope:
it asserts the existence of a proper homotopy equivalence f : M → K\G/Γ that
is not properly homotopic to a homeomorphism. We will need to work harder
to ensure that M is not homeomorphic to K\G/Γ (by some other map), and
that M is smoothable, and to get the set of such Ms to be infinite. For these
we will use a mix of tools from comparison to the Lie algebra mod p, to the
Baily–Borel compactification in the Hermitian case, to the use of “generalized
modular symbols” of Ash and Borel (1990), in order to give a definitive solution
for all SLn(O) (with O a number ring) and for all Γ of Q-rank > 3. (Alas, at

6 As the cohomology of groups gives rise to geometric consequences via the Novikov conjecture.
7 The extension of linear representations from lattices to the semisimple Lie groups that contain

them.
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3.2 K\GΓ and its Large-Scale Geometry 33

the time of this writing, for example, the proper rigidity properties of certain
lattices in E7 are still not well understood.)

We close the chapter by considering the morals of this story, a reexamination
of the forest having focused on particular trees. Despite the failure of proper
rigidity, we consider noncompact variations of rigidity that actually are true for
these locally symmetric spaces. We also discover a role for functoriality in this
problem – an aspect which could seem surprising given that the initial problem
is purely about certain very specific and beautiful objects.

3.2 K\GΓ and its Large-Scale Geometry

. . . in which we encounter the Tits building and the Borel–Serre
compactification8

If G is a connected Lie group, then it has a maximal compact subgroup K ,
which is unique up to conjugacy. Topologically, K\G is contractible. Give G
a right invariant and K bi-invariant metric. If G is semisimple (i.e. has no
normal solvable subgroups), then K\G gets a complete metric of non-positive
curvature.

As discussed in Chapter 2, G often contains lattices. We shall assume (for
simplicity) that G is given the structure of linear algebraic group defined over
Q. The first lattices one thinks of are G(Z) and its congruence subgroups, i.e.
matrices lying in G(Z) that are ≡Imod n. (We have to do this if we want to
restrict attention to torsion-free lattices so that K\G/Γ is a manifold – the
quotient space being a manifold means that the action of Γ on K\G is free: the
isotropy of the action of Γ on the right has to be a compact subgroup of the
discrete group Γ, and hence finite, and will be trivial when Γ is torsion-free.
Conversely, when Γ has torsion, each element of finite order has a fixed point
in K\G, making the quotient an orbifold.)

The possibility of other algebraic number fields is not essentially eliminated
by this condition, because of the method of restriction of scalars: the group
SLn(Z

√
2) is a lattice in SLn(R) × SLn(R). For uniform lattices, as we saw

in §2.2, there are other arithmetic lattices that come from G having compact
forms that are Galois conjugate to the given form – because a lattice in G ×G′

gives us one in G by projecting if G′ is compact (or alternatively, G and G×G′

are isomorphic after modding out by their maximal compact subgroups). For
the noncompact case, these more subtle lattices don’t play a role – since all the
forms must be noncompact (because Γ contains unipotents and compact groups
do not), so the definition of arithmeticity is somewhat less subtle in this case.
8 With apologies to A.A. Milne
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34 First Contact: the Proper Category

While our focus in Chapter 2 was on the compact case, here we are interested
in what occurs in the noncompact case. An important theorem of Borel and
Harish-Chandra9 “blames” noncompactness on a “Q-split torus” for G.

Let us follow this subgroup around in the simplest situation SLn(Z). We will
see an even more precise picture than mere noncompactness.

In SO(n)\SLn(R) we can consider the torus of diagonal matrices (such that
the product of their entries is 1). As a space of tori, these are the “rectangular”
tori. Taking the logs of these eigenvalues, we get a map to Rn−1 (the elements
of Rn that have the sum of their components equal to 0). The symmetric group
Σn acts on this by permutation – without loss of generality, we can assume that
the eigenvalues are listed in increasing order. This gives us a polyhedral cone
in Rn−1 and a subset of SO(n)\SLn(R)/SLn(Z). This subset gives us a very
good large-scale picture of this quotient manifold: for example, this embedding
is essentially undistorted, and every point in the quotient space is of uniformly
bounded distance to a point of this sector. Moreover, this statement is true if
Z is replaced by integers in a totally real field. Although the real Lie group
this embeds in a product of SLn(R)s, the effect of taking the quotient by the
action of SLn(O) is to cuts it down to the size of the polyhedral cone that is the
quotient of the maximal flat.10 The proofs of these kinds of statements are the
subject of “reduction theory,” developed by C.L. Siegel (1988), A. Borel, and
their successors (see Borel and Ji (2005) for a modern account).

For other lattices we will have to glue together copies of this sector according
to some combinatorial description governed by the theory of Tits buildings –
which records the combinatorics of the parabolic subgroups. All of this is first
most easily observed in yet another, even simpler, example, the product of
hyperbolic manifolds

∏
Mi . After discussing this toy example, we will return

to SO(n)\SLn(R)/SLn(Z) and the general case.
Each noncompact hyperbolic manifold M has a core, with cusps coming off.

Pick a base point, and a sequence of points going towards infinity in each of
the cusps. The geodesics connecting this base point to those points converge to
a finite union of geodesic rays, each of which is isometrically embedded in the
manifold (see Figure 3.1).

This union of geodesics looks like an asterisk with one “prong” for each
cusp; we denote this by A. (This is the direct analogue of the polyhedral cone
from the SLn(Z) case.)

One can imagine a map from M to A, roughly mapping each point to the

9 See Borel and Harish-Chandra (1961).
10 This is very much like the phenomenon that occurs in the Dirichlet unit theorem, where all of

the directions in logarithm space for the various embeddings of the units just curl it up into a
torus.
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Figure 3.1 Adapted from Thurston’s notes

point on the asterisk closest to it, (and then modifying it slightly on a compact
set, arrange the map so that the inverse image of the base point is the core of
M , and the inverse image of any point in one of the rays is a “flat manifold
horospherical section” of the cusp.

Let me elaborate on the terminology.
The isometry group of hyperbolic spaceHn is O(n,1) – which we will imagine

via the ball model. The isometries form three classes: elliptic, hyperbolic, and
parabolic. Each elliptic element has fixed points in the interior, and lies in
a maximal compact. (The action of the isometry group is transitive, so what
fixes one point is conjugate to what fixes any other point: hence, the maximal
compact subgroup is unique up to conjugacy.)

Hyperbolic elements act via translation along a geodesic (with some rotation
in the normal direction.11) A parabolic element has a unique fixed point on the
boundary sphere at∞.

Given such a fixed point, the horosphere going through that point can be
defined as follows. Choose a unit speed geodesic γ going from p to a specific
point at∞. Now consider the sphere of radius R centered at γ(R). The limit set
of these spheres is an orbit O(n,1)p/O(n,1)∞. The isotropy group is a parabolic
subgroup, which is isomorphic to the semidirect product O(n−1)�Rn−1 which
is the isometry group of Rn−1.

(In general, parabolic subgroups are those subgroups that contain a Borel

11 Following Thurston (2002), we do not distinguish between hyperbolic isometries and
“loxodromic” ones.
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36 First Contact: the Proper Category

subgroup, i.e. a maximal connected solvable group. They are the isotropy
groups of points on the boundary of K\G.)

Now let us return to our hyperbolic manifold with a number of cusps. Lifting
the geodesics associated to the cusps gives a finite set of points on the boundary,
which are fixed points of nontrivial parabolics. The subgroup of Γ fixing a
(lifted) cusp acts as a lattice on the horosphere. The quotient is a flat manifold
(which is a cross section of the cusp – choosing another point p on γ would
give a parallel cross section).

The product of a number of hyperbolic manifolds both contains and maps
to the corresponding product of asterisks, which is a polyhedral cone whose
dimension in the Q-rank of this product lattice.12

Note that the inverse image of a point in this cone depends strongly on which
face that point lies on. It will be a product of some number of cores and some
number of flat manifolds. (Note that by taking finite covers of this product, we
can mangle the product structure, but will still get a similar union of flat pieces
approximating the manifold.)

For SLn the picture is similar. We’ve seen the cone, and the inverse of
a point in the interior of the top simplex is a nilmanifold: isomorphic to
UT(n,R)/UT(n,Z), where UT(n,?) denotes the group of upper triangular ma-
trices with (1s on the diagonal and) entries in ‘?’.

Recall that a point in the top simplex corresponds to a diagonal matrix,
whose eigenvalues are distinct. This unitary group is the unipotent subgroup of
the matrices that preserve the flag given by these subspaces. A point in a dif-
ferent simplex corresponds to some coincidences among eigenvalues. At these
points, one has an incomplete flag and normal to it one has a “genuine” lattice
part (corresponding to a product of SLs associated to the various combined
eigenspaces) with a nilpotent bundle over that associated to the unipotents that
are the identity module the flag.

As one moves towards infinity, the unipotent pieces have volume that decays
rapidly to 0,13, and that is what accounts for the finiteness of the volume of
these nonuniform lattices. The lattice part stays bounded in size (but does not
shrink14).

12 Here by Q-rank we merely mean the number of noncompact hyperbolic factors, whether or not
they are arithmetic. As a consequence of Margulis’s arithmeticity theorem, all, even
non-arithmetic lattices, can be approximated by finite polyhedral cones, defining for us Q-rank
even when there is no Q-structure! The reason is that there is such a structure for negatively
curved manifolds, and everything is virtually a product of negatively curved homogeneous
spaces and arithmetic ones.

13 A nilmanifold is essentially “an iterated fiber bundle of torus on top of torus and so on”. The
layers shrink at different rates. Gromov (1978) has shown that manifolds with metrics of
bounded curvature but diameter going to 0 are finitely covered by nilmanifolds.

14 This is also similar to what occurs in the case of a product of hyperbolic manifolds – the
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Another concrete case for which the calculations are not difficult is the case
of Hilbert modular groups,15 Γ = SL2(OF ) where F is a totally real field of
degree d. In that case, there are finitely many cusps (equal to h(OF ), the class
number of the ring16). This group acts on a product of d hyperbolic planes
(where d = [F; Q]). The cusps are actually solvable manifolds.17 The bounded
part is a torus corresponding to O∗F . The fiber is the torus Rd/OF and the
monodromy of this bundle is the action of O∗F on OF . The base torus stays
of bounded size as one goes down the cusp (it takes some distance to work
up the twist corresponding to a nontrivial unit), while the fiber torus decays
exponentially by homothety as one goes down the cusp.

Now let us work in general, guided by these special case. If G is a linear
algebraic group defined over Q, we shall define a simplicial complex, the Tits
building of G using the parabolic subgroups of G. The minimal parabolic is B,
by definition, the Borel subgroup, and G itself is the maximal parabolic.

To a parabolic P we associate a simplex σP so that σP ⊂ σQ iff Q ⊂ P. The
group G corresponds to the empty simplex. The maximal simplices correspond
to (conjugates of a) Borel18 subgroup.

It is a very nice theorem of Solomon and Tits (proved rather geometrically:
see, e.g., Abramenko and Brown, 2008) that this complex has the homotopy
type of a wedge of spheres of dimension q − 1 (where q = Q-rank).

The Borel–Serre compactification (Borel and Serre, 1973) of K\G/Γ is a
compact manifold19 with boundary so that K\G/Γ is its interior. Actually, it
has a more refined structure: it has the structure of a manifold with corners –
and this structure carries a great deal of geometry in it, but we will not need
this.

The compactification takes place on K\G, and is G(Q)- (but not G(R)-)
equivariant. Associated to P we have a Euclidean space eP so that dim eP +
dimσP = q − 1. These open cells are disjoint, but eP ⊂ cl(eQ) iff P ⊂ Q.

The corner structure comes like this. The unipotent subgroup of P acts
on K\G as a free (R+∗)dim(σP )+1-proper action. Include each orbit into the

inverse images of points that are not in a top simplex have bounded diameter, which does not
go to 0 as the point moves to infinity. Of course, the volumes of these point inverses go to 0
very rapidly, or the locally symmetric manifold could not be finite volume.

15 See Freitag (1990) for a crystal clear explanation.
16 For congruence subgroups, the number of cusps is the order of a ray class group.
17 That non-nilmanifolds arise is because here G has rank greater than 1, and we are dealing with

nonpositive curvature rather than strict negative curvature.
18 It is not instantly obvious that this is a simplicial complex. A hint is that for simple algebraic

groups, the conjugacy classes of parabolic subgroups are in a 1–1 correspondence with subsets
of the nodes of the Dynkin diagram.

19 Actually, when Γ has torsion, it is an orbifold.
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(R+∗)dim(σP )+1-space ([0,∞))dim(σP )+1. One can thus compactify each orbit.20

The relations among the parabolic subgroups enable one to glue these together
to include K\G as the interior in a manifold with corners on which the G(Q)-
action extends. Borel and Serre topologize this union as a manifold so that the
action of Γ on it is continuous and proper discontinuous. In particular, they see
that down in the quotient, they obtain a compactification.

They also observe that the boundary of K\G so obtained has the Tits complex
as its nerve and therefore the Γ cover of the ∂ has the homotopy type of a wedge
of spheres

∨Sq−1.
In the case of a lattice ofQ-rank 1, the picture is the one of isolated cusps, and

the compactification glues onto the end a copy of the slice of the horosphere. For
a product of these manifolds, one obtains the product of these compactifications
(and, of course, the corner structure is evident in this case).

Moreover, using the fact that the universal cover of these closures are con-
tractible, it is quite easy to see that the boundaries look like joins of the
boundaries of the universal covers of the original compactified factors – and
hence an infinite wedge of spheres,

∨
Sq−1 (where q is the Q-rank).

Note then the underlying homotopy type:

• If Q-rank = 0, then we must be compact (and the homotopy type is that
of �).

• If Q-rank = 1, then the cover of the boundary is a union of copies of the
universal cover of the boundary. Thus the Borel–Serre boundary is a (union
of) aspherical manifold(s) whose fundamental group is a subgroup of Γ (of
course, it’s a lattice in the parabolic associated to that cusp).

• If Q-rank = 2, then we get a pleasant surprise, the boundary is connected –
which means that every compact subset of K\G/Γ has a unique component
with compact closure (i.e., it has one end).

Moreover, the boundary is a closed aspherical manifold, since it has an as-
pherical cover, namely the regular cover associated to Γ, which is homotopy
equivalent to a wedge of circles.21

This is actually a very interesting aspherical manifold that is not a lattice
in any Lie group! However it is not really a surprise to us – the Tits building
in this situation is a graph, and we have lattices associate to the nodes, glued
together according to “boundaries” along the edges22. Like 3-manifolds, these

20 Formally, one should take an associated bundle to viewing K\G as a
(R+∗)dim(σP )+1-principal bundle using this action on the octant ([0,∞))dim(σP )+1.

21 Note that aspherical is equivalent to all higher homotopy groups vanishing, but higher
homotopy groups are unchanged in covering spaces.

22 For example for SL3(Z) one gets two copies of SL2(Z) � Z2 thought of as block 3 × 3 matrices
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boundaries have decompositions into geometric pieces, and it is not hard to
generalize this construction to more complicated kinds of “graph manifolds”.

The connectedness of this cover means that the map from fundamental group
at ∞ to Γ is surjective. In other words, any loop in K\G/Γ can be pulled to ∞
(i.e. outside of any compact). However, to do this, one typically must increase
the diameter of loops.23

If Q-rank > 2, then we discover that the boundary is not aspherical (πr−1 is
nonzero) – our first hint that all is not well with a proper Borel conjecture.24 As
we will see in the coming sections, because of this, when Q-rank > 2, proper
rigidity typically fails. At the end of the chapter we will try to learn some
lessons from this failure.

3.3 Surgery

Surgery theory is a framework for studying the classification of high-dimen-
sional manifolds. In this section we will describe some of the features of
surgery theory, and in particular, a situation where there are “no obstructions”.
In particular, we will explain the observation of Farrell and Hsiang (1982) that
for very large lattices the proper analogue of the Borel conjecture fails. Later
sections will show that failure is actually ubiquitous and more dramatic than
these examples show.25

Our presentation in this section is quick and dirty. Later on we will need
and give more precise, and more conceptual, discussions: the need for better
calculations requires alternative descriptions, from whose vantage point the
very nature of our central problem changes.

Atiyah (1961) observed that:

Theorem 3.1 If one has a homotopy equivalence between closed manifolds
h : M ′ → M , then there is a kind of equivalence between their stabilized tangent
bundles, namely stable isomorphism of spherical fibrations.

Let me explain. Assume first that M � m and M ′ � m′ are smooth so
that they have tangent bundles, TM and TM ′ respectively, in the usual sense.

(with a 2 × 2 block either on the top left or bottom right). These intersect along the Heisenberg
group U(3, Z) in SL3(Z). The fundamental group of the boundary is this amalgamated free
product. The kernel of the map of this group to SL3(Z) is an infinite-rank free group.

23 This will be (part of) the reason why we will ultimately succeed in proving a “bounded”
topological rigidity for higher-rank locally symmetric manifolds – see the discussion in the
morals, §3.8.

24 Of course, the resolution could have been that there are some special non-aspherical manifolds
that are rigid. There are some, but Borel–Serre boundaries turn out not to be among these.

25 But as we said, there are also versions of rigidity that do apply to nonuniform lattices.
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An equivalence between tangent vector bundles in the usual sense would be
a continuous family of linear isomorphisms (not necessarily the differential,
Dh, of the map) TM ′

m′ → TMh(m). A stable isomorphism of such vector
bundles would be such a family TM ′

m′ × Rd → TMh(m) × Rd for some d.
A stable isomorphism of spherical fibrations is such a family of maps, not
necessarily linear, but which is a degree-1 proper homotopy equivalence on
each fiber. (This means that the map induces a homotopy equivalence between
the fiberwise one-point compactifications, i.e. the stable spherical fibrations.
Note that the one point compactification can be thought of as being the unit
sphere of one stabilization further.)

This implies that some invariants of the tangent bundle are homotopy invari-
ant, such as Stiefel–Whitney classes.26 However, this equivalence relation on
bundles is very weak: over a space X of finite type,27 there are only finitely
many such equivalence classes.28 However, characteristic classes, such as the
Pontrjagin classes, allow for an infinite number of conceivable tangent bundles
for manifolds within that homotopy type.

Just as (oriented) bundles can be thought of as maps into Grassmanians,29

BSO, there is a classifying space for (oriented) spherical fibrations BSF, i.e.
maps E → X whose homotopy fiber is a sphere are classified by maps X →
BSF, so that we can interpret Atiyah’s theorem as saying that the composite
map

M → BSO→ BSF

is a homotopy invariant of compact manifolds M . The proper analogue of
Atiyah’s theorem holds as well.

So, given h : M ′ → M , taking into account the automatic equivalence of
their stable tangent bundles in BSF, gives us a refined tangential data for a
homotopy equivalence:

ν(h) : M → F/O,

where F/O is the fiber of the map BSF → BSO. This invariant of h is called
the normal invariant of h (since it is a stable invariant, and the stable normal

26 This fact also follows from the Wu formula that gives a homotopy-theoretic description of the
Stiefel–Whitney classes in terms of the action of the Steenrod operations on the cohomology
of a manifold.

27 That is, with the homotopy type of a finite CW-complex.
28 This follows immediately from an obstruction theory – induction over the skeleta of a

triangulation – making use of Serre’s result that the stable homotopy groups of spheres are
finite.

29 That is, there is a universal bundle, and every bundle is the pullback of this bundle under a
map that is well-defined up to homotopy.
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bundle is adequate for its definition, rather than the more subtle, unstable tangent
bundle).

Another way to say this is that the two tangent bundles combine to give a
map from M to the homotopy pullback of

BSO
↓

BSO → BSF,

which, of course, is homotopy equivalent to BSO × F/O, as we leave to the
reader.

Now, I should say that there is a similar discussion possible in the category
of nonsmooth, triangulable, or even topological, manifolds, which gives rise to
classifying spaces – so in the topological case, we have ν(h) : M → F/Top.
A first view of surgery theory is that it is about the difficulty in realizing maps
into F/O or F/Top from homotopy equivalences.

However, there is one situation where there is no obstruction at all:

Theorem 3.2 (π–π theorem) Suppose that M is a connected manifold with
nonempty connected boundary, dim M ≥ 6, and π1(∂M) → π1(M) is an
isomorphism. Then every homotopy class of maps M → F/Cat (for Cat =
Diff, PL, Top ) is realized by a homotopy equivalence of pairs (M ′, ∂M ′) →
(M, ∂M).

A relative version of this theorem actually implies a uniqueness result for the
pair (M ′, ∂M ′).30 This theorem is immediately relevant to our situation, since
the Borel–Serre compactification, whenQ-rank(Γ) > 2, satisfies the hypothesis
of this theorem.

We shall now review some results about the nature of these classifying
spaces.

First of all, the homotopy groups of BSF are finite, so the map G/O → BSO
is a rational homotopy equivalence.

The reason for this is not difficult: the homotopy groups of BSF corresponed
to spherical fibrations over the sphere. A spherical fibration over Sn can be
thought of (just like a bundle) as the result of gluing together two trivial
bundles over the two hemispheres Dn

± . The gluing is a map Sn−1 → self-
homotopy equivalences of the fiber sphere Si , which is the iterated loop-space
ΩiSi of a sphere. A little thought then shows that the homotopy groups of BSF
are therefore the same as the stable homotopy groups of spheres, and these are
finite thanks to a theorem of Serre (see Serre, 1951).
30 It will be unique up to h-cobordism, or, if we work with simple homotopy equivalences, then it

will be unique up to Cat-isomorphism.
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Characteristic class theory also tells us that Pontrjagin classes give us a
rational homotopy equivalence BSO→∏

K(Z,4i).
The theorem of Kervaire and Milnor (1963) on the finiteness of the number

of smooth structures on a sphere can be translated into the statement that the
homotopy of Top /O is finite, or that F/O→ F/Top is a rational equivalence.31

Thus:

Theorem 3.3 There is a rational homotopy equivalence

F/Cat→
∏

K(Q,4i).

Remarkably, Sullivan gave a complete and precise analysis of F/Top,32

which we will explain in Chapter 4. See, for example, Rourke and Sullivan
(1971) – in itself a historically interesting paper – for part of the proof of the
following, and Madsen and Milgram (1979)) for a complete explanation.

Theorem 3.4 At the prime 2, there is an equivalence:

F/Top(2) →
∏

K(Z(2),4i) × K(Z/2,4i − 2).
Away from 2, there is an equivalence:

F/Top[1/2] → BSO[1/2].
Remark 3.5 In writing things this way, we are using localization theory
for simply connected spaces (or of H-spaces) which enables one to assign to
such a space X , the localization of X as a set P of primes. This space X(P)
is functorially associated to X , and its homotopy (and homology) groups are
those of X , but tensored with Z[1/q], where q runs over the primes not in P.
So X(2) has as homotopy groups those of X , tensored with the group of rational
numbers with odd denominators.

Localizing at a set of primes has the effect of ignoring contributions of the
other primes. Part of the theory explains how to combine the information at the
various primes with rational information to give information about ordinary
homotopy classes of maps [ ; X]. We refer the reader to Hilton et al. (1975) for
31 This is an outright lie of the worst kind: it is a misleading truth. To set up such an equivalence,

one needs to be able to do enough topological topology (i.e. topology in the topological
category) to be able to mimic many smooth constructions. In particular one requires
topological transversality – which is indeed a theorem from Kirby and Siebenmann (1977).
With transversality however, it is a simple matter to prove that rational Pontrjagin classes are
topological invariants (a transparent consequence of the statements thrown about in the main
text) – as we explain in §4.5. That was a major result of Novikov, for which he earned a Fields
medal. In the next section we will return to this train of thought. In any case, for now, please
bear with the inaccuracies above.

32 Actually, Sullivan did the PL case, but once the work of Kirby and Siebenmann mentioned in
the previous footnote became available, the result for Top immediately follows.
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an exposition of this theory and Bousfield and Kan (1972) for a more modern
approach.

Warning Sullivan’s map to BSO[1/2] is not transparently related to the
tangent bundle of the underlying smooth manifolds (when one has a homotopy
equivalence between closed manifolds) – and then forgetting their smooth
structure – however, rationally it contains the same information as should be
reasonable given our discussion above.33

Let us now combine our discussion into a proposition:

Proposition 3.6 If M = K\G/Γ is a locally symmetric manifold of dimension
greater than 5 and Q-rank(Γ) ≥ 3, then there are infinitely many smooth
manifolds proper homotopy-equivalent to M that are not homeomorphic to M
(detected by their rational Pontrjagin classes) if, for some i, H4i(M;Q) � 0.

(The reader who is familiar with Siebenmann’s thesis can also reverse the
argument we have given to prove the converse to this proposition.)

We can assume M is replaced by the Borel–Serre compactified version.
If the Q-rank(Γ) ≥ 3, this is a π–π manifold, so Wall’s theorem reduces it
to a classifying space question – and the cohomological condition is exactly
equivalent to the set of homotopy classes of maps M → F/Top to be infinite
(and infinitely many of these classes will automatically be smoothable).

Following Farrell and Hsiang, we presently observe that for n ≥ 176, Borel’s
work gives on cohomology of arithmetic groups gives us this conclusion for
SO(n)\SLn(R)/SLn(Z) (or more precisely a lattice in SLn(Z) that is of finite
index and torsion free). (We remark that for Z[i], Borel’s results would have
allowed the choice of n > 32.)

The proper setting for this work is the relation between cohomology of arith-
metic groups and representation theory, but we will avoid a general discussion
focusing on just the contribution of the trivial representation – which Borel
(1974) showed was the whole story in a “stable range”.

The result is that:

Theorem 3.7 For K < Q-rank(Γ)/4, Hk(K\G/Γ;R) is represented by differ-
ential forms on K\G that are right G-invariant.

In particular, the lattice itself is irrelevant! (We will see that however, above

33 It turns out that BO→ BTop is an isomorphism on homotopy groups rationally (the injectivity
of this map being Novikov’s theorem on topological invariance of rational Pontrjagin classes,
and the rational surjectivity following from the finiteness of the number of differential
structures on the sphere).
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this value of k, the cohomology group can indeed change with the choice of
lattice Γ.)

Here’s a way to think about this. Suppose L is a compact Lie group con-
taining K; then, by the Hodge theorem, we can compute H∗(K\L) by means of
harmonic forms, but by integrating with respect to L, and using the uniqueness
of harmonic representatives, we can essentially identify the cohomology with
the forms on K\L that are invariant under the action of L.

Now if G is a real semisimple group, with K its maximal compact, we denote
by GC its complexification, and by G′ the maximal compact of GC. The Cartan
decomposition for G′ and GC only differ by a multiplication by i. This implies
that the G-invariant forms on K\G are essentially the same as the G′-invariant
forms on K\G′. We call K\G′ the compact dual of K\G.

For a uniform lattice, this copy of the cohomology of K\G′ actually embeds
in Hk(K\G/Γ;R).

For nonuniform lattices, this is not the case, and it is not easy to tell which of
these cohomology are actually present in H∗(K\G/Γ) (e.g. the top class never
survives). However, here Borel’s theorem tells us that in the range mentioned
above this is actually a complete description of the cohomology.

For SLn(R), the complexification is SLn(C), whose maximal compact is
SU(n). Thus the compact dual is SO(n)\SU(n). Thus the cohomology is that of
a product of spheres of dimensions 5,9,13,17, . . . The smallest dimension that
is a sum of these and a multiple of 4 is 44, giving the result for n > 176.

For SLn(C), thought of as a real Lie group, the complexification is SLn(C) ×
SLn(C). Thus, the compact dual of SU(n)\SLn(C) is SU(n) and therefore a
product of spheres of dimension 3,5,7,9, . . . The first relevant cohomology is
in dimension 8, so for n > 32 these produce examples.

This method shows failure of proper rigidity for SLn(OF ) for n > 32 if
F has a complex embedding, and n > 176 when F is totally real. These
counterexamples are “stable” in at least two senses: (1) they do not go away if
we stabilize the manifold by taking products with Euclidean space, Rk ; and (2)
they survive on passing to any further finite cover.

However, this method is insensitive to the lattice in SLn, and for example,
this cannot lead to the idea that as the volume of the symmetric space goes up,
so does the size of this set of manifolds, which actually seems to be the typical
behavior.

More precisely, we will soon see that there is a finitely generated abelian
group structure on this set of topological manifolds, and that (via a nonlinear
map related to the Pontrjagin classes but distinct from it) it is � ⊕H4i(Γ;Q)
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after ⊗Q.34 We shall see that frequently the rank of this abelian group (even
rationalized) grows with Γ.

However, the impatient reader who wants to move on to matters more directly
concerned with the validity of rigidity can now skip to the end of this chapter
or to the next (with occasional references to the skipped sections, especially
about Property (T)).

3.4 Strong Approximation

Our first order of business is to give a fairly straightforward argument that,
in the case of SLn(OF ), n > 4, there is always a finite sheeted cover with
a substantial amount of cohomology. In §3.7, we will use this to give an
essentially elementary replacement for the work of Borel used in the previous
section to disprove the proper Borel conjecture for n > 4. (The argument for
n = 4 will not be quite as elementary and will require material from §3.6.) We
will write down the argument in the case of Z, but the arguments are completely
general. Following this we will discuss strong approximation, which gives a
good understanding of the quotients of quite general linear groups. Ultimately,
this will imply that allQ-rank > 2 lattices have finite covers that are not properly
rigid.35

We begin by noting that SLn(Z) → SLn(Zp) is a surjection. The kernel
SLn(Z; p) consists of matrices of the form (I + pA), where A ∈ Mn(Z) is such
that (I + pA) is invertible. The key thing as noted by Lee and Szczarba (1976)
is that this congruence kernel has a homomorphism→ Mn(Zp), assigning A to
I + pA. Note that det(I + pA) = ±pnpA(−1/p) and hence we need that A have
trace 0mod p. (Of course, this is the Lie algebra of G in general.)

Now we can write down explicitly a 3-cycle in the congruence subgroup that
is p-torsion and detected by projection to this abelian p-group. It is a Z3 in
SL5(Z). There is a Z2 which consists of matrices that are 1s on the diagonal
and the top row is (1,0,0, pa, pb). This commutes with the Heisenberg group
(Heis) of upper diagonal matrices in SL3(Z) ⊂ SL3(Z) ×SL2(Z) ⊂ SL5(Z). We
obtain a Z3 by taking the product of the Z2 with the central pZ in the level-p
congruence subgroup of the Heisenberg group.

This Z3 gives us a cycle in H3(SLn(Z; p);Z) which is nontrivial, because it
34 The smooth version maps to the topological one so that the map is finite-to-one, and the image

need not be a subgroup, but it contains a lattice in this cohomology group by an argument we
will give in §3.7.

35 But it will not imply stability in the second sense of the previous section. Indeed we will see a
rank-3 reducible lattice where every proper homotopy equivalence to any finite sheeted cover
becomes properly homotopic to a homeomorphism in a further cover.
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is detected by mapping to Mn(Zp) (by the Künneth formula), but is p-torsion,
because the central Z is of order p in H1(Heis3(Z; p);Z) – i.e. the homology
of the level-p congruence subgroup of the Heisenberg group – since the 3 × 3
matrix

����
1 0 p2

0 1 0
0 0 1

	

�
is a commutator in this group. Consequently we have found an element of order
p in H4(SLn(Z; p);Z) by the universal coefficient theorem.

We will see in §3.7 below that for p sufficiently large this element is
the first Pontrjagin class of some manifold proper-homotopy equivalent to
SO(n)\SLn(R)/SLn(Z; p). Actually, these elementary calculations with Lie
algebras and playing with congruence subgroups suffice to show that for
Q-rank > 6 one can always find a congruence cover where there are arbi-
trarily large finite number of manifolds that can be distinguished by p1 – the
first Pontrjagin class.36

Reduction modulo primes for linear groups over fields of characteristic 0
is a very powerful method and produces many useful homomorphisms. This
is, for instance, used to prove (see e.g. Wehrfritz, 1973) that such groups are
residually finite (Malcev) and also virtually torsion-free (Selberg).

Let us describe some easy homomorphisms if Γ ⊂ GLn(F) is a finitely
generated group over a field F of characteristic 0. Consider the generators of
Γ as lying in a finitely generated ring over Z. Its field of fractions is a finite
(algebraic) extension of a field of finite transcendence degree. We can then
“specialize” values for the transcendentals so that these matrices all lie in an
algebraic extension (as the determinant will be a rational function that is not
identically 0). Then the matrix entries really are algebraic numbers with finitely
many primes in their denominators, and we can therefore reduce modulo large
primes. However, for simplicity of exposition, we will imagine that our groups
lie just over the integers, perhaps with finitely many denominators.

These congruence subgroups provide a natural sequence37 of subgroups that
converge to the trivial group. Amazingly, the image of a linear group under such
reductions is, with finitely many exceptions, governed by the Zariski closure of

36 As explained in §3.7, Novikov’s theorem that rational Pontrjagin classes are topological
invariants can be refined for p1 to the statement that in H4(BSTop;Z[1/2]) it is definable for
oriented topological bundles.

37 Which corresponds to a tower of covering spaces if one chooses a sequence of moduli that
divide one another. A different choice, which does not form a directed system but rather is just
a sequence of covers, is the congruence kernels as one varies over different primes. Those still
converge to the universal cover, for example, in the pointed Gromov–Hausdorff sense.
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the group. (This is the content of the strong approximation theorem.) Thus, any
Zariski-dense finitely generated subgroup of SLn(Q) surjects onto PSLn(Zp)
for all but finitely many primes. Indeed, like in the Chinese remainder theorem,
one can map onto almost any finite product ×PSLn(Zpi ).

Slightly more precisely, let S be a finite set of primes. We consider Z[1/S]
the ring of rational numbers whose denominators have all prime factors in S.
Suppose that Γ ⊂ GLn(Z[1/S]) with Zariski closure G. Strong approximation
asserts that the closure of Γ in

∏
G(Zp) is of finite index. Informally, strong

approximation says that the closure of a linear group in the congruence topology
is essentially determined by its closure in the Zariski topology.

A nice application of this is due to Lubotzky (1996). Recall that the start of
the Gromov–Piatetski-Shapiro examples was the construction of a separating
hypersurface in a hyperbolic manifold. Millson (1976) had noticed that on
taking a finite cover, this hypersurface lifts to several components.

Actually this virtual disconnectedness is true in general, as the fundamental
group of the hypersurface is not Zariski-dense in O(n,1) – it lies in a smaller
O(n − 1,1) – and therefore not congruence dense. A suitable deep finite con-
gruence cover will therefore have the hypersurface disconnected.

As each of the sides is Zariski-dense in the group, these both have full image,
which means that the complement of the union of the lifts of the hypersurface
have two components.

A corollary of Van Kampen’s theorem and these observations directly gives:

Theorem 3.8 Every hyperbolic manifold with a separating hyperbolic hyper-
surface has a finite index subgroup whose fundamental group surjects to a free
group.38

This then implies that such a lattice has many subgroups of finite index –
indeed super-exponentially in the index (since nonabelian free groups do).

Another nice application of strong approximation, also due to Lubotzky
(1987), is the following.

Theorem 3.9 Any finitely generated group linear group in a field of charac-
teristic 0 always has subgroups of index divisible by d (for any given d).

We refer to Lubotzky and Segal (2003) for a more thorough discussion of
strong approximation, its literature and applications.

38 Explicitly, let M be a manifold containing two hypersurfaces A and B whose union does not
separate M and ∗ be a base point of A∪ B. Then, making a curve transverse to A∪ B, one can
write a product aabba−1 · · · ∈ F2 recording the order and directions of the intersections.
This gives a (surjective) homomorphism π1(M) → F2.
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3.5 Property (T)

In this brief section we will discuss the notion of Property (T), discovered by
Kazhdan during the 1966 Moscow ICM (during a game of ping-pong with
Atiyah). While it seems at first like a technical property about unitary repre-
sentations, it has had applications – surely not all foreseen at that point – to
many areas of mathematics, and (via the notion of expander graph) theoretical
computer science.

We shall also discuss the opposite notion, amenability, originally introduced
by von Neumann in his analysis of the Banach–Tarski paradox. These are both
fascinating subjects deserving (and having received) book-length treatments;
here they are merely introduced in recognition of the role they will play several
times in what follows.

We will begin on the amenable side of the universe, since it is more familiar.
For finite groups G, averaging the values of a real-valued function on G is
a general and straightforward algebraic procedure that involves no limiting
procedures. If G is compact then, at least for continuous functions, this can be
done by integration with respect to Haar measure.

Remarkably, using weak-∗ limits it is possible to define averaging processes
on some infinite groups. Even for Z this is a remarkable statement: we are
asserting that there is a functional

A : L∞(Z) → R
that assigns a number to any bounded sequence of real numbers, agrees with
ordinary limit when it exists, and is positive, linear, and translation invariant.
Positivity means that A( f ) ≥ 0 if f ≥ 0. Linear is obvious and translation
invariant means that A is invariant under the action of Z on L∞(Z) by trans-
lation. Positivity and linearity can be achieved by extending any f (since Z is
discrete, any function is continuous) to βZ, the Stone–Čech compactification
and evaluating this extension on any point in βZ − Z.

The invariance requires using a bit of the geometry of Z, but this is the
key! Replace the sequence by its averages (i.e. like Cesàro means). Let g(n) =
1/(2|n + 1)|∑ f (m) (where the sum is over the interval In = [−|n|, |n|].
Observation A, defined as the limit of the sequence g(n), is translation
invariant because the number of elements in the symmetric difference In�T In
is o(#In).
Remark We made the construction using the Stone–Čech compactification.
Sometimes (as hinted above) people construct A as a weak-∗ limit of the averag-
ing functionals that define the values of g; sometimes non-principal ultrafilters
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are used in making this construction. These are just cosmetic differences – al-
though they have somewhat different feels (point-set topology versus functional
analysis versus logic).

Note the averaging procedure (and the limiting procedure) is well defined
when the sequence has a limit. However, in general, it is very dependent on our
choices. For example, suppose we had replaced the intervals In = [−|n|, |n|] by
intervals Jn = [n− |n|,n+ |n|]; we still would obtain an averaging function that
satisfies all the above properties, yet would have a much less democratic39 feel
than the In seem to have – the values of f at most integers (e.g. those outside
of union of the Jn) will then be completely irrelevant.

Democracy put aside, the above consideration suggests defining a Fol-
ner sequence40 to be a sequence of subsets An of Γ, so that for any γ,
#(γAn�An)/#An → 0. (This need only be checked for generators.) Under
those conditions we can define a left-invariant positive linear functional by the
procedure above. Folner (1956) proved the converse, that a group has a mean iff
there is a sequence of such sets. Groups that have such a mean, or equivalently,
an exhaustion41 by subsets whose “boundaries” are asymptotically negligible,
are called amenable.

(The boundary of a set in Γ is precisely the the union symmetric difference
of the set with its translates under a generating set of Γ. If we consider the
volume of a set the number of elements it contains, then the last sentence is just
a restatement in words of the formula of the previous one.)

There is a close connection between amenability and unitary representation
theory. Consider the unitary action of Γ on L2Γ. It has a nontrivial fixed vector
iff Γ is finite.

However, vn = (1/
√

#An)
∑
γ where the sum is taken over An is a sequence

of almost-invariant vectors. That is, | |vn | | = 1 but for every γ, | |γvn − vn | | →
0. One can describe this as saying that the trivial representation is weakly
contained in the regular representation – another equivalent of amenability.

Yet another interpretation of amenability can be given in terms of the Lapla-
cian on functions ∇ : L2Γ→ L2Γ defined as follows. We shall consider Γ as a
graph, as usual, choosing a finite symmetric generating set S, and connecting
two elements g and g′ if there is an s ∈ S such that g = sg′ (so that Γ acts on the
right by isometries). Define the Laplacian by ∇ f (x) = f (x) − (1/#S

∑
f (sx)).

39 And more fickle, in that Jn is disjoint from the later sets averaged over.
40 These considerations do not explain why we would give this name to this class of subsets, only

that we call attention to them. The last sentence in the paragraph is necessary for that point.
41 It is a very elementary fact that if a discrete metric space X has a Folner sequence of subsets,

then it has an exhaustion by Folner sets Bi ; i.e., Bi ⊂ Bi+1 and X =
⋃

Bi .
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It compares f to its average. Note that ∇ is a (bounded) self-adjoint and positive
operator (by direct calculation of 〈∇ f , f 〉).

Theorem 3.10 (Kesten, 1959) 0 ∈ Spec(∇) iff Γ is amenable. This is equiva-
lent to each of the following two statements:

(1) The symmetric random walk on Γ does not have exponentially decaying
return probabilities, i.e. p2n(e, e) � O(cn) for any c < 1, where e is the
identity element of the group.

(2) The number of words (in the symmetric set of generators S) of length at
most 2n representing the trivial element W(n) satisfies W(n)1/2n → #S.

Note that the statement 0 ∈ Spec(∇) does not mean that there are any eigen-
vectors with eigenvalue 0 (although that would be the simplest explanation),
i.e. ker∇ need not be nontrivial, because of the possibility of a nondiscrete
spectrum. Indeed, 0 is an eigenvalue42 iff Γ is finite.

However, the almost-invariant vectors are test functions of norm 1 with
|∇ fn | ≤

∑
#(γAn∇An)/#An (summed over the elements of S) showing that it

is not true that 〈∇ f , f 〉 > c | | f | |2 for any c > 0.
The connection between random walk, heat flow, and the Laplacian is im-

portant. Note that ∇ = I −M, where M is the Markov operator, defined by

M f (x) = E( f (γx)),

where E means, as always, the expectation value of a random variable, and here
it is f of a random neighbor of x (i.e. the translate by a random generator of
Γ). Note | |M | | ≤ 1, and equality holds iff Γ is amenable. The probability of
return is given by

pn(e, e) = 〈δe,Mn δe〉.

So if 0 � Spec(∇), we get exponential decay of the return probabilities. (The
converse is tricky.) The expression W(n)/#S2n is simply another calculation of
p2n(e, e) and hence statement (2) is equivalent to (1).

Property (T) is opposite to amenability (not its negation!) and it is quite
nontrivial that there are any infinite groups at all that have this property.

Definition 3.11 A group Γ has Property (T) if every unitary representation
that has almost-invariant vectors has a fixed vector. (In other words, given a
generating set S, there is a Kazhdan constant ε – that typically depends on S –
such that, for any nontrivial irreducible representation ρ (or, equivalently, any

42 There is a natural generalization of ∇ to differential forms, and then as we will discuss in §3.6,
∇ frequently has nontrivial kernel acting on L2-forms.
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representation with no nontrivial fixed vectors ρ), the only v with | |ρ(s)v−v | | ≤
ε| |v | | is v = 0. 43

An amenable discrete group has Property (T) iff it is finite – one can construct
almost-invariant vectors by averaging over a sequence of Folner sets.

Margulis showed that higher-rank lattices have only finite or finite index nor-
mal subgroups by the crazy strategy of showing that all quotients are amenable
and have Property (T). Obviously, arbitrary quotients of Property (T) groups
have Property (T).

Kazhdan observed, in his original 1967 paper, via consideration of induced
representations, the following.

Proposition 3.12 A locally compact group G has Property (T) iff any (and
hence every44) lattice Γ ⊂ G does.

He also showed

Proposition 3.13 A discrete group with Property (T) must be finitely gener-
ated.

For suppose that Γ =
⋃
Γn is an ascending union of proper subgroups. Then⊕

L2(Γ/Γn) is a unitary representation which has almost-invariant vectors
(each γ ultimately acts trivially, so a sequence of vectors that are nontrivial
only in the components indexed by a large n form an almost-invariant sequence
of vectors), but it will have an invariant vector only if some Γj = Γ.

Theorem 3.14 (Kazhdan) Products of real simple Lie groups of rank greater
than 1 have Property (T).

He deduced that lattices in these groups were finitely generated.
We already know enough to see that O(n,1) does not have Property (T),

because we know lattices that have nontrivial Z quotients, and note that Prop-
erty (T) is (obviously!) inherited by quotients. Less simple is that U(n,1) also
does not have Property (T). This is shown in Kostant (1975), as is the following
positive result.

Theorem 3.15 (Kostant) Sp(n,1) has Property (T), as does the real rank
1-form F4(−20) of the exceptional complex Lie group of type F4.

This gives us now negatively curved examples of Property (T) groups. We

43 The notation is supposed to indicate that the trivial representation T is separated from all the
other irreducible representations (by the parentheses).

44 Assuming there is at least one!
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can add large powers of all the elements one at a time,45 and maintain negative
curvature, giving (uncountably many!46) Property (T) groups that are torsion.

The early history of Property (T) only had examples that came out of rep-
resentation theory. Now there are completely different mechanisms for this of
both algebraic and analytic geometric origin – so now there are many other
Property (T) groups known. Before saying a little more about this, we digress
to give another characterization of Property (T) (see Shalom, 2000; Bekka
et al., 2008).

Theorem 3.16 (Delorme–Guichardet, Shalom) A group has Property (T) iff
every action of Γ on a Hilbert space by affine isometries has a fixed point. If
the group does not have (T) then there is an action where not only is there no
fixed point, but the displacement

∑ | |v − γ(v)| |2 has a realized minimum on the
unit sphere (where

∑
is over the generating set).

All amenable groups have affine isometric actions that are metrically proper,
i.e. actions for which the orbits of vectors → ∞ in norm (as γ → ∞) as was
shown by Bekka, Cherix, and Valette – yet another way in which Property (T)
and amenable are at opposite poles.

A consequence of this theorem is that:

Corollary 3.17 If a group Γ acts simplicially on a tree (without inversions)
without fixing any vertex, then Γ cannot have Property (T).

This excludes nontrivial amalgamated free products and HNN extensions, as
well as giving another argument for the finite generation of Property (T) groups
(see Serre, 2003). We shall prove the corollary by noting that, if Γ acts on a
tree T , then it acts on L2(T).
Proposition 3.18 (Cartan) If Γ acts on a tree T and it has a bounded orbit,
then it has a fixed point.

Cartan was actually working on other spaces of nonpositive curvature.47

The proof goes like this. Given a bounded set in a tree, it lies in a unique ball
of smallest radius. As this the bounded set is Γ-invariant, so is that ball, and
therefore its center is fixed.

If the action of Γ on T has no bounded orbit, then L2(T) has no fixed vectors,
which is incompatible with Property (T).
45 This is an application of the “Dehn filling” idea as in the previous chapter.
46 And hence the fact that Property (T) does not force finite presentability.
47 I believe that Cartan’s application was the uniqueness of the maximal compact in a semisimple

group by considering the action of such a group on G/K , a complete manifold of nonpositive
curvature. Incidentally, the analogous fact in the case of Lie groups over local fields makes use
of the curvature properties of Tits buildings.
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Appendix: Property (T) and Expanders

Expander graphs are graphs that are hard to disconnect, i.e. require the removal
of many edges to separate a large number of vertices from the rest. It (now)
seems obvious that such graphs should be valuable for the construction of
things like communication networks. But, in fact, they have legion applications
in theoretical computer science (Hoory et al., 2006) and pure mathematics
(Lubotzky, 1984, 2012).

We consider finite d-regular graphs Γi (for simplicity – a bound on valence
is really all that’s necessary). We consider the Cheeger constant of these graphs

h(Γ) = inf(#∂A/#A),

where A is a subset of Γ with fewer than half of the vertices, and ∂A is the set
of vertices of A that share an edge with Γ − A. If we allowed A to be big then
setting A = Γ we’d always get 0 as our infimum.

This notion makes sense for infinite graphs, as well as finite ones, if we
impose the condition that A is finite in the infinite case. Note that Γ is amenable
as a group iff h(Γ) = 0 viewing Γ as a (Cayley) graph – and that this condition
is equivalent to 0 ∈ Spec(∇).

However, for expansion, we are interested in finite graphs, and we want the
reverse, i.e. that h(Γi) > ε > 0.

To summarize:

Definition 3.19 An expander sequence of d-regular graphs is a sequence Γi
(of d-regular graphs) such that h(Γi) > ε > 0.

These were first introduced and studied explicitly by M. Pinsker (in Bassalygo
and Pinsker, 1973) – and in a paper presented at the 7th International Teletraffic
Conference. He showed that they exist, by arguing that random graphs are
expanders. They have been an important tool in theoretical computer science
ever since, and you can find much interesting material and history in Hoory et
al. (2006).

More recently, it was pointed out in Gromov and Guth (2012) that Pinsker
was preceded by a paper of Kolmogorov and Barzdin that studied expanders as
models for the brain (nodes on the surface and axons going through the bulk,
without disjoint axons getting too close to one another), but then, alas, having
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an upper bound on size48 to fit into our heads. Expanders were their examples
of graphs that would be hard to fit in our heads.

Why this genericity of expansion should be true is clear if one considers
a toy variant. Consider the graph Γ with n vertices determined by two per-
mutations, using each permutation to connect [i] to [πi] (note that [i] is also
connected to [π−1i]). Given a subset A, then the expected number of edges
leaving A is #A(1 − #A/#Γ)4 suggesting a bound of at most 1/16 independently
of #Γ. Of course, there are many choices of A, and we have to compute the
expected extremal. This means one should look at subsets A of size n/2 that
contain significantly fewer edges leaving them, say n/20, and then estimating
tail probabilities in a binomial distribution. The details are left to the reader.49

If one is interested in using this for building a network (or an error-correcting
code or . . . ), then random methods are not so useful – buildings surely must be
built from blueprints.50 The applications in mathematics often require knowing
that certain graphs form expander sequences.51

Now, for finite graphs, 0 is always in the spectrum of ∇. Constant functions
have ∇ f = 0. And 0 has multiplicity greater than 1 iff Γ is disconnected
(different constant functions on the different components). Graphs that are
connected but easily disconnected should therefore be characterized as having
an eigenvalue near 0. This is the content of the following basic theorem.

Theorem 3.20 A sequence of d-regular graphs is an expander sequence iff
there is an ε > 0 so that the spectrum of ∇ restricted to functions with

∫
f = 0

(the orthogonal complement of the constants) is bounded > ε > 0.

We will denote by L2(Γ)◦ this subspace of L2(Γ).
This theorem is inspired by Cheeger’s theorem in Riemannian geometry

(see Cheeger, 1970) that bounds the isoperimetric constant of a Riemannian
manifold in terms of the spectrum of the Laplacian. Note that for a subset A,
the modified characteristic function, f A = 1A−#A/#Γ has

∫
= 0, and ∇ related

to #∂A/#A. The isoperimetric constant is approximately realized by a level set
of an eigenfunction for a small eigenvalue.
48 There is a bound to how much of an expander can be fit without distortion, even in Hilbert

space. This will be of critical importance later for purposes of the Novikov conjecture. For
science fiction purposes, the cognitive capacities of aliens elsewhere in the multiverse can be
expected to be greater than ours, in the Kolmogorov–Barzdin model, only if the number of
spatial dimensions increases (or they have better programming of their neural nets).

49 Actually, to the active reader. An inactive reader can find them written down in many places.
50 I expect this to be my bon mot quoted years after I have otherwise been forgotten, showing how

shortsighted people were back at the beginning of the third millennium. Indeed, I almost
deleted this comment during revision.

51 Many of these are closer to the Selberg example explained below than the Property (T)
examples we begin with now. This is a good moment to mention that there are now many
constructive methods of getting expanders that do not come out of Property (T).
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A consequence of this theorem is that a random walk on an expander sequence
is rapidly mixing.52

The following important result of Margulis (1988) is now perhaps anticli-
mactic, given our discussion.

Theorem 3.21 Suppose that Γ is a group with Property (T). Then the Cayley
graphs of Γ/Γi , for a sequence of normal subgroups of finite index in Γ (using a
common generating set S coming from Γ), gives a sequence of expander graphs.

To see why the isoperimetric inequality is true, consider ⊕L2(Γ/Γi)◦ (where
the superscript ◦ means that we are considering the orthogonal complement
of the constant vectors) and, since there are no fixed vectors, there can be no
almost invariant vectors, which means that ∇ fAi is large, which means that ∂Ai

is also large.
Concretely we can set Γ = SLn(Z) for any n > 2 (and use the elementary

matrices as a generating set) and obtain the expander sequence SLn(Z/m) –
where m is varying.

Note, by the way, that the representations arising in this proof are all (sums of)
finite-dimensional representations of the group Γ, so we are nowhere near the
full power of Property (T). Lubotzkyc and Zimmer have suggested the notion
of Property τ, which is Property (T) for finite-dimensional representations, or
even restricting further to a class of finite quotients (say ones factoring through
some finite quotient or some congruence quotient).

A good example of this is SLn(Z) for n = 2. We shall work with a congruence
subgroup of this group, which is a free group. Obviously, it does not have
Property (T), as it has a Z quotient, and just as obviously covers corresponding
to the subgroups kZ, for a surjection of this group to Z, have isoperimetric
constant→ 0 (consider the inverse image of the interval [0, k/2] in the cycle)
and, again just as obviously, the bottom of the spectrum of these quotients of
SO(2)\SL2(R) → 0 (by considering functions that are 1 on [0, k/2] and −1 on
[k/2, k − 1]).

However, when we restrict our attention to the family of congruence quo-
tients, then a theorem of Selberg asserts that, for all of these manifolds,
SO(2)\SL2(R)/SL2(Z; k) has λ1 > 3/16. One can translate between graphs
and manifolds, and actually this is a family of expander graphs whose girth53

grows54 (logarithmically) with k.
52 Which perhaps suggests its application to de-randomization.
53 The girth of a graph is the length of the shortest cycle in the graph; it is an analog of the length

of the shortest geodesic (= twice the injectivity radius) of a compact manifold.
54 Note that if we use the Property (T) expanders, relations in the fundamental group give

bounded cycles everywhere in the graph. Random graphs will frequently have some short
cycles, but relatively few of them.

https://doi.org/10.1017/9781316529645.004 Published online by Cambridge University Press

https://doi.org/10.1017/9781316529645.004


56 First Contact: the Proper Category

Finally, we close our discussion by mentioning one of the more recent meth-
ods for proving Property (T), because it turns our discussion on its head and
uses expander properties as a way of obtaining Property (T).

Theorem 3.22 Let Γ be a group generated by a finite symmetric set S, with
e � S. Let L(S) be the graph with vertex set S and in which {s, s′} is an edge
if s−1s′ ∈ S. Suppose that L(S) is connected and has spectral gap greater
than 1/2. Then Γ has Property (T).

As a nontrivial consequence of this, in some models of random groups,
having Property (T) is generically the case – a far cry from the essentially Lie-
theoretic origin of the first examples. Moreover, this method produces groups
with very strong fixed-point properties, often stronger than those true for lattices
in high-rank groups. See the notes in §3.9 for some more discussion of this
important direction.

3.6 Cohomology of Lattices

The cohomology of lattices is a topic of endless fascination that can be studied
from many viewpoints, from the geometric55 (construction of explicit cycles)
to the analytic (e.g. Hodge theory and L2-cohomology) to the number-theoretic
(such as Langands functoriality). In this section we will touch briefly on a
few methods for producing cohomology classes motivated by purely utilitarian
needs. For simplicity, we will divide our discussion into four parts:

(1) Property (T) and H1;
(2) Matsushima formula and connection to representation theory;
(3) generalized modular symbols and geometric cycles;
(4) L2-cohomology.

3.6.1 H1 and Property (T)
We have already tacitly discussed H1(Γ;R) when discussing Property (T). Its
vanishing is necessary if Γ satisfies (T), because otherwise Z is a quotient of Γ,
and (T) is inherited by quotients.

Actually we had, less obviously, given a cohomological interpretation of

55 Not to mention the heroic geometric group-theoretic work of Agol (2013), Haglund and Wise
(2007, 2012), and Kahn and Markovic (2012) that gives positive first Betti number (and even
more, homomorphisms to Z with finitely generated kernels) for finite covers of lattices in
O(3, 1). See the wonderful exposition by Bestvina (2014).
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Property (T) in characterizing those groups by the fixed-point property: any
action of Γ on a Hilbert space H by affine isometries has a fixed point.

This statement can be expressed cohomologically. Any affine action has a
unitary part ρ : Γ→ U(H). (It can be obtained by letting ρ(γ)(v) = lim tγ(t−1v)
as t → 0.) Affine actions are associated to cocycles, and cohomologically trivial
ones are the ones with fixed points (i.e., are actually unitary after conjugating
by a suitable translation).

Thus, the Delorme–Guichardet fixed-point theorem can be viewed as the
cohomological statement that:

Theorem 3.23 Γ is a group with Property (T) iff, for any unitary representa-
tion ρ of Γ, H1(Γ; ρ) = 0.56

The reason is this. The 1-cochains with values in the representation, C1(Γ; ρ)
is made of H-valued functions on Γ, and an element α ∈ C1(Γ; ρ) lying in
ker d : C1(Γ; ρ) → C2(Γ; ρ) means that α(γγ′) = ρ(γ)α(γ′) + α(γ). Associated
to a cocycle is the affine isometric action on H where γ acts by γv = ρ(Γ)v+α(γ).
This cocycle is a coboundary of a vector v ∈ H = C0(γ; ρ) if α(γ) = v − ρ(γ)v.
Then γv = v for every γ and the action has a fixed point (and one can conjugate
the action by a translation to a unitary action).

Part of the interest in such statements is because of their connection to
deformations. The infinitesimal version of rigidity asks about deformations
of the defining representation ρ : Γ → G. Reasoning about deforming the
defining representations and working modulo the deformations given by inner
automorphisms leads one to want to prove vanishing of such cohomology
groups.

Kazhdan’s approach to Property (T) gives a representation-theoretic method,
but other cohomological vanishing theorems have been proved by Hodge-
theoretic methods or Bochner arguments. These methods were employed by
Calabi and Vesentini (1960), Calabi (1961), Weil (1960, 1962, 1964), and
Selberg (1960, 1965) to prove early local rigidity theorems. They still are useful
– as rigidity moves into new settings (such as for non-lattices, and fixed-point
properties for actions on spaces other than Hilbert spaces).

Another consequence of rigidity of representations is that the defining repre-
sentations of such a group cannot have “essential” matrix coefficients that are
transcendentals, because transcendentals can always be deformed (or special-
ized). (By “essential” I am ignoring the possibility of conjugacy of an algebraic
56 The Shalom improvement we had mentioned above replaces this cohomology by its reduced

version, where one mods ker ∂ by the closure of Im ∂. Often reduced and unreduced groups
are different, and the reduced ones are easier to study, but it sometimes happens that they
vanish simultaneously (at least in low dimensions) – see also Block and Weinberger (1992),
where a similar phenomenon occurs in a characterization of amenability.
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matrix by a transcendental one.) To grossly simplify, this is why superrigidity
(a vast generalization of Kazhdan’s Property (T) for Γ) leads to arithmeticity
theorems.57

It is worth noting that an immediate consequence of the theorem as stated
is that all finite-dimensional irreducible representations are separated from
unitary representations that don’t contain them. In addition, although this is
obvious in any case, as cohomology with coefficients in representations includes
cohomology of covers, philosophically this study naturally leads us to consider
the behavior in towers simultaneously with the cohomology of a given space, a
theme we will return to in §3.6.4.

3.6.2 Matsushima Formula
The yoke binding representation-theoretic theory and cohomology is tightened
by the Matsushima formula that extends the earlier observations connecting
the cohomology of the compact dual to that of all locally symmetric manifolds
with a given universal cover.

Unlike those previous observations, it has the virtue of being sensitive to the
lattice. We will not directly make use of this material, but an awareness of it
will make some discussions make more sense (or seem better motivated58).

The discussion is much simpler in the case of cocompact lattices, so we start
by making this assumption.

The complex of differential forms on K\G/Γ can be identified with the
cochain complex C∗(G,K; C∞(G/Γ)), whereG, K are the Lie algebras of G and
K , respectively, and we use the Chevalley–Eilenberg complex for relative Lie
algebra cohomology. Thus H∗(K\G/Γ) � H∗(G,K; C∞(G/Γ)).

It turns out (this is a kind of elliptic regularity result) that we can break
C∞(G/Γ) into pieces according to the decomposition of L2(G/Γ). This is
a sum of pieces that are G-invariant irreducible representations, with finite
multiplicity. Ultimately one gets a formula of the form

H∗(K\G/Γ) �
⊕

m(Π,Γ)H∗C(G,C∞Π),
where the right-hand side is a sum over irreducible representations of G, with
multiplicities according to the number of times that they appear in L2(G/Γ)
and the cohomological term (which only involves G and its representations, and
not the lattice) being continuous cohomology with coefficients in the smooth
vectors in the given representation. When G is simple, the cohomological term
vanishes whenever ∗ < rankR(G) and there are no terms other than the compact
57 And, for example, Property (T) itself implies that all finite-dimensional unitary representations

are equivalent to ones defined over an algebraic number fields.
58 Or less unmotivated.
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dual (which is the contribution of the trivial representation). (In the semisimple
case, this vanishing holds below the lowest R-rank of any of the factors.) These
facts are responsible for the independence of rational cohomology in the stable
range of the lattice – at least in the uniform case.

The place where the lattice enters is in the nontrivial representations because
of the multiplicities m(Π,Γ). These will frequently grow as Γ shrinks (note that
if Γ′ is a normal subgroup of Γ, the finite group Γ/Γ′ acts on any of these Πs,
and since these representations don’t have a trivial part, the multiplicities must
be nontrivial). A geometric approach to this is the following. If Γ is arithmetic,
then it has non-normal subgroups that have a large number of symmetries (i.e.,
that do not cover the original manifold).59 When one pulls a harmonic form
up to such a cover, it can well be non-invariant under this action – causing the
amount of cohomology to grow. If this would never happen, it would mean that
the pullback to the universal cover would be invariant under G(Q), which is
exactly equivalent to it coming from the compact dual.

When Γ is nonuniform, then the above analysis of cohomology does not work
directly, but Borel (1974) showed that nevertheless there is a range depending
on the Q-rank where it does hold. This is enough for the applications to SLn

when we let n → ∞, (which is important for K-theory), but this is not enough
for our immediate needs. Some highly unstable classes in the nonuniform case
that are always beyond the range of this isomorphism are the topic of the next
subsection.

3.6.3 Generalized Modular symbols
A different and transparent example of how cohomology grows in covers that
is visible in hyperbolic geometry occurs for nonuniform lattices (in all dimen-
sions).

If M is a noncompact finite volume hyperbolic n-manifold, then cd(π1M) =
n − 1 (because M has the homotopy type of an (n − 1)-dimensional complex,
and it contains a Zn−1 in the fundamental group of the cusp).60 It can certainly
happen though that Hn−1(M) = 0 (e.g. this is true for all the hyperbolic knot
59 This is related to the large commensurator of an arithmetic group. G(Q) acts on the disjoint

union of the K\G/Γ′ where Γ′ is commensurable with Γ, but each of these individual
manifolds is only acted on by the normalizer of their own fundamental group in G(Q). If Γ is
arithmetic and Γ′ is a G(Q)-conjugate of Γ (but not necessarily in the normalizer of Γ), we can
take a subgroup Γ′′ of finite index in Γ ∩ Γ′ that is normal in Γ′ but not in Γ. The group Γ′/Γ′′
acts on the Γ′′ cover, which is a cover of K\G/Γ, but the action does not cover the projection
to K\G/Γ. These hidden symmetries are responsible for the algebra of Hecke operators that
acts on cohomology groups of arithmetic manifolds.

60 Of course, this is, in the arithmetic case, a special case of the result of Borel and Serre that the
cohomological dimension differs from dim(G/K) by the Q-rank.
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complements in the 3-sphere). However, the fundamental group of the cusp is a
proper “small” subgroup of the fundamental group, i.e. it is not Zariski-dense
– it obviously lies in a proper parabolic, so by strong approximation we can
find finite congruence quotients of π1M onto which the cusp maps to a proper
subgroup.

This means that these covers have multiple cusps (by covering space theory).
Once you have more than one cusp, then Hn−1(M) � 0, because each cusp gives
a cycle,61 and the one relation among these is that the sum of all of these cycles
vanishs. Associated to a pair of cusps there is a (number of) proper geodesic(s)
lines going from one cusp to the other. These will have intersection number 1
and −1 on these two cusps (depending on ordering, and using a standard, say
inward normal, convention for orientation of boundaries) and 0 with the other
cusps. Each such proper geodesic gives a functional on homology which proves
the nonvanishing of the individual cusps. (In fact, picking one cusp as a base,
the lines connecting that cusp to all the others give #(cusps − 1) independent
cycles.) As we go deeper in the group (or up a tower), the number of cusps
increases and hence the size of the homology.

Of course, when the Q-rank > 1, then this doesn’t make sense as stated:
the Borel–Serre boundary is connected in all covers, and π∞1 → π1 surjects.
However, when we pay closer attention to the corners within the Borel–Serre
boundary, which correspond to proper parabolic subgroups, none of these
surjects, and the covers do indeed cause these corners to become multiple
components, and then give rise to cycles.

Theorem 3.24 (See Ash and Borel, 1990; Schwermer, 2010) Let G be an
algebraic group defined over Q, and let P be a Q-parabolic subgroup of G. If
P(R) = M(R)A(R)N(R) is the Langlands decomposition of this parabolic,62

then there are nontrivial cycles in K\G/Γ of the form N(R)/N(R) ∩ Γ in
dimension dim(N(R)) if Γ is sufficiently deep. Passing to a congruence subgroup
Γ′ then there are at least #(Γ′\Γ/(Γ′ ∩P)) (double cosets) linearly independent
cycles obtained this way.

Using congruence subgroups we then get a large (i.e. growing like a positive
power of the volume, but definitely sublinear in it) rank of Betti number.

Remark 3.25 (In place of proof) Generalized modular symbols are examples
of geometric cycles. Geometric cycles are associated to Lie subgroups of G, and
give rise to some explicit cycles, when the lattice intersects them in a lattice.

61 To get a well-defined cycle, one should adopt an orientation convention, i.e. making use of the
normal direction pointing towards∞.

62 So that M is reductive, A is abelian and N is nilpotent.
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To get an embedding, one often has to pass to a finite cover, and then when one
passes to deep enough covers, they will (by strong approximation) typically
produce a number of disjoint cycles.

The standard way to check that these cycles are nontrivial is to find another
geometric cycle of the dual dimension that intersects it with nonzero intersection
number. In the above theorem, Levi subgroups are the source of duals.

As in the case of modular symbols, pulling these up covers can give growth
to the Betti numbers.

We did this with H1 and the Millson example that uses codimension-1
geometric cycles in arithmetic hyperbolic manifolds associated to quadratic
forms, and, following Lubotzky,localization observed that this even gave maps
onto free groups. In this case this implies that there is then a further tower of
covers (not converging to the trivial group) for which b1 grows linearly with
the index.63

3.6.4 L2-cohomology
None of the methods discussed till this point has the potential of giving Betti
numbers that grow linearly with volume (or, equivalently, with the index of
the cover). However, the Euler characteristic tells us that this must happen
sometimes. If χ(K\G/Γ) � 0, then, by multiplicativity of χ in finite covers, as
one goes up any family of covers, some Betti number must increase linearly.64

In this section we will review the relevant facts about L2-cohomology and
especially a remarkable theorem of Lück that explains exactly when this rare
situation occurs in towers of regular covers.65

This story begins without any particular interest in finite sheeted covers,
but rather with the consideration of arbitrary regular covers.66 For infinite
complexes, there are alternatives to the usual simplicial chain complex: one
can consider, for example, locally finite chains, which gives rise to Borel–
Moore homology. This gives a non-homotopy-invariant homology theory: it is
invariant under proper homotopy equivalences.

A more subtle choice is to consider the complex of L2 simplicial chains67 (or
63 This family of covers shows very different geometry than that associated with congruence

covers.
64 Clearly, no Betti number for covers of a finite complex can grow faster than linearly, since

these are bounded by the number of cells, which grows exactly linearly in the number of sheets
of the cover.

65 It actually also applies to sequences of regular covers that Gromov–Hausdorff converge to the
universal cover. (See the notes in §4.11 for a recollection of Gromov–Hausdorff space.)

66 Indeed, it can be developed in terms of arbitrary group actions.
67 We are tacitly weighting all simplices equally in our discussion.
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cochains). If the complex is locally finite (as it will be in all of our applications),
then the ∂ map is a bounded map. Its homology is an invariant of X . It is
functorial with respect to maps that are Lipschitz and “uniformly proper,” i.e.
if one has a bound on the size of the inverse image of simplices (or else the
pushforward of an L2 chain need not be L2).

It is perhaps worthwhile to consider the case of R. The chain complex is
then identified with 0→ L2(Z) → L2(Z) → 0, where the boundary map sends
f → (t − 1) f , where t is a generator of Z. Obviously H1 = 0, but H0 is a large
infinite-dimensional space (for example δ0 is not in the image) but it doesn’t
seem to have much structure to say anything about.

There are two parts to the solution of this problem. The first is basic. We
considered L2 to enable the use of Hilbert-space methods, in which case we
should insist that the constructed homology groups be Hilbert spaces. The way
to achieve this is to insist that we never quotient out by non-closed subspaces,
i.e. to take the closure of the image of ∂ when forming the homology groups.
We will denote this version, i.e. where we take the quotient by closures, byH .

(An equivalent alternative to using closures is to form a Laplacian from the
chain complex in the usual formal way following Hodge, and define homology
to be the kernel of the Laplacian. The “torsion” (closure Im ∂)/Im ∂ thrown
away by this method corresponds to spectrum of ∇ near 0 that does not consist
of harmonic forms.

The second part is to note that, following Atiyah (1974), when we are dealing
with a universal cover,68 the action of Γ on these Hilbert spaces is appropriate for
defining a normalized dimension (using the theory of von Neumann algebras)
that can be (in principle) an arbitrary nonnegative real number.69 This will
then define b(2)i (X) (we suppress the Γ from our notation, unless needed) – the
L2-Betti numbers of X:

b(2)i (X) = dimΓHi
(2)(X).

We proceed informally. The idea shall be that we want to see what fraction
of the regular representation some other unitary Γ representation is. We restrict
attention to unitary representations that are closed subrepresentations of some
multiple of the regular representation, as ours naturally are (viewing the quotient
as the orthogonal complement to the image of the boundary).

We want dimΓ L2(Γ) = 1. If P is a Γ-equivariant projection of
⊕

L2(Γ) →
68 or even a regular cover.
69 In general the indices of L2(Z)-modules can be any real number. However, not all of these

arise as dimensions of kernels and cokernels of elliptic operators. In the special case of the
de Rham operator on general finite complexes (or compact manifolds), this question is the very
fruitful area of the Atiyah conjecture, which has deep positive and negative results. For other
operators, such as the signature operator on manifolds with boundary, it is very easy to obtain
transcendental numbers as such dimensions, even if the fundamental group in Z.
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V , then the dimension is a trace of P. To figure out what the trace should be,
consider first the case when Γ is finite. In that case, V is finite-dimensional in
the ordinary sense, and

dimΓ V = dim(V)/#Γ.

We can consider the matrix of the projection to have coefficients in C[Γ]. This
dimension is then the sum of the coefficients of the identity (element of Γ)
along the diagonal, i.e. the coefficient of the identity in the trace. Note that
when Γ′ ⊂ Γ is a finite index subgroup, we have:

dimΓ′ V = [Γ : Γ′] dimΓ V ;

here L2(Γ) is a sum of [Γ : Γ′] copies of L2(Γ′) when thought of as a Γ′

representation. It turns out that the dimension of any nontrivial representation
is positive in this sense.

This has the property that dimΓ V ⊕W = dimΓ V + dimΓ W . Very useful is
the property (almost obvious from the above heuristic)

dimΓ′ V = dimΓ indΓΓ′V .

The usual homological algebra shows that K = X/Γ a finite complex, then
one has

χΓ(X) = χ(K).

Atiyah went further and showed that if one takes any elliptic operator on a
compact manifold, then the Γ-dimension of the kernel and cokernel on the
universal cover make sense, and one has an equality of indices upstairs and
down, but this is rather more delicate – it requires more geometry and analysis
than the result on Euler characteristics, which is a result of pure algebra.

It is easy to see that for any infinite complex (and hence for any infinite
group acting freely) H0

(2)(X) = 0; a constant map is L2 iff it is 0. Applying
the Euler characteristic relation, we see from setting K to be a finite graph that
#generators of the free group F acting freely and cocompactly on it equals
1 − dimF H1

(2) (regular tree).
On the other hand, if Γ is amenable, then Cheeger and Gromov (1986) showed

that for X = EΓ, the universal cover of BΓ, we have that H i
(2)(X) = 0. They

deduced from that that the same is true for any Γ with an infinite amenable
normal subgroup. And therefore χ(K) = 0 if K is an aspherical complex whose
fundamental group has an infinite normal amenable subgroup.

All of this connects to finite covers for residually finite groups by a beautiful
theorem of Lück.
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Theorem 3.26 (Lück, 1994) If K is a finite complex with residually finite
fundamental group Γ and universal cover X , and letting Γi be a descending
chain of normal subgroups (with Ki the associated covers) then

lim Hk(Ki)/[Γ : Γi] = b(2)
k
(X).

Thus for finite complexes one can ascertain linearity of the growth of Betti
numbers in terms of b(2)

k
(X) in terms of the universal cover, i.e. are there any

L2-harmonic k-forms. This is, interestingly enough, a statement that does not
depend on the uniform lattice that is acting, or the sequence of normal finite
index subgroups used in defining, the normalized Betti numbers.

It turns out that one can use harmonic analysis70 on Lie groups to obtain that
the only cohomologyH2

k
(K\G) that can be nonzero is when k = 1

2 dim(G/K):
see Olbrich (2002). In this dimension it will be nonzero iff the Euler charac-
teristic χ � 0 (which can also be determined from the χ(compact dual) and
which is iff rankCG = rankCK). So, for SLn(R) this only happens for n = 2, but
for U(m,n) it’s always true (and for O(m,n) it depends on parity considerations
of m and n).

This theorem is adequate for the purposes of understanding uniform lattices;
however for nonuniform lattices, while there is a finite complex for K(Γ,1), –
thanks to the Borel–Serre theory, it is not K\G/Γ, which even has the wrong
dimension. Thus the universal cover is not K\G and we cannot directly use
the above calculation to learn about the growth of Betti numbers in towers.
It is nevertheless true that the L2-Betti numbers for nonuniform lattices are
proportional (with the ratio of volumes being the proportionality constant) to
those of the uniform lattices!

The most conceptual proof I know is due to Gaboriau (2002), who introduced
notions of L2-invariants for equivalence relations. Using this he showed that
both Γ and ∇ act to preserve measure and that they also commute with each
other on the same space X 71 with finite co-volume, then for every k,

b(2)
k
(Γ)/vol (X/Γ) = b(2)

k
(∇)/vol (X/∇).

We note that as a consequence of the theorems in this section, if M = K\G/Γ,
then (−1) 1

2 dim(G/K) χ(M) ≥ 0.
The Hopf conjecture asserts that this is true for all closed aspherical mani-

folds. It is not even known for (variable) negatively curved manifolds, although

70 OK – one can if one is Borel.
71 In this situation X = G, the ambient Lie group; the lattices can be viewed as acting in a

commuting fashion by having one act on the left and the other on the right. The invariant
measure exists, because the Lie group G is unimodular (whenever it has a lattice). This idea of
Gromov is called measure equivalence.
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Gromov (1991) did use L2 ideas combined with Hodge theory to prove a Kähler
version of this conjecture.72

In the next chapter we will discuss some other uses of L2 to probe the Borel
philosophy.

3.7 Mixing the Ingredients

We now wrap up our discussion and show the ubiquity of the failure of the
naive proper analogue of the Borel conjecture. (Before jumping to conclusions,
however, please go to §3.8 on morals!) All of the results and arguments in this
section are joint work with Stanley Chang, and more details can be found in
Chang and Weinberger (2003, 2007, 2015).

Our first result argument shows that we can use the completely elementary re-
sults about H4 of congruence subgroups of SLn(O) to show proper-nonrigidity
for all n > 4.

Theorem 3.27 For every n > 4, for every lattice in SLn(O), the associated
locally-homogeneous manifold has a finite sheeted cover that is not properly
rigid. Moreover, we can arrange for this cover, there is a proper homotopy-
equivalent manifold that is smooth, and is distinguished (topologically) from
the locally symmetric manifold by having a different p1.

Proof We shall just use the groups SLn(O; p) studied above (every lattice
contains these for large p, by the congruence subgroup theorem: Bass et al.,
1967). We turn to our classifying spaces armed with our knowledge about
p-torsion in H4(SLn(O; p);Z):

F/O → BSO → ∏
K(Z,4i) → K(Z,4)

↓ ↓ ↓
F/Top → BSTop → K(Z[1/2],4).

The leftmost square consists entirely of rational homotopy equivalences because
BF has finite homotopy groups according to Serre’s theorem on the finiteness
of stable homotopy groups of spheres. The map BSO→∏

K(Z,4i) is the total
Pontrjagin class (interpreting cohomology classes as maps to Eilenberg–Mac
Lane spaces).

The homotopy of BSO is known, thanks to Bott periodicity, and we have
a Z in every fourth dimension. We shall ignore the prime 2. Bott periodicity,
72 On the other hand, recent work of Avramidi (2018) calls this conjecture into question in

general.
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via its connection to the Chern character (see e.g. Hatcher, 2017), implies that
pk : π4kBSO � Z→ Z is multiplication by (2k − 1)!.

Note that a Pontrjagin class pk can be defined in a topologically invariant
fashion in Z[1/N] if we invert all primes that arise in πi(Top /O) for i ≤ 4k +1.
So π3(Top /O) � Z/2 and then the groups vanish till π7(Top /O) � Z/28 and
forever after, they are isomorphic to the group of differentiable structures on
spheres studied by Kervaire and Milnor. Thus, the question of which primes
need to be inverted becomes related to Bernoulli numbers. However, we will
just use p1 and be happy to invert the prime 2 to obtain topological invariance.

Now, to lift a map K\G/Γ → K(Z,4) to F/O, note that in every dimension
d there is an N(d) so that there is a map from the d-skeleton K(Z,4)[d] → F/O
(making use of the rational homotopy equivalence BSO → ∏

K(Z,4i)) so
that the composition K(Z,4)[d] → F/O → K(Z,4) is multiplication by N(d).
Letting d ≥ dim(G/K), and multiplying by N(d), e.g. choosing p > N(d), we
obtain a normal invariant that we can do smooth surgery to and obtain a smooth
proper homotopy equivalence f : M → K\G/Γ distinguished by the fact that
p1(M) − f ∗p1(K\G/Γ) is of order p.

Notice that f ∗p1(K\G/Γ) depends only on the map that f induces on π1,
i.e. only on the homotopy class of the map, not the proper homotopy class. By
Mostow rigidity, all automorphisms of Γ come from isometries of K\G/Γ to
itself, and hence p1(K\G/Γ) ∈ H4(K\G/Γ)Out(Γ). Consequently, this manifold
M cannot be homeomorphic to K\G/Γ – it is not merely a proper homotopy
equivalence that is not properly homotopic to a homeomorphism. �

Note that the above proof used the idea that smooth invariants are topological
invariants if we ignore a few primes (whose number depends on dimension).
It is an important fact that F/Top has an H-space structure, and STop (M) has
an abelian group structure (for all manifolds) so that the map STop (M) →
[M : F/Top] is a group homomorphism.73 For π–π manifolds (of dimension
greater than 5) this map is an isomorphism. The group structure on F/Top is
exactly the one that makes the maps arising in Sullivan’s description of F/Top
into H-maps.

Proposition 3.28 For all d > 4 there is an M(d) such that if M is a smooth
manifold, the image of the map SDiff(M) → STop (M) contains a subgroup of
index bounded by M(d)rankH∗(M ;Z).

Proof This is a formal consequence of the statement that there is an M(d) so

73 Siebenmann proved this in the last essay of Kirby and Siebenmann (1977). It is a consequence
of a periodicity theorem that is a cousin of Bott periodicity for BO. For a geometric
explanation, see Cappell and Weinberger (1987) and Weinberger (1994).
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that the composition M(d) : F/Top→ F/Top→ Top /O is null-homotopic on
the d-skeleton. The d-skeleton of F/Top is a finite complex, and Top /O is a co-
homology theory with finite homotopy groups. Therefore [F/Top(0) : Top /O] =
0 and hence74 the inverse limit of N∗ (over the integers)75 on [F/Top: Top /O]
is trivial. Consequently, we can find the M(d) that induces 0, as was our
goal. �

Remark 3.29 It is a consequence of the work of Kervaire and Milnor on
differentiable structures on the sphere and smoothing theory that the map
SDiff(M) → STop (M) has finite kernel (whose order is also bounded by
M(d)rankH∗(M ;Z)). The above proposition shows that, although the image is
not a subgroup, the cokernel has a similar bound.

As a result, we have that, for π–π manifolds, SDiff(M) →⊕
H4i(M;Z) is

finite-to-one and has image that contains a lattice in the target (with even some
information on the torsion, if we are so inclined).

We now give a general converse to the rigidity that holds76 in Q-rank ≤ 2,
but only for the topological category.

Theorem 3.30 If Q-rank(Γ) > 2, then there is a finite index subgroup Γ′ of Γ
for which Sp,Top (K\G/Γ′) is nontrivial.

Remark 3.31 Indeed, we can make this an elementary abelian 2-group of
arbitrarily large size by pushing strong approximation slightly harder than we
do in the discussion below.

Remark 3.32 If Γ is arithmetic then theQ-rank(Γ) is defined as usual in terms
of Q-split tori. If it is reducible, then we add on to the arithmetic pieces the
number of non-compact manifold factors it has. These non-arithmetic factors
are all negatively curved, and they have the same general shape as R-rank − 1
non-compact symmetric spaces: they have cusps that can be compactified, and
these boundaries are aspherical, with cusp subgroups that are of infinite index.

Proof We shall use Sullivan’s decomposition of F/Top at the prime 2: F/Top
has a K(Z/2,2) factor, so we need to produce Γ′ with large H2(;Z/2). Let us
assume that we are in the arithmetic case, leaving the modifications for the
reducible case to the reader.

Recall that, according to Lubotzky’s theorem, Γ has a subgroup of even index
74 As the homotopy groups are all finite, there is no issue of lim1; it is also true in our case for the

reason that we can work with a fixed finite skeleton.
75 Note that F/Top(0) can be thought of as an infinite mapping telescope of self-maps

F/Top→ F/Top induced by multiplications by the integers (no matter what H-space
structure is used).

76 We will explain this in a later chapter.
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– hence a normal subgroup of even index. Hence there’s a finite group of even
order H that is a quotient of Γ. Let Γ′ be the inverse image of some involution
in H.

If the Lie group G has no rank-1 factors, then it has Property (T), and H1(Γ′) is
necessarily finite. If there are rank-1 factors, but Γ is irreducible, we can deduce
the same thing from superrigidity. In any case, we then see that H1(Γ′) has an
even-order cyclic summand. Consequently, we have Ext(H1(Γ′),Z/2) � 0; by
the universal coefficient theorem, there is an injection 0→ Ext(H1(Γ′),Z/2) →
H2(Γ′;Z/2), giving us a nontrivial element in the structure set as desired. �

The first remark is proved by producing quotients making use of many
primes, and then having a large elementary abelian subgroup of which to take
the inverse image.

Problem 3.33 The above reasoning shows that we can make rank H1(Γ′,Z/2)
large by taking a deep lattice. This rank is necessarily O(vol (K\B/Γ′)) and in
the rank-1 case it can actually grow linearly (although this doesn’t produce any
exotic structures). However, if one takes a descending chain77 or assumes that
we are irreducible in a semisimple group of rank ≥ 2, is it the case that this
rank is o(vol (K\B/Γ′))?

As a converse to the low-rank proper rigidity, this theorem has a couple of
weaknesses: these elements (at least in the irreducible case) die on passing to
further covers. Also, it would be nice to know that some particular structure sets
(groups, in fact) are infinite – and we would be interested in knowing whether
we can say anything about how these groups grow in size as we move up a
tower. We now address these questions.

Remark 3.34 Hi(X;Q) → Hi(Y ;Q) is one-to-one for any finite cover Y of
any space X . So, if we detect a structure set using a rational Pontrjagin class,
then these survive forever.

First of all, we note a case where we can prove that the proper structure set
is infinite for a simple reason of this sort.

Proposition 3.35 If K\G/Γ is a Hermitian symmetric space withQ-rank(Γ) >
2, then Sp,Top (K\G/Γ) ⊗ Q � 0.

Proof We argue as above, but we will need to see that H4(K\G/Γ;Q) � 0;
the proposition will be proved by p1. The obvious cohomology class to use is
the square of the Kähler class. However, one needs to check that this class is
nontrivial.
77 And we are not in the case of a surface!
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Let’s now be a bit more explicit. Given a projective embedding, one can
pullback the generator of H2(CPN ): this is the Kähler class. The way it evalu-
ates on homology is by intersecting with any linear hyperplane CPN−1. Using
a projective embedding of the Baily–Borel compactification78 of K\G/Γ, it
would then suffice to find a codimension-2 linear subprojective space that does
not intersect the singularity set of the Baily–Borel compactification, since its
intersection with K\G/Γ will be a subsurface on which the square of the Kähler
class is nontrivial. This merely requires that the codimension of the singulari-
ties of the Baily–Borel compactification to be larger than 2. This can be seen
by inspection, as noted in Jost and Yau (1987). �

At the cost of weakening the hypothesis onQ-rank to one that is not necessary
for rigidity, one can prove a much stronger theorem.

Theorem 3.36 Suppose M = K\G/Γ is a locally symmetric manifold with
Q-rank(Γ) > 3, then lim Sp,Top (K\G/Γ′) ⊗Q is of infinite rank (where the limit
is taken with respect to arbitrary finite covers K\G/Γ′ of K\G/Γ).79

We shall denote the limit, lim Sp,Top (K\G/Γ′) by Svirtual(K\G/Γ).
We shall, for simplicity, only deal with the case of Γ = SLn(OF ) with n > 3

(note that the Q-rank of such is n − 1) – which includes a very interesting
Q-rank = 3 example, and tells the complete story for this important class of
lattices.

In light of our previous remarks and the theory of generalized modular sym-
bols, all that we need to do is find proper Q-parabolic subgroups for SLn(OF )
whose unipotent radicals have dimension ≡ 0 mod 4.

Parabolics are associated to, perhaps incomplete, flags in Fn. If we use the
flag Fk ⊂ Fn, then the dimension of the associated unipotent subgroup (of
automorphism inducing the identity on the associated graded to this flag) is
dk(n − k), where d = [F : Q].80 If n is even, we can use k = 2, and if
n = 1mod 4, we can use k = 1. If n = 3, then the Q-rank is 2, so we can assume
that n > 4, so we can set k = 4.

The general case in the theorem is a similar case-by-case analysis.81

78 See Baily and Borel (1966) for the completion of Hermitian locally symmetric spaces as
projective varieties.

79 One can form this limit with respect to various families of covers, and the limits can change.
For example, one can show that if Q-rank(Γ) > 5, then if one takes the sequence of squarefree
congruence covers, the limit has an infinitely generated torsion subgroup that frequently dies
when included in the limit over all finite index subgroups.

80 The presence of this factor d implies that if the lattice in the theorem were obtained by
restriction of scalars from a number field of even degree, we would obtain the same growth of
Svirtual in the problematic Q-rank = 3 case not covered in the theorem.

81 I am deeply appreciative of the help that Dave Witte-Morris gave us with these calculations
that we had done incorrectly at first.
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Finally, given the infinite rank of Svirtual(K\G/Γ) ⊗Q, it becomes reasonable
to ask what is the growth rate of rank Sp,Top (K\G/Γ′) as one moves up a tower.
In general, it seems like the rank grows like some power of the volume [Γ : Γ′]α
for some α ≤ 1.

The question of (approximately linear) growth follows easily from Lück’s
theorem combined with the results of Cheeger and Gromov and of Gaboriau
explained in §3.6.

Theorem 3.37 Assuming that dim(G/K) > 4, and Q-rank(Γ) > 2, the ranks
Sp,Top (K\G/Γ′) = o([Γ : Γ′]) iff rankC(G) > rankC(K) or dim(G/K) is not
divisible by 8.

Indeed for G semisimple with no rank-1 factors, one can prove that

rank Sp,Top (K\G/Γ′) ⊗ Q = o(vol K\G/Γ′)
(i.e. we do not have to assume that they are part of a tower). Presumably, this
also holds in that case as well for irreducible lattices. And it is interesting to
speculate on the nature of the torsion for these lattices (both in a tower and
those that are not).

3.8 Morals

What do we learn from this discussion? Certainly that in large Q-rank, the
proper Borel conjecture fails.

But that’s a summary, not a moral.
The reason that the proper Borel conjecture fails is interesting. It turns out

that only in Q-rank ≤ 2 are the symmetric spaces “aspherical” in the “relevant
sense,” i.e. the sense relevant to proper rigidity. We observed that these low
Q-rank lattices are the only ones where the space at ∞, i.e. the Borel–Serre
boundary, is aspherical.

What is a good way of thinking about “aspherical in the relevant sense”? We
need to lose some geometry and move towards a categorical answer.

For proper maps, we are working in the proper category, and it makes sense
to look for a properly aspherical space.

What should proper “aspherical” mean? This space should be defined to be a
terminal object in the category of spaces and maps that are “1-equivalences,”82

82 That this is the right thing to look at is suggested by the functoriality properties that we will
see that STop (i.e. surgery theory) is blessed with. More primitively, the π–π theorem – which
our discussion crucially depended on – suggests the very special role that the fundamental
group (which is equivalent to 1-equivalence classes of connected spaces) will play.
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i.e. where one can solve all one-dimensional lifting problems in a way that is
unique up to homotopy (in the category). If Q-rank ≥ 3, the terminal object
should be “the core of K\G/Γ′′ ×[0,∞) – which is not K\G/Γ. (There’s a pretty
straightforward proper map from latter to the former, but no proper section to
this map.)

If we give up on doing any new geometry at infinity, might we be able to
survive this lack of proper asphericity, and get some rigidity theorem for all
K\G/Γ?

One way we can do this is by insisting that our maps are homeomorphisms
outside some compact set (and that we allow homotopies to be relative to the
complement of a somewhat larger compact set). In this case, the symmetric
space is a terminal object and we will see in Chapter 4 that the ordinary Borel
conjecture for a closed aspherical manifold constructed by a Davis construction
applied to the Borel–Serre compactification implies this is relative to infinity
rigidity (i.e. relative to the complement of some large, unspecified compact
set), so it is a consequence of the Borel conjecture.

And, indeed this case is, essentially, a theorem of Bartels et al. (2014b).83

In any case, this discussion enables (and forces) us to expand our attention
to all aspherical manifolds with boundary, with the boundary aspherical or not,
provided we work relative to the boundary. (Or rel∞ in the noncompact case.)

There’s another sense in which K\G/Γ is aspherical, if we make a category
where maps are Lipschitz and not allowed to move any point too far. In that
case, the large-scale geometry discussed in the first section comes to bear, and
one can indeed prove that the K\G/Γ′ are “boundedly rigid.”84 This bounded
category (and other “controlled analogues”) will play a large role when we
discuss the Novikov conjecture in the upcoming chapter.

3.9 Notes

This chapter covered a lot of ground, and all of the topics discussed need
more systematic treatments. Happily, many exist for them. A very good general
reference for arithmetic manifolds is Witte-Morris (2015).

The subject of compactifications of K\G/Γ is an important one, and two of
these played a role in our discussions, the Borel–Serre and the Baily–Borel (see

When we study groups with torsion, it will turn out that the terminal object is not rigid, and
we will be led back to geometry and orbifolds, i.e. to enlarging the category.

83 Their paper covers the case of arithmetic lattices. Non-arithmetic lattices can be handled by
the same idea of reduction to the arithmetic case used above in §3.2 when we defined the
Q-rank for the non-arithmetic case.

84 See Chang and Weinberger (2007).
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Borel and Serre, 1973 and Baily and Borel, 1966). Both of these are extraordi-
narily important. The Borel–Serre compactification gives finite generation of
group homology, the calculation of their cohomological dimension, and that
these groups are duality groups in the sense of Bieri and Eckmann85 (see Bieri
and Eckmann, 1973). The Baily–Borel compactification shows finite genera-
tion of the spaces of modular forms via projective embedding. The literature
on these and many others is surveyed and explained in Borel and Ji (2005).

We shall sometimes have need for Tits buildings defined for Lie groups
over other fields. For example, if one wants to study SLn(Z[1/p]), it acts
ergodically on SLn(R) and we need to supplement SLn(R) with SLn(Qp) to
get discreteness. Tits buildings give a structure that replaces the symmetric
space K\G. The group SLn(Z[1/p]) acts properly on the product of the real
symmetric space and the building. An immediate consequence of this theory
is that the virtual cohomological dimension of such groups is finite. There are
many references for the theory of buildings, each with a different emphasis;
for our purposes, Tits (1974) and Abramenko and Brown (2008) are especially
recommended. I also highly recommend the paper Alperin and Shalen (1982)
which is a model of this type of application.

Atiyah’s theorem (about how much of the tangent bundle is homotopy invari-
ant) is better phrased in terms of stable normal bundles (for an embedding in
a very high-dimensional Euclidean space), rather than tangent bundles. In that
case, the conceptual explanation, due to Spivak (1967), is that as a spherical fi-
bration, this stable normal bundle is definable for any Poincaré complex; that is,
for any finite complex that satisfies Poincaré duality.86 The idea of this fibration
is quite simple: Poincaré complexes can be characterized as those complexes
X for which a regular neighborhood of X , when polyhedrally embedded in Eu-
clidean space looks like, in a homotopy-theoretic sense, the situation that arises
for tubular neighgborhoods of smooth manifolds. This means specifically that
the homotopy fiber87 of the inclusion of the boundary of this neighborhood into
the neighborhood is a homotopy sphere (like the epsilon-sphere bundle map-
ping to the smooth manifold, to which a tubular neighborhood deform retracts).
Spivak also gives a homotopy-theoretic characterization of this fibration.88

85 Actually they motivated the definition of Bieri–Eckmann duality by being a first nontrivial
class of examples of this.

86 See Spivak (1967) and Wall (1968) for what this notion means in detail: it generalizes the fact
that the homology and cohomology groups must be isomorphic, but it also demands that it be
implemented via a fundamental class, and also hold with arbitrary local coefficient systems –
in particular any finite cover of a Poincaré complex is a Poincaré complex.

87 Recall that any map can be replaced (at the cost of replacing the spaces involved by homotopy
equivalent ones) by a fibration, as observed by Serre in his thesis.

88 It is the unique stable spherical fibration whose top homology class is spherical (i.e. lies in the
image of the Hurewicz homomorphism).
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The surgery classification of manifolds was begun by Kervaire and Milnor
(1963) in the case of smooth manifolds that are homotopy-equivalent (and there-
fore homeomorphic) to the sphere, and then extended to the simply connected
case by Browder and Novikov and reformulated using classifying spaces by
Sullivan. (References for surgery theory include Wall (1968), Browder (1972),
Ranicki (1992, 2002), Weinberger (1994), Lück (2002a), and Chang and Wein-
berger (2020).) Although we have not yet dealt with the classification of closed
manifolds (see Chapter 4!) the simply connected case can be deduced from
the discussion given here: if h : M ′ → M is a homotopy equivalence, one can
always deform it so that it will be transverse to a point p, and with h−1(p) a
single point. In that case, there is a neighborhood isomorphic to a ball, whose
inverse image is a ball. Deleting the interiors of these balls, we get a structure on
the complement. On the other hand, any structure on the complement restricts
to a homotopy sphere on the boundary, and, thanks to the Poincaré conjecture
(in the PL and Topological categories), it can be completed to be a structure
on the closed manifold. Thus Scat(M) � Sp,cat(M − p) for M simply connected
and where cat is equal to Top or PL.

The classifying space F/Top is its own fourth loop space (more correctly, it
is Z × F/Top that is its own loopspace89) as can be seen from the description
given in the text and using Bott periodicity at the odd primes. It turns out that
this is the first step towards a functorial view of surgery theory, which cannot
at all be explained in “without obstructions” terms, as our first pass went:
the structure space90 S measures the difference between completely analogous
local and global obstructions, i.e. Z×F/Top is a cohomology theory associated
to a spectrum whose homotopy groups are surgery obstruction groups.

Surgery theory is nicest in the topological category. The canonical reference
for the foundational theorems in this setting is Kirby and Siebenmann (1977)
– which is the original source for them. Unlike the smooth category where the
foundations are built on Sard’s theorem, Morse’s lemma, and the fundamental
existence theorem for ordinary differential equations (with smooth coefficients),
the topological category is distinctly more difficult to get off the ground. The
proofs of the basic theorems, essentially theorems about the topology of Rn,
require deep global results in the smooth or PL categories either about non-
simply connected manifolds (à la Novikov and Kirby) or about manifolds

89 This extra Z has significant geometric implications, hinting to an amazing world of
non-resolvable homology manifolds.

90 Indeed, the structures that we considered are promoted to being homotopy groups of a space
rather than merely a set. This idea first arose in work of Casson (1967) and was developed and
advocated by Quinn in his thesis.
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“controlled over a metric space” – introduced by Quinn (1979, 1982b, 1982c,
1986) – a major theme in the coming chapters.

However, the theory ends up having an even nicer formulation than the
topological category when one includes homology manifolds, but here the
local issues currently seem even more difficult and the global theory is in much
better shape than the local (see Bryant et al., 1996). I will discuss this a bit in
Chapter 4 discussing the functoriality of surgery and also in our discussion of
the Wall conjecture (the “existence Borel conjecture”).

That there is a lot of homology in congruence subgroups is something
that I learnt from Ruth Charney (1984). Torsion in homology of arithmetic
groups is quite mysterious. For SL(Z), in the limit, this is determined by the
solution to Quillen–Lichtenbaum conjecture by Rost and Voevodsky91 (by the
work of Dwyer and Friedlander, 1986), but for congruence groups and other
arithmetic groups the picture is still obscure.92 Bergeron and Venkatesh (2010)
and Calegari and Venkatesh (2019) have suggested that the analogue of the L2-
Betti story holds – something hard to tell in general because of issues involving
regulators. (Test question:93 in the stable range of Borel’s theorem, how do
the images of the cohomology lattices corresponding to different lattices in the
same group relate to one another?) The stabilization by going up the congruence
tower has been studied by Calegari and Emerton (2012) introducing a notion
of completed cohomology making a connection to p-adic Lie groups).

A problem whose solution would seem to be illuminating in this direction is
the following: Can one estimate the ratio of bi(X;Z/p)/vol (X) (where vol (X) is
some simplicial notion of volume, say the number of simplices) for a simplicial
complex by random sampling. That this is possible for rational Betti number
is the idea of the Lück approximation theorem; see also Farber (1998), (where
this point is clearer – his condition for Lück’s theorem to hold for non-normal
covers is precisely that the relative volume of the set of points where the
covers do not look “universal” goes to 0), and Abert et al. (2017) and Elek
(2010), where it is explicit.94 This would then suggest that in the situation
where rankCG − rankCK = 1 there would be growing torsion in covers, but not
because of large elementary abelian subgroups.

We refer to Lubotzky and Segal (2003) for a survey of the strong approxima-
tion theorem. We note that, although the original proof (by Weisfeiler (1984)
– see also Matthews et al. (1984) and Vasserstein) used the classification of

91 See the survey Weibel (2005).
92 But see Calegari (2015).
93 It could be someone knows the answer to this and will email me!
94 In this context, the paper of Clair (2003) where Lück’s theorem is made more quantitative

expressly in terms of injectivity radius of the covers.
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finite simple groups, this is no longer necessary (as pointed out there) thanks
to work of Nori (1987), Larsen and Pink (2011), and Hrushovski and Pillay
(1995) (using algebraic geometric and/or model-theoretic ideas.)

I remember learning about amenability from Bob Brooks. When I was a
student, he told me about Kesten’s work and explained that, although there are
no L2 harmonic functions on a universal cover, amenability controls whether 0
is in the spectrum. This material appeared in Brooks (1981) and is a manifold
version of the statement asserted for the discrete group. Other papers by Brooks,
Sunada, and others compared the spectral geometry of the manifolds to the
spectral geometry of the associated finite graphs. This can all be viewed part
of the L2-cohomology story (including an appropriate de Rham theorem for
comparison of smooth and simplicial models) when one jazzes up the story
to include foliated spaces rather than just covers (see Bergeron and Gaboriau,
2004). There are a number of excellent sources on amenability, the Banach–
Tarski paradox, and its connection to random walks and to operator algebras
(see e.g. Lubotzky, 1984; Paterson, 1988; Wagon, 1993).

The geometric group theory of amenability and non-amenability has led
to the consideration of some remarkable groups. Non-amenable groups that
don’t contain free groups (the von Neumann conjecture) were first constructed
by Ol’shanskii and Ju (1980) – the torsion groups satisfying Property (T)
produced by the method of adding large relations are also examples. On the
other hand, Whyte’s thesis (see Whyte, 1999) gives a “true” analogue of the
von Neumann conjecture that can be used, for instance, to extrapolate between
the characterization of nonamenability in terms of random walks (i.e. vanishing
of 0th L2-homology) and that in terms of the existence of “Ponzi schemes”95

(Block and Weinberger, 1992; 1997)) to all other Lp-homology with p > 1.
Grigorchuk’s (1984) group of intermediate growth (i.e., so that the number

of group elements that can be expressed as the product of n generators grows
more than a polynomial, but less than exponentially) was the first non-solvable
amenable group. Bartholdi and Virag (2005) actually proved the amenability
of some related groups by consideration of their random walk. Both of these
are examples of automata groups – see the survey by Zuk (2003). Recently,
Juschenko and Monod (2013) have given (uncountably many) simple amenable
groups.

Property (T) is the subject of a very useful book (Bekka et al., 2008) and is
at the center of numerous problems.

It is now liberated from its original representation-theoretic roots by the

95 The Cayley graph of a non-amenable group always supports a scheme wherein each vertex
exchanges a uniformly bounded amount of money with its neighbors, so that each vertex ends
up net positive. This is impossible on Cayley graphs of amenable groups.
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method of Garland (1973), Ballman and Swiatkowski (1977), and Zuk (2003),
and also by Shalom’s work using bounded generation and algebraic methods
(related to K-theory) to show that a number of interesting groups (like linear
groups over Laurent series rings) have Property (T): see his ICM talk (Shalom,
2006) for information. The analytic method is useful in studying strengthenings
of Property (T), e.g. to include group actions on other Banach spaces, or on
other general spaces with curvature conditions. Stronger forms of Property (T)
can be invaluable to extensions of the rigidity program in other directions,
such as the Zimmer program, which, broadly defined, tries to study nonlinear
actions of large groups (e.g. lattices) on manifolds – perhaps, but not necessarily,
preserving some geometric structure (such as a volume form).96

I will leave the reader to consult Kowalski (2008) and Lubotzky (2012) for
recent applications of expanders to discrete groups and to number theory, as
well as to references on new proofs of Selberg’s 3/16 theorem (at least > 0
theorem!) and the connections to additive combinatorics that enable all this.
There have also been other constructions of explicit families of expanders, such
as the zig-zag product of Alon and Wigderson (explained very nicely in Hoory
et al. (2006)) and the new Ramanujan graphs97 constructed by Marcus et al.
(2015).

That both amenability and Property (T) have characterizations in terms of L2-
homology/cohomology should have made it possible to make a segue between
this section and the one on L2 and growth of Betti numbers, but this seemed
forced, so I chose not to push this.

Lück’s (2002b) book gives a good overview of how L2 interacts with groups
and compact manifolds. Entirely missing (and not relevant to our concerns in
this essay) are relations of L2-cohomology to intersection cohomology of com-
pactifications and other stratified applications. There has been much work since
that book was written, both internal to the subject (such as interesting exam-
ples of transcendental L2-Betti numbers (see Grabowski, 2014, and references
therein)98 and of connections to other parts of topology.

Atiyah (1974) introduced L2-Betti numbers and that L2 indices to deal with
the kernels of elliptic operators on universal covers and to get finite quantities
measuring the sizes of these typically infinite-dimensional spaces. Connes
96 In the notes to Chapter 8, we will mention a bit more about this. Here we content ourself with a

citation of the Bourbaki talk (Cantat, 2017 on the theorem of Brown–Fisher–Hurtado showing
that certain lattices don’t have any effective C2-actions on low dimensional manifolds. SLn(Z)
does not act effectively and C2 on any manifold of dimension less than n − 1.

97 Ramanujan graphs are graphs that have optimal spectral gaps for their Laplacians. The first
examples were contructed by Lubotzky et al. (1988), using Deligne’s solution of the
Ramanujan conjecture – the circumstance that led to their name.

98 On the other hand, even now, there is no known example of a torsion-free group where
L2-Betti numbers are not integers.
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later proved an index theorem for foliations – see Connes (1982) and Moore
and Schochet (2006) for a version closely related to the one most relevant here
– that gives something like an average version of the indices one sees over the
leaves (see Connes, 1994). If one views both theorems in the situation of limits
of coverings (the Benjamini–Schramm limit of a sequence of finite covers
being a transversely measured foliated space), then the cohomology related
to Connes’s theorem is exactly the one occurring in the Bergeron–Gaboriau
theorem mentioned above.

Another interesting convergence arises when one thinks about the informa-
tion given in the L2-theory of symmetric spaces. Results about the limits of
normalized Betti numbers (via thinking about the Matsushima formula and
multiplicities) were first derived by DeGeorge and Wallach (1978, 1979) using
the Selberg trace formula.

That symmetric spaces tend to be concentrated around the middle from the
L2 perspective has been well known for a while. I cannot track it down. Clearly
Singer was aware of this when he conjectured in 1977 that the same might be
true for the universal covers of arbitrary aspherical manifolds as an approach to
the Hopf conjecture (discussed in the text). A very useful exposition (which does
not make excessive demands on the reader’s knowledge for harmonic analysis
and which goes further and explains what occurs for additional invariants related
to the spectrum near 0 for forms as well as functions) is Olbrich (2002). Atiyah
and Schmid (1977) connect the use of the L2 index theorem to representation
theory and use this connection to re-prove some of the main results of Harish-
Chandra.

Cheeger and Gromov were led to L2 methods for an opposite reason than they
arose for us: they wanted a substitute tool to use when there are not enough finite
covers (see e.g. Cheeger and Gromov, 1985b) – for example, if one is studying
the geometry of a manifold whose fundamental group is not residually finite.
However, in some sense these are two sides of the same coin: the individual
manifold (or lattice) might be hard to understand, but this limiting object is
more transparent and brings order to the finite world. Their paper (Cheeger and
Gromov, 1986) builds foundations for the theory and proves the generalization
of Rosset’s theorem on vanishing of Euler characteristic. Cheeger and Gromov
(1985a) gives a direct but very delicate proof that the proportionality of Betti
number to volume from locally symmetric manifolds remains true when one
moves from the uniform to the nonuniform case. I personally prefer the method
(Gaboriau, 2002) mentioned in the text.

The remarks about the rate of growth of Sp,Top (K\G/Γ) are clearly essentially
the same as questions about the rate of growth of Betti numbers. Besides the
linear case, more remains at the level of conjecture. It seems reasonable to
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believe that the elements that don’t come from the compact dual grow at a rate
that’s a power of volume, and that there is power upper bound – see Sarnak and
Xue (1991), Xue (1992), Abert et al. (2017) – (and of course note that this is
exactly the situation for the generalized modular forms, or, indeed, every use of
geometric cycles I am aware of). The torsion story is harder to be sure of. In any
case, if one climbs up the congruence tower of squarefree numbers, then the
method based on comparison to the Lie algebra will give (at least ifQ-rank > 5)
an infinitely generated torsion group in the limit. I suspect that quite generally
Svirtual(K\G/Γ) will have infinitely generated torsion and infinitely divisible
elements, but I do not have anything to show in justification of this suspicion.99

Finally, regarding the morals of the story told in this chapter: most stories
are not improved by having their morals stated explicitly, and, further, most
morals seem fairly obvious when just said outright,100 and the tales told to
illustrate them often seem more interesting than they are. And, perhaps this is
true in our special case as well. In any case, as we proceed, we will now feel
the need to be more and more functorial (and the geometric ideas that gave life
to the problem, like good parents, will still be there, but in the background,
giving guidance and perhaps providing inspirations, but never overwhelming
independent development).

And the bounded rigidity of K\G/Γ mentioned there is proved in Chang and
Weinberger (2007).

99 But I do hope to hear more about this in coming years.
100 Yet, I note, that they are frequently deep truths in the sense of Fermi, truths whose negations

are also true.
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