
P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

2

Discrete Planning

This chapter provides introductory concepts that serve as an entry point into other parts of
the book. The planning problems considered here are the simplest to describe because the
state space will be finite in most cases. When it is not finite, it will at least be countably infi-
nite (i.e., a unique integer may be assigned to every state). Therefore, no geometric models
or differential equations will be needed to characterize the discrete planning problems.
Furthermore, no forms of uncertainty will be considered, which avoids complications
such as probability theory. All models are completely known and predictable.

There are three main parts to this chapter. Sections 2.1 and 2.2 define and present search
methods for feasible planning, in which the only concern is to reach a goal state. The search
methods will be used throughout the book in numerous other contexts, including motion
planning in continuous state spaces. Following feasible planning, Section 2.3 addresses
the problem of optimal planning. The principle of optimality, or the dynamic programming
principle, [86] provides a key insight that greatly reduces the computation effort in many
planning algorithms. The value-iteration method of dynamic programming is the main
focus of Section 2.3. The relationship between Dijkstra’s algorithm and value iteration
is also discussed. Finally, Sections 2.4 and 2.5 describe logic-based representations of
planning and methods that exploit these representations to make the problem easier to
solve; material from these sections is not needed in later chapters.

Although this chapter addresses a form of planning, it encompasses what is sometimes
referred to as problem solving. Throughout the history of artificial intelligence research,
the distinction between problem solving [738] and planning has been rather elusive. The
widely used textbook by Russell and Norvig [842] provides a representative, modern
survey of the field of artificial intelligence. Two of its six main parts are termed “problem-
solving” and “planning”; however, their definitions are quite similar. The problem-solving
part begins by stating, “Problem solving agents decide what to do by finding sequences
of actions that lead to desirable states” ([842], p. 59). The planning part begins with, “The
task of coming up with a sequence of actions that will achieve a goal is called planning”
([842], p. 375). Also, the STRIPS system [339] is widely considered as a seminal planning
algorithm, and the “PS” part of its name stands for “Problem Solver.” Thus, problem
solving and planning appear to be synonymous. Perhaps the term “planning” carries
connotations of future time, whereas “problem solving” sounds somewhat more general.
A problem-solving task might be to take evidence from a crime scene and piece together
the actions taken by suspects. It might seem odd to call this a “plan” because it occurred
in the past.

Since it is difficult to make clear distinctions between problem solving and planning,
we will simply refer to both as planning. This also helps to keep with the theme of this
book. Note, however, that some of the concepts apply to a broader set of problems than
what is often meant by planning.

23

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

24 INTRODUCTORY MATERIAL

2.1 Introduction to discrete feasible planning

2.1.1 Problem formulation

The discrete feasible planning model will be defined using state-space models, which will
appear repeatedly throughout this book. Most of these will be natural extensions of the
model presented in this section. The basic idea is that each distinct situation for the world
is called a state, denoted by x, and the set of all possible states is called a state space, X.
For discrete planning, it will be important that this set is countable; in most cases it will be
finite. In a given application, the state space should be defined carefully so that irrelevant
information is not encoded into a state (e.g., a planning problem that involves moving a
robot in France should not encode information about whether certain light bulbs are on
in China). The inclusion of irrelevant information can easily convert a problem that is
amenable to efficient algorithmic solutions into one that is intractable. On the other hand,
it is important that X is large enough to include all information that is relevant to solve
the task.

The world may be transformed through the application of actions that are chosen by
the planner. Each action, u, when applied from the current state, x, produces a new state,
x ′, as specified by a state transition function, f . It is convenient to use f to express a state
transition equation,

x ′ = f (x, u). (2.1)

Let U (x) denote the action space for each state x, which represents the set of all actions
that could be applied from x. For distinct x, x ′ ∈ X, U (x) and U (x ′) are not necessarily
disjoint; the same action may be applicable in multiple states. Therefore, it is convenient
to define the set U of all possible actions over all states:

U =
⋃

x∈X

U (x). (2.2)

As part of the planning problem, a set XG ⊂ X of goal states is defined. The task of
a planning algorithm is to find a finite sequence of actions that when applied, transforms
the initial state xI to some state in XG. The model is summarized as:

Formulation 2.1 (Discrete feasible planning)

1. A nonempty state space X, which is a finite or countably infinite set of states.

2. For each state x ∈ X, a finite action space U (x).

3. A state transition function f that produces a state f (x, u) ∈ X for every x ∈ X and
u ∈ U (x). The state transition equation is derived from f as x ′ = f (x, u).

4. An initial state xI ∈ X.

5. A goal set XG ⊂ X.

It is often convenient to express Formulation 2.1 as a directed state transition graph.
The set of vertices is the state space X. A directed edge from x ∈ X to x ′ ∈ X exists in
the graph if and only if there exists an action u ∈ U (x) such that x ′ = f (x, u). The initial
state and goal set are designated as special vertices in the graph, which completes the
representation of Formulation 2.1 in graph form.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 25

Figure 2.1: The state transition graph for an example problem that involves walking around on an in�nite
tile �oor .

Figure 2.2: Interesting planning problems that involve exploring a labyrinth can be made by shading in
tiles.

2.1.2 Examples of discrete planning

Example 2.1 (Moving on a 2D Grid) Suppose that a robot moves on a grid in which
each grid point has integer coordinates of the form (i, j). The robot takes discrete steps
in one of four directions (up, down, left, right), each of which increments or decre-
ments one coordinate. The motions and corresponding state transition graph are shown
in Figure 2.1, which can be imagined as stepping from tile to tile on an infinite tile
floor.

This will be expressed using Formulation 2.1. Let X be the set of all integer
pairs of the form (i, j), in which i, j ∈ Z (Z denotes the set of all integers). Let
U = {(0, 1), (0,−1), (1, 0), (−1, 0)}. Let U (x) = U for all x ∈ X. The state transi-
tion equation is f (x, u) = x + u, in which x ∈ X and u ∈ U are treated as two-
dimensional vectors for the purpose of addition. For example, if x = (3, 4) and u = (0, 1),
then f (x, u) = (3, 5). Suppose for convenience that the initial state is xI = (0, 0). Many
interesting goal sets are possible. Suppose, for example, that XG = {(100, 100)}. It
is easy to find a sequence of inputs that transforms the state from (0, 0) to (100,

100).
The problem can be made more interesting by shading in some of the square tiles to

represent obstacles that the robot must avoid, as shown in Figure 2.2. In this case, any tile

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

26 INTRODUCTORY MATERIAL

that is shaded has its corresponding vertex and associated edges deleted from the state
transition graph. An outer boundary can be made to fence in a bounded region so that X

becomes finite. Very complicated labyrinths can be constructed. �

Example 2.2 (Rubik’s Cube Puzzle) Many puzzles can be expressed as discrete plan-
ning problems. For example, the Rubik’s cube is a puzzle that looks like an array of
3 × 3 × 3 little cubes, which together form a larger cube as shown in Figure 1.1a (Section
1.2). Each face of the larger cube is painted one of six colors. An action may be applied
to the cube by rotating a 3 × 3 sheet of cubes by 90 degrees. After applying many actions
to the Rubik’s cube, each face will generally be a jumble of colors. The state space is
the set of configurations for the cube (the orientation of the entire cube is irrelevant).
For each state there are 12 possible actions. For some arbitrarily chosen configuration of
the Rubik’s cube, the planning task is to find a sequence of actions that returns it to the
configuration in which each one of its six faces is a single color. �

It is important to note that a planning problem is usually specified without explicitly
representing the entire state transition graph. Instead, it is revealed incrementally in the
planning process. In Example 2.1, very little information actually needs to be given to
specify a graph that is infinite in size. If a planning problem is given as input to an
algorithm, close attention must be paid to the encoding when performing a complexity
analysis. For a problem in which X is infinite, the input length must still be finite. For
some interesting classes of problems it may be possible to compactly specify a model that
is equivalent to Formulation 2.1. Such representation issues have been the basis of much
research in artificial intelligence over the past decades as different representation logics
have been proposed; see Section 2.4 and [384]. In a sense, these representations can be
viewed as input compression schemes.

Readers experienced in computer engineering might recognize that when X is finite,
Formulation 2.1 appears almost identical to the definition of a finite state machine or
Mealy/Moore machines. Relating the two models, the actions can be interpreted as inputs
to the state machine, and the output of the machine simply reports its state. Therefore,
the feasible planning problem (if X is finite) may be interpreted as determining whether
there exists a sequence of inputs that makes a finite state machine eventually report a
desired output. From a planning perspective, it is assumed that the planning algorithm has
a complete specification of the machine transitions and is able to read its current state at
any time.

Readers experienced with theoretical computer science may observe similar connec-
tions to a deterministic finite automaton (DFA), which is a special kind of finite state
machine that reads an input string and makes a decision about whether to accept or
reject the string. The input string is just a finite sequence of inputs, in the same sense
as for a finite state machine. A DFA definition includes a set of accept states, which in
the planning context can be renamed to the goal set. This makes the feasible planning
problem (if X is finite) equivalent to determining whether there exists an input string that
is accepted by a given DFA. Usually, a language is associated with a DFA, which is the
set of all strings it accepts. DFAs are important in the theory of computation because their
languages correspond precisely to regular expressions. The planning problem amounts to
determining whether the empty language is associated with the DFA.

Thus, there are several ways to represent and interpret the discrete feasible planning
problem that sometimes lead to a very compact, implicit encoding of the problem. This

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 27

(a) (b)

Figure 2.3: (a) Many search algorithms focus too much on one direction, which may prevent them from
being systematic on in�nite graphs. (b) If, for example, the search carefully expands in wavefronts, then
it becomes systematic. The requirement to be systematic is that, in the limit, as the number of iterations
tends to in�nity , all reachable vertices are reached.

issue will be revisited in Section 2.4. Until then, basic planning algorithms are introduced
in Section 2.2, and discrete optimal planning is covered in Section 2.3.

2.2 Searching for feasible plans

The methods presented in this section are just graph search algorithms, but with the under-
standing that the state transition graph is revealed incrementally through the application
of actions, instead of being fully specified in advance. The presentation in this section can
therefore be considered as visiting graph search algorithms from a planning perspective.
An important requirement for these or any search algorithms is to be systematic. If the
graph is finite, this means that the algorithm will visit every reachable state, which enables
it to correctly declare in finite time whether or not a solution exists. To be systematic,
the algorithm should keep track of states already visited; otherwise, the search may run
forever by cycling through the same states. Ensuring that no redundant exploration occurs
is sufficient to make the search systematic.

If the graph is infinite, then we are willing to tolerate a weaker definition for being
systematic. If a solution exists, then the search algorithm still must report it in finite time;
however, if a solution does not exist, it is acceptable for the algorithm to search forever.
This systematic requirement is achieved by ensuring that, in the limit, as the number of
search iterations tends to infinity, every reachable vertex in the graph is explored. Since
the number of vertices is assumed to be countable, this must always be possible.

As an example of this requirement, consider Example 2.1 on an infinite tile floor
with no obstacles. If the search algorithm explores in only one direction, as depicted in
Figure 2.3a, then in the limit most of the space will be left uncovered, even though no
states are revisited. If instead the search proceeds outward from the origin in wavefronts,
as depicted in Figure 2.3b, then it may be systematic. In practice, each search algorithm
has to be carefully analyzed. A search algorithm could expand in multiple directions,
or even in wavefronts, but still not be systematic. If the graph is finite, then it is much
simpler: Virtually any search algorithm is systematic, provided that it marks visited states
to avoid revisiting the same states indefinitely.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

28 INTRODUCTORY MATERIAL

FORWARD SEARCH
1 Q.Insert(xI) and mark xI as visited
2 while Q not empty do
3 x ← Q.GetF irst()
4 if x ∈ XG

5 return SUCCESS
6 forall u ∈ U (x)
7 x ′ ← f (x, u)
8 if x ′ not visited
9 Mark x ′ as visited
10 Q.Insert(x ′)
11 else
12 Resolve duplicate x ′

13 return FAILURE

Figure 2.4: A general template for forward search.

2.2.1 General forward search

Figure 2.4 gives a general template of search algorithms, expressed using the state-space
representation. At any point during the search, there will be three kinds of states:

1. Unvisited: States that have not been visited yet. Initially, this is every state except xI .

2. Dead: States that have been visited, and for which every possible next state has also
been visited. A next state of x is a state x ′ for which there exists a u ∈ U (x) such that
x ′ = f (x, u). In a sense, these states are dead because there is nothing more that they can
contribute to the search; there are no new leads that could help in finding a feasible plan.
Section 2.3.3 discusses a variant in which dead states can become alive again in an effort
to obtain optimal plans.

3. Alive: States that have been encountered and possibly some adjacent states that have not
been visited. These are considered alive. Initially, the only alive state is xI .

The set of alive states is stored in a priority queue, Q, for which a priority function
must be specified. The only significant difference between various search algorithms is
the particular function used to sort Q. Many variations will be described later, but for
the time being, it might be helpful to pick one. Therefore, assume for now that Q is a
common FIFO (First-In First-Out) queue; whichever state has been waiting the longest
will be chosen when Q.GetF irst() is called. The rest of the general search algorithm
is quite simple. Initially, Q contains the initial state xI . A while loop is then executed,
which terminates only when Q is empty. This will only occur when the entire graph has
been explored without finding any goal states, which results in a FAILURE (unless the
reachable portion of X is infinite, in which case the algorithm should never terminate).
In each while iteration, the highest ranked element, x, of Q is removed. If x lies in XG,
then it reports SUCCESS and terminates; otherwise, the algorithm tries applying every
possible action, u ∈ U (x). For each next state, x ′ = f (x, u), it must determine whether
x ′ is being encountered for the first time. If it is unvisited, then it is inserted into Q;
otherwise, there is no need to consider it because it must be either dead or already in Q.

The algorithm description in Figure 2.4 omits several details that often become im-
portant in practice. For example, how efficient is the test to determine whether x ∈ XG

in line 4? This depends, of course, on the size of the state space and on the particular

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 29

representations chosen for x and XG. At this level, we do not specify a particular method
because the representations are not given.

One important detail is that the existing algorithm only indicates whether a solution
exists, but does not seem to produce a plan, which is a sequence of actions that achieves
the goal. This can be fixed by inserting a line after line 7 that associates with x ′ its parent,
x. If this is performed each time, one can simply trace the pointers from the final state to
the initial state to recover the plan. For convenience, one might also store which action
was taken, in addition to the pointer from x ′ to x.

Lines 8 and 9 are conceptually simple, but how can one tell whether x ′ has been visited?
For some problems the state transition graph might actually be a tree, which means that
there are no repeated states. Although this does not occur frequently, it is wonderful
when it does because there is no need to check whether states have been visited. If the
states in X all lie on a grid, one can simply make a lookup table that can be accessed in
constant time to determine whether a state has been visited. In general, however, it might
be quite difficult because the state x ′ must be compared with every other state in Q and
with all of the dead states. If the representation of each state is long, as is sometimes the
case, this will be very costly. A good hashing scheme or another clever data structure can
greatly alleviate this cost, but in many applications the computation time will remain high.
One alternative is to simply allow repeated states, but this could lead to an increase in
computational cost that far outweighs the benefits. Even if the graph is very small, search
algorithms could run in time exponential in the size of the state transition graph, or the
search may not terminate at all, even if the graph is finite.

One final detail is that some search algorithms will require a cost to be computed and
associated with every state. If the same state is reached multiple times, the cost may have
to be updated, which is performed in line 12, if the particular search algorithm requires
it. Such costs may be used in some way to sort the priority queue, or they may enable
the recovery of the plan on completion of the algorithm. Instead of storing pointers, as
mentioned previously, the optimal cost to return to the initial state could be stored with
each state. This cost alone is sufficient to determine the action sequence that leads to any
visited state. Starting at a visited state, the path back to xI can be obtained by traversing the
state transition graph backward in a way that decreases the cost as quickly as possible in
each step. For this to succeed, the costs must have a certain monotonicity property, which
is obtained by Dijkstra’s algorithm and A∗ search, and will be introduced in Section 2.2.2.
More generally, the costs must form a navigation function, which is considered in Section
8.2.2 as feedback is incorporated into discrete planning.

2.2.2 Particular forward search methods

This section presents several search algorithms, each of which constructs a search tree.
Each search algorithm is a special case of the algorithm in Figure 2.4, obtained by defining
a different sorting function for Q. Most of these are just classical graph search algorithms
[245].

Breadth first

The method given in Section 2.2.1 specifies Q as a First-In First-Out (FIFO) queue, which
selects states using the first-come, first-serve principle. This causes the search frontier to
grow uniformly and is therefore referred to as breadth-first search. All plans that have
k steps are exhausted before plans with k + 1 steps are investigated. Therefore, breadth

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

30 INTRODUCTORY MATERIAL

first guarantees that the first solution found will use the smallest number of steps. On
detection that a state has been revisited, there is no work to do in line 12. Since the search
progresses in a series of wavefronts, breadth-first search is systematic. In fact, it even
remains systematic if it does not keep track of repeated states (however, it will waste time
considering irrelevant cycles).

The asymptotic running time of breadth-first search is O(|V | + |E|), in which |V | and
|E| are the numbers of vertices and edges, respectively, in the state transition graph (recall,
however, that the graph is usually not the input; for example, the input may be the rules
of the Rubik’s cube). This assumes that all basic operations, such as determining whether
a state has been visited, are performed in constant time. In practice, these operations will
typically require more time and must be counted as part of the algorithm’s complexity.
The running time can be expressed in terms of the other representations. Recall that
|V | = |X| is the number of states. If the same actions U are available from every state,
then |E| = |U ||X|. If the action sets U (x1) and U (x2) are pairwise disjoint for any
x1, x2 ∈ X, then |E| = |U |.

Depth first

By making Q a stack (Last-In, First-Out; or LIFO), aggressive exploration of the state
transition graph occurs, as opposed to the uniform expansion of breadth-first search.
The resulting variant is called depth-first search because the search dives quickly into
the graph. The preference is toward investigating longer plans very early. Although this
aggressive behavior might seem desirable, note that the particular choice of longer plans
is arbitrary. Actions are applied in the forall loop in whatever order they happen to be
defined. Once again, if a state is revisited, there is no work to do in line 12. Depth-first
search is systematic for any finite X but not for an infinite X because it could behave like
Figure 2.3a. The search could easily focus on one “direction” and completely miss large
portions of the search space as the number of iterations tends to infinity. The running time
of depth first search is also O(|V | + |E|).

Dijkstra’s algorithm

Up to this point, there has been no reason to prefer one action over any other in the search.
Section 2.3 will formalize optimal discrete planning and will present several algorithms
that find optimal plans. Before going into that, we present a systematic search algorithm
that finds optimal plans because it is also useful for finding feasible plans. The result is the
well-known Dijkstra’s algorithm for finding single-source shortest paths in a graph [275],
which is a special form of dynamic programming. More general dynamic programming
computations appear in Section 2.3 and throughout the book.

Suppose that every edge, e ∈ E, in the graph representation of a discrete planning
problem has an associated nonnegative cost l(e), which is the cost to apply the action. The
cost l(e) could be written using the state-space representation as l(x, u), indicating that it
costs l(x, u) to apply action u from state x. The total cost of a plan is just the sum of the
edge costs over the path from the initial state to a goal state.

The priority queue, Q, will be sorted according to a function C : X → [0,∞], called
the cost-to-come. For each state x, the value C∗(x) is called the optimal1 cost-to-come
from the initial state xI . This optimal cost is obtained by summing edge costs, l(e), over

1 As in optimization literature, we will use ∗ to mean optimal.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 31

all possible paths from xI to x and using the path that produces the least cumulative cost.
If the cost is not known to be optimal, then it is written as C(x).

The cost-to-come is computed incrementally during the execution of the search algo-
rithm in Figure 2.4. Initially, C∗(xI) = 0. Each time the state x ′ is generated, a cost is
computed as C(x ′) = C∗(x) + l(e), in which e is the edge from x to x ′ (equivalently, we
may write C(x ′) = C∗(x) + l(x, u)). Here, C(x ′) represents the best cost-to-come that is
known so far, but we do not write C∗ because it is not yet known whether x ′ was reached
optimally. Due to this, some work is required in line 12. If x ′ already exists in Q, then it is
possible that the newly discovered path to x ′ is more efficient. If so, then the cost-to-come
value C(x ′) must be lowered for x ′, and Q must be reordered accordingly.

When does C(x) finally become C∗(x) for some state x? Once x is removed from Q

using Q.GetF irst(), the state becomes dead, and it is known that x cannot be reached
with a lower cost. This can be argued by induction. For the initial state, C∗(xI) is known,
and this serves as the base case. Now assume that every dead state has its optimal cost-
to-come correctly determined. This means that their cost-to-come values can no longer
change. For the first element, x, of Q, the value must be optimal because any path that has
a lower total cost would have to travel through another state in Q, but these states already
have higher costs. All paths that pass only through dead states were already considered in
producing C(x). Once all edges leaving x are explored, then x can be declared as dead, and
the induction continues. This is not enough detail to constitute a proof of optimality; more
arguments appear in Section 2.3.3 and in [245]. The running time is O(|V | lg |V | + |E|),
in which |V | and |E| are the numbers of edges and vertices, respectively, in the graph
representation of the discrete planning problem. This assumes that the priority queue is
implemented with a Fibonacci heap, and that all other operations, such as determining
whether a state has been visited, are performed in constant time. If other data structures
are used to implement the priority queue, then higher running times may be obtained.

A-star

The A∗ (pronounced “ay star”) search algorithm is an extension of Dijkstra’s algorithm
that tries to reduce the total number of states explored by incorporating a heuristic estimate
of the cost to get to the goal from a given state. Let C(x) denote the cost-to-come from xI

to x, and let G(x) denote the cost-to-go from x to some state in XG. It is convenient that
C∗(x) can be computed incrementally by dynamic programming; however, there is no way
to know the true optimal cost-to-go, G∗, in advance. Fortunately, in many applications
it is possible to construct a reasonable underestimate of this cost. As an example of a
typical underestimate, consider planning in the labyrinth depicted in Figure 2.2. Suppose
that the cost is the total number of steps in the plan. If one state has coordinates (i, j) and
another has (i ′, j ′), then |i ′ − i| + |j ′ − j | is an underestimate because this is the length
of a straightforward plan that ignores obstacles. Once obstacles are included, the cost can
only increase as the robot tries to get around them (which may not even be possible). Of
course, zero could also serve as an underestimate, but that would not provide any helpful
information to the algorithm. The aim is to compute an estimate that is as close as possible
to the optimal cost-to-go and is also guaranteed to be no greater. Let Ĝ∗(x) denote such
an estimate.

The A∗ search algorithm works in exactly the same way as Dijkstra’s algorithm. The
only difference is the function used to sort Q. In the A∗ algorithm, the sum C∗(x ′) + Ĝ∗(x ′)
is used, implying that the priority queue is sorted by estimates of the optimal cost from
xI to XG. If Ĝ∗(x) is an underestimate of the true optimal cost-to-go for all x ∈ X, the

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

32 INTRODUCTORY MATERIAL

xI

xG

Figure 2.5: Here is a troublesome example for best-�rst search. Imagine trying to reach a state that is
directly below the spiral tube. If the initial state starts inside of the opening at the top of the tube, the search
will progress around the spiral instead of leaving the tube and heading straight for the goal.

A∗ algorithm is guaranteed to find optimal plans [339, 780]. As Ĝ∗ becomes closer to G∗,
fewer vertices tend to be explored in comparison with Dijkstra’s algorithm. This would
always seem advantageous, but in some problems it is difficult or impossible to find a
heuristic that is both efficient to evaluate and provides good search guidance. Note that
when Ĝ∗(x) = 0 for all x ∈ X, then A∗ degenerates to Dijkstra’s algorithm. In any case,
the search will always be systematic.

Best first

For best-first search, the priority queue is sorted according to an estimate of the optimal
cost-to-go. The solutions obtained in this way are not necessarily optimal; therefore, it does
not matter whether the estimate exceeds the true optimal cost-to-go, which was important
to maintain optimality for A∗ search. Although optimal solutions are not found, in many
cases, far fewer vertices are explored, which results in much faster running times. There
is no guarantee, however, that this will happen. The worst-case performance of best-first
search is worse than that of A∗ search and dynamic programming. The algorithm is often
too greedy because it prefers states that “look good” very early in the search. Sometimes
the price must be paid for being greedy! Figure 2.5 shows a contrived example in which
the planning problem involves taking small steps in a 3D world. For any specified number,
k, of steps, it is easy to construct a spiral example that wastes at least k steps in comparison
to Dijkstra’s algorithm. Note that best-first search is not systematic.

Iterative deepening

The iterative deepening approach is usually preferable if the search tree has a large
branching factor (i.e., there are many more vertices in the next level than in the current
level). This could occur if there are many actions per state and only a few states are

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 33

revisited. The idea is to use depth-first search and find all states that are distance i or less
from xI . If the goal is not found, then the previous work is discarded, and depth first is
applied to find all states of distance i + 1 or less from xI . This generally iterates from
i = 1 and proceeds indefinitely until the goal is found. Iterative deepening can be viewed
as a way of converting depth-first search into a systematic search method. The motivation
for discarding the work of previous iterations is that the number of states reached for i + 1
is expected to far exceed (e.g., by a factor of 10) the number reached for i. Therefore, once
the commitment has been made to reach level i + 1, the cost of all previous iterations is
negligible.

The iterative deepening method has better worst-case performance than breadth-first
search for many problems. Furthermore, the space requirements are reduced because the
queue in breadth-first search is usually much larger than for depth-first search. If the
nearest goal state is i steps from xI , breadth-first search in the worst case might reach
nearly all states of distance i + 1 before terminating successfully. This occurs each time
a state x 	∈ XG of distance i from xI is reached because all new states that can be reached
in one step are placed onto Q. The A∗ idea can be combined with iterative depending to
yield IDA∗, in which i is replaced by C∗(x ′) + Ĝ∗(x ′). In each iteration of IDA∗, the
allowed total cost gradually increases [780].

2.2.3 Other general search schemes

This section covers two other general templates for search algorithms. The first one is
simply a “backward” version of the tree search algorithm in Figure 2.4. The second one
is a bidirectional approach that grows two search trees, one from the initial state and one
from a goal state.

Backward search

Backward versions of any of the forward search algorithms of Section 2.2.2 can be made.
For example, a backward version of Dijkstra’s algorithm can be made by starting from
xG. To create backward search algorithms, suppose that there is a single goal state, xG.
For many planning problems, it might be the case that the branching factor is large when
starting from xI . In this case, it might be more efficient to start the search at a goal state and
work backward until the initial state is encountered. A general template for this approach
is given in Figure 2.6. For forward search, recall that an action u ∈ U (x) is applied from
x ∈ X to obtain a new state, x ′ = f (x, u). For backward search, a frequent computation
will be to determine for some x ′, the preceding state x ∈ X, and action u ∈ U (x) such
that x ′ = f (x, u). The template in Figure 2.6 can be extended to handle a goal region,
XG, by inserting all xG ∈ XG into Q in line 1 and marking them as visited.

For most problems, it may be preferable to precompute a representation of the state
transition function, f , that is “backward” to be consistent with the search algorithm.
Some convenient notation will now be constructed for the backward version of f . Let
U−1 = {(x, u) ∈ X × U | x ∈ X, u ∈ U (x)}, which represents the set of all state-action
pairs and can also be considered as the domain of f . Imagine from a given state x ′ ∈ X,
the set of all (x, u) ∈ U−1 that map to x ′ using f . This can be considered as a backward
action space, defined formally for any x ′ ∈ X as

U−1(x ′) = {(x, u) ∈ U−1 | x ′ = f (x, u)}. (2.3)

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

34 INTRODUCTORY MATERIAL

BACKWARD SEARCH
1 Q.Insert(xG) and mark xG as visited
2 while Q not empty do
3 x ′ ← Q.GetF irst()
4 if x = xI

5 return SUCCESS
6 forall u−1 ∈ U−1(x)
7 x ← f −1(x ′, u−1)
8 if x not visited
9 Mark x as visited
10 Q.Insert(x)
11 else
12 Resolve duplicate x

13 return FAILURE

Figure 2.6: A general template for backward search.

For convenience, let u−1 denote a state-action pair (x, u) that belongs to some U−1(x ′).
From any u−1 ∈ U−1(x ′), there is a unique x ∈ X. Thus, let f −1 denote a backward state
transition function that yields x from x ′ and u−1 ∈ U−1(x ′). This defines a backward state
transition equation, x = f −1(x ′, u−1), which looks very similar to the forward version,
x ′ = f (x, u).

The interpretation of f −1 is easy to capture in terms of the state transition graph:
reverse the direction of every edge. This makes finding a plan in the reversed graph using
backward search equivalent to finding one in the original graph using forward search.
The backward state transition function is the variant of f that is obtained after reversing
all of the edges. Each u−1 is a reversed edge. Since there is a perfect symmetry with
respect to the forward search of Section 2.2.1, any of the search algorithm variants from
Section 2.2.2 can be adapted to the template in Figure 2.6, provided that f −1 has been
defined.

Bidirectional search

Now that forward and backward search have been covered, the next reasonable idea is to
conduct a bidirectional search. The general search template given in Figure 2.7 can be
considered as a combination of the two in Figures 2.4 and 2.6. One tree is grown from
the initial state, and the other is grown from the goal state (assume again that XG is a
singleton, {xG}). The search terminates with success when the two trees meet. Failure
occurs if either priority queue has been exhausted. For many problems, bidirectional
search can dramatically reduce the amount of required exploration. There are Dijkstra
and A∗ variants of bidirectional search, which lead to optimal solutions. For best-first and
other variants, it may be challenging to ensure that the two trees meet quickly. They might
come very close to each other and then fail to connect. Additional heuristics may help
in some settings to guide the trees into each other. One can even extend this framework
to allow any number of search trees. This may be desirable in some applications, but
connecting the trees becomes even more complicated and expensive.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 35

BIDIRECTIONAL SEARCH
1 QI .Insert(xI) and mark xI as visited
2 QG.Insert(xG) and mark xG as visited
3 while QI not empty and QG not empty do
4 if QI not empty
5 x ← QI .GetF irst()
6 if x = xG or x ∈ QG

7 return SUCCESS
8 forall u ∈ U (x)
9 x ′ ← f (x, u)
10 if x ′ not visited
11 Mark x ′ as visited
12 QI .Insert(x ′)
13 else
14 Resolve duplicate x ′

15 if QG not empty
16 x ′ ← QG.GetF irst()
17 if x ′ = xI or x ′ ∈ QI

18 return SUCCESS
19 forall u−1 ∈ U−1(x ′)
20 x ← f −1(x ′, u−1)
21 if x not visited
22 Mark x as visited
23 QG.Insert(x)
24 else
25 Resolve duplicate x

26 return FAILURE

Figure 2.7: A general template for bidirectional search.

2.2.4 A unified view of the search methods

It is convenient to summarize the behavior of all search methods in terms of several basic
steps. Variations of these steps will appear later for more complicated planning problems.
For example, in Section 5.4, a large family of sampling-based motion planning algorithms
can be viewed as an extension of the steps presented here. The extension in this case
is made from a discrete state space to a continuous state space (called the configuration
space). Each method incrementally constructs a search graph, G(V, E), which is the
subgraph of the state transition graph that has been explored so far.

All of the planning methods from this section followed the same basic template:

1. Initialization: Let the search graph, G(V,E), be initialized with E empty and V contain-
ing some starting states. For forward search, V = {xI }; for backward search, V = {xG}. If
bidirectional search is used, then V = {xI , xG}. It is possible to grow more than two trees
and merge them during the search process. In this case, more states can be initialized in V .
The search graph will incrementally grow to reveal more and more of the state transition
graph.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

36 INTRODUCTORY MATERIAL

2. Select Vertex: Choose a vertex ncur ∈ V for expansion; this is usually accomplished by
maintaining a priority queue. Let xcur denote the state associated with ncur .

3. Apply an Action: In either a forward or backward direction, a new state, xnew, is obtained.
This may arise from xnew = f (x, u) for some u ∈ U (x) (forward) or x = f (xnew, u) for
some u ∈ U (xnew) (backward).

4. Insert a Directed Edge into the Graph: If certain algorithm-specific tests are passed,
then generate an edge from x to xnew for the forward case, or an edge from xnew to x for
the backward case. If xnew is not yet in V , it will be inserted into V .2

5. Check for Solution: Determine whether G encodes a path from xI to xG. If there is a
single search tree, then this is trivial. If there are two or more search trees, then this step
could be expensive.

6. Return to Step 2: Iterate unless a solution has been found or an early termination condition
is satisfied, in which case the algorithm reports failure.

Note that in this summary, several iterations may have to be made to generate one
iteration in the previous formulations. The forward search algorithm in Figure 2.4 tries all
actions for the first element of Q. If there are k actions, this corresponds to k iterations in
the template above.

2.3 Discrete optimal planning

This section extends Formulation 2.1 to allow optimal planning problems to be defined.
Rather than being satisfied with any sequence of actions that leads to the goal set, suppose
we would like a solution that optimizes some criterion, such as time, distance, or energy
consumed. Three important extensions will be made: 1) A stage index will be used
to conveniently indicate the current plan step; 2) a cost functional will be introduced,
which behaves like a taxi meter by indicating how much cost accumulates during the
plan execution; and 3) a termination action will be introduced, which intuitively indicates
when it is time to stop the plan and fix the total cost.

The presentation involves three phases. First, the problem of finding optimal paths of
a fixed length is covered in Section 2.3.1. The approach, called value iteration, involves
iteratively computing optimal cost-to-go functions over the state space. Although this
case is not very useful by itself, it is much easier to understand than the general case of
variable-length plans. Once the concepts from this section are understood, their extension
to variable-length plans will be much clearer and is covered in Section 2.3.2. Finally, Sec-
tion 2.3.3 explains the close relationship between value iteration and Dijkstra’s algorithm,
which was covered in Section 2.2.1.

With nearly all optimization problems, there is the arbitrary, symmetric choice of
whether to define a criterion to minimize or maximize. If the cost is a kind of energy or
expense, then minimization seems sensible, as is typical in robotics and control theory.
If the cost is a kind of reward, as in investment planning or in most AI books, then
maximization is preferred. Although this issue remains throughout the book, we will
choose to minimize everything. If maximization is instead preferred, then multiplying the
costs by −1 and swapping minimizations with maximizations should suffice.

2 In some variations, the vertex could be added without a corresponding edge. This would start another tree in a
multiple-tree approach

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 37

The fixed-length optimal planning formulation will be given shortly, but first we intro-
duce some new notation. Let πK denote a K-step plan, which is a sequence (u1, u2, . . .,
uK) of K actions. If πK and xI are given, then a sequence of states, (x1, x2, . . . , xK+1), can
be derived using the state transition function, f . Initially, x1 = xI , and each subsequent
state is obtained by xk+1 = f (xk, uk).

The model is now given; the most important addition with respect to Formulation 2.1
is L, the cost functional.

Formulation 2.2 (Discrete Fixed-Length Optimal Planning)

1. All of the components from Formulation 2.1 are inherited directly: X, U (x), f , xI , and
XG, except here it is assumed that X is finite (some algorithms may easily extend to the
case in which X is countably infinite, but this will not be considered here).

2. A number, K , of stages, which is the exact length of a plan (measured as the number of
actions, u1, u2, . . . , uK). States may also obtain a stage index. For example, xk+1 denotes
the state obtained after uk is applied.

3. Let L denote a stage-additive cost (or loss) functional, which is applied to a K-step
plan, πK . This means that the sequence (u1, . . . , uK) of actions and the sequence
(x1, . . . , xK+1) of states may appear in an expression of L. For convenience, let F

denote the final stage, F = K + 1 (the application of uK advances the stage to K + 1).
The cost functional is

L(πK) =
K∑

k=1

l(xk, uk) + lF (xF). (2.4)

The cost term l(xk, uk) yields a real value for every xk ∈ X and uk ∈ U (xk). The final term
lF (xF) is outside of the sum and is defined as lF (xF) = 0 if xF ∈ XG, and lF (xF) = ∞
otherwise.

An important comment must be made regarding lF . Including lF in (2.4) is actually
unnecessary if it is agreed in advance that L will only be applied to evaluate plans that reach
XG. It would then be undefined for all other plans. The algorithms to be presented shortly
will also function nicely under this assumption; however, the notation and explanation
can become more cumbersome because the action space must always be restricted to
ensure that successful plans are produced. Instead of this, the domain of L is extended to
include all plans, and those that do not reach XG are penalized with infinite cost so that
they are eliminated automatically in any optimization steps. At some point, the role of
lF may become confusing, and it is helpful to remember that it is just a trick to convert
feasibility constraints into a straightforward optimization (L(πK) = ∞means not feasible
and L(πK) < ∞ means feasible with cost L(πK)).

Now the task is to find a plan that minimizes L. To obtain a feasible planning problem
like Formulation 2.1 but restricted to K-step plans, let l(x, u) ≡ 0. To obtain a planning
problem that requires minimizing the number of stages, let l(x, u) ≡ 1. The possibility
also exists of having goals that are less “crisp” by letting lF (x) vary for different x ∈ XG,
as opposed to lF (x) = 0. This is much more general than what was allowed with feasible
planning because now states may take on any value, as opposed to being classified as
inside or outside of XG.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

38 INTRODUCTORY MATERIAL

2.3.1 Optimal fixed-length plans

Consider computing an optimal plan under Formulation 2.2. One could naively generate
all length-K sequences of actions and select the sequence that produces the best cost,
but this would require O(|U |K) running time (imagine K nested loops, one for each
stage), which is clearly prohibitive. Luckily, the dynamic programming principle helps.
We first say in words what will appear later in equations. The main observation is that
portions of optimal plans are themselves optimal. It would be absurd to be able to replace
a portion of an optimal plan with a portion that produces lower total cost; this contradicts
the optimality of the original plan.

The principle of optimality leads directly to an iterative algorithm, called value itera-
tion,3 that can solve a vast collection of optimal planning problems, including those that
involve variable-length plans, stochastic uncertainties, imperfect state measurements, and
many other complications. The idea is to iteratively compute optimal cost-to-go (or cost-
to-come) functions over the state space. In some cases, the approach can be reduced to
Dijkstra’s algorithm; however, this only occurs under some special conditions. The value-
iteration algorithm will be presented next, and Section 2.3.3 discusses its connection to
Dijkstra’s algorithm.

2.3.1.1 Backward value iteration

As for the search methods, there are both forward and backward versions of the approach.
The backward case will be covered first. Even though it may appear superficially to be
easier to progress from xI , it turns out that progressing backward from XG is notationally
simpler. The forward case will then be covered once some additional notation is introduced.

The key to deriving long optimal plans from shorter ones lies in the construction of
optimal cost-to-go functions over X. For k from 1 to F , let G∗

k denote the cost that
accumulates from stage k to F under the execution of the optimal plan:

G∗
k(xk) = min

uk,...,uK

{
K∑

i=k

l(xi, ui) + lF (xF)

}
. (2.5)

Inside of the min of (2.5) are the last F − k terms of the cost functional, (2.4). The optimal
cost-to-go for the boundary condition of k = F reduces to

G∗
F (xF) = lF (xF). (2.6)

This makes intuitive sense: Since there are no stages in which an action can be applied,
the final stage cost is immediately received.

Now consider an algorithm that makes K passes over X, each time computing G∗
k from

G∗
k+1, as k ranges from F down to 1. In the first iteration, G∗

F is copied from lF without
significant effort. In the second iteration, G∗

K is computed for each xK ∈ X as

G∗
K (xK) = min

uK

{
l(xK, uK) + lF (xF)

}
. (2.7)

Since lF = G∗
F and xF = f (xK, uK), substitutions can be made into (2.7) to obtain

G∗
K (xK) = min

uK

{
l(xK, uK) +G∗

F (f (xK, uK))
}
, (2.8)

3 The “value” here refers to the optimal cost-to-go or cost-to-come. Therefore, an alternative name could be cost-to-go
iteration.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 39

which is straightforward to compute for each xK ∈ X. This computes the costs of all
optimal one-step plans from stage K to stage F = K + 1.

It will be shown next that G∗
k can be computed similarly once G∗

k+1 is given. Carefully
study (2.5) and note that it can be written as

G∗
k(xk) = min

uk

{
min

uk+1,...,uK

{
l(xk, uk) +

K∑

i=k+1

l(xi, ui) + lF (xF)

}}
(2.9)

by pulling the first term out of the sum and by separating the minimization over uk from
the rest, which range from uk+1 to uK . The second min does not affect the l(xk, uk) term;
thus, l(xk, uk) can be pulled outside to obtain

G∗
k(xk) = min

uk

{
l(xk, uk) + min

uk+1,...,uK

{
K∑

i=k+1

l(xi, ui) + l(xF)

}}
. (2.10)

The inner min is exactly the definition of the optimal cost-to-go function G∗
k+1. Upon

substitution, this yields the recurrence

G∗
k(xk) = min

uk

{
l(xk, uk) +G∗

k+1(xk+1)
}
, (2.11)

in which xk+1 = f (xk, uk). Now that the right side of (2.11) depends only on xk , uk , and
G∗

k+1, the computation of G∗
k easily proceeds in O(|X||U |) time. This computation is

called a value iteration. Note that in each value iteration, some states receive an infinite
value only because they are not reachable; a (K − k)-step plan from xk to XG does not
exist. This means that there are no actions, uk ∈ U (xk), that bring xk to a state xk+1 ∈ X

from which a (K − k − 1)-step plan exists that terminates in XG.
Summarizing, the value iterations proceed as follows:

G∗
F → G∗

K → G∗
K−1 · · · G∗

k → G∗
k−1 · · · G∗

2 → G∗
1 (2.12)

until finally G∗
1 is determined after O(K|X||U |) time. The resulting G∗

1 may be applied
to yield G∗

1(xI), the optimal cost to go to the goal from xI . It also conveniently gives the
optimal cost-to-go from any other initial state. This cost is infinity for states from which
XG cannot be reached in K stages.

It seems convenient that the cost of the optimal plan can be computed so easily, but
how is the actual plan extracted? One possibility is to store the action that satisfied the
min in (2.11) from every state, and at every stage. Unfortunately, this requires O(K|X|)
storage, but it can be reduced to O(|X|) using the tricks to come in Section 2.3.2 for the
more general case of variable-length plans.

Example 2.3 (A Five-State Optimal Planning Problem) Figure 2.8 shows a graph
representation of a planning problem in which X = {a, c, b, d, e}. Suppose that K = 4,
xI = a, and XG = {d}. There will hence be four value iterations, which construct G∗

4, G∗
3,

G∗
2, and G∗

1, once the final-stage cost-to-go, G∗
5, is given.

The cost-to-go functions are shown in Figure 2.9. Figures 2.10 and 2.11 illustrate the
computations. For computing G∗

4, only b and c receive finite values because only they can
reach d in one stage. For computing G∗

3, only the values G∗
4(b) = 4 and G∗

4(c) = 1 are
important. Only paths that reach b or c can possibly lead to d in stage k = 5. Note that
the minimization in (2.11) always chooses the action that produces the lowest total cost
when arriving at a vertex in the next stage. �

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

40 INTRODUCTORY MATERIAL

1 112

4

1 1

b ca2 d e

Figure 2.8: A � ve-state example. Each vertex represents a state, and each edge represents an input that
can be applied to the state transition equation to change the state. The weights on the edges represent
l(xk, uk) (xk is the originating vertex of the edge).

a b c d e

G∗
5 ∞ ∞ ∞ 0 ∞

G∗
4 ∞ 4 1 ∞ ∞

G∗
3 6 2 ∞ 2 ∞

G∗
2 4 6 3 ∞ ∞

G∗
1 6 4 5 4 ∞

Figure 2.9: The optimal cost-to-go functions computed by backward value iteration.

ba c d e

ba c d e

2 2 1

1

1 1

14

Figure 2.10: The possibilities for advancing forward one stage. This is obtained by making two copies of
the states from Figure 2.8, one copy for the current state and one for the potential next state.

2.3.1.2 Forward value iteration

The ideas from Section 2.3.1.1 may be recycled to yield a symmetrically equivalent method
that computes optimal cost-to-come functions from the initial stage. Whereas backward
value iterations were able to find optimal plans from all initial states simultaneously,
forward value iterations can be used to find optimal plans to all states in X. In the
backward case, XG must be fixed, and in the forward case, xI must be fixed.

The issue of maintaining feasible solutions appears again. In the forward direction, the
role of lF is not important. It may be applied in the last iteration, or it can be dropped
altogether for problems that do not have a predetermined XG. However, one must force
all plans considered by forward value iteration to originate from xI . We again have the
choice of either making notation that imposes constraints on the action spaces or simply
adding a term that forces infeasible plans to have infinite cost. Once again, the latter will
be chosen here.

Let C∗
k denote the optimal cost-to-come from stage 1 to stage k, optimized over all

(k − 1)-step plans. To preclude plans that do not start at xI , the definition of C∗
1 is given

by

C∗
1 (x1) = lI (x1), (2.13)

in which lI is a new function that yields lI (xI) = 0, and lI (x) = ∞ for all x 	= xI . Thus,
any plans that try to start from a state other than xI will immediately receive infinite cost.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 41

2

1

a

b

c

d

e

2

4

1

1

1

1

2

1

a

b

c

d

e

2

4

1

1

1

1

2

1

a

b

c

d

e

2

4

1

1

1

1

2

1

a

b

c

d

e

2

4

1

1

1

1

d

b

c

e

a

Figure 2.11: By turning Figure 2.10 sideways and copying it K times, a graph can be drawn that easily
shows all of the ways to arrive at a �nal state from an initial state by � owing from left to right. The
computations automatically select the optimal route.

For an intermediate stage, k ∈ {2, . . . , K}, the following represents the optimal cost-
to-come:

C∗
k (xk) = min

u1,...,uk−1

{
lI (x1) +

k−1∑

i=1

l(xi, ui)

}
. (2.14)

Note that the sum refers to a sequence of states, x1, . . . , xk−1, which is the result of
applying the action sequence (u1, . . . , uk−2). The last state, xk , is not included because its
cost term, l(xk, uk), requires the application of an action, uk , which has not been chosen.
If it is possible to write the cost additively, as l(xk, uk) = l1(xk) + l2(uk), then the l1(xk)
part could be included in the cost-to-come definition, if desired. This detail will not be
considered further.

As in (2.5), it is assumed in (2.14) that ui ∈ U (xi) for every i ∈ {1, . . . , k − 1}. The
resulting xk , obtained after applying uk−1, must be the same xk that is named in the
argument on the left side of (2.14). It might appear odd that x1 appears inside of the min
above; however, this is not a problem. The state x1 can be completely determined once
u1, . . . , uk−1 and xk are given.

The final forward value iteration is the arrival at the final stage, F . The cost-to-come
in this case is

C∗
K (xF) = min

u1,...,uK

{
lI (x1) +

K∑

i=1

l(xi, ui)

}
. (2.15)

This equation looks the same as (2.8), but lI is used instead of lF . This has the effect of
filtering the plans that are considered to include only those that start at xI . The forward
value iterations find optimal plans to any reachable final state from xI . This behavior
is complementary to that of backward value iteration. In that case, XG was fixed, and

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

42 INTRODUCTORY MATERIAL

a b c d e

C∗
1 0 ∞ ∞ ∞ ∞

C∗
2 2 2 ∞ ∞ ∞

C∗
3 4 4 3 6 ∞

C∗
4 4 6 5 4 7

C∗
5 6 6 5 6 5

Figure 2.12: The optimal cost-to-come functions computed by forward value iteration.

optimal plans from any initial state were found. For forward value iteration, this is
reversed.

To express the dynamic-programming recurrence, one further issue remains. Suppose
that C∗

k−1 is known by induction, and we want to compute C∗
k (xk) for a particular xk . This

means that we must start at some state xk−1 and arrive in state xk by applying some action.
Once again, the backward state transition equation from Section 2.2.3 is useful. Using the
stage indices, it is written here as xk−1 = f −1(xk, u

−1
k).

The recurrence is

C∗
k (xk) = min

u−1∈U−1(xk)

{
C∗

k−1(xk−1) + l(xk−1, uk−1)
}
, (2.16)

in which xk−1 = f −1(xk, u
−1
k) and uk−1 ∈ U (xk−1) is the input to which u−1

k ∈ U−1(xk)
corresponds. Using (2.16), the final cost-to-come is iteratively computed in O(K|X||U |)
time, as in the case of computing the first-stage cost-to-go in the backward value-iteration
method.

Example 2.4 (Forward Value Iteration) Example 2.3 is revisited for the case of forward
value iterations with a fixed plan length of K = 4. The cost-to-come functions shown in
Figure 2.12 are obtained by direct application of (2.16). It will be helpful to refer to
Figures 2.10 and 2.11 once again. The first row corresponds to the immediate application
of lI . In the second row, finite values are obtained for a and b, which are reachable in
one stage from xI = a. The iterations continue until k = 5, at which point that optimal
cost-to-come is determined for every state. �

2.3.2 Optimal plans of unspecified lengths

The value-iteration method for fixed-length plans can be generalized nicely to the case
in which plans of different lengths are allowed. There will be no bound on the maximal
length of a plan; therefore, the current case is truly a generalization of Formulation 2.1
because arbitrarily long plans may be attempted in efforts to reach XG. The model for
the general case does not require the specification of K but instead introduces a special
action, uT .

Formulation 2.3 (Discrete Optimal Planning)

1. All of the components from Formulation 2.1 are inherited directly: X, U (x), f , xI , and
XG. Also, the notion of stages from Formulation 2.2 is used.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 43

2. Let L denote a stage-additive cost functional, which may be applied to any K-step plan,
πK , to yield

L(πK) =
K∑

k=1

l(xk, uk) + lF (xF). (2.17)

In comparison with L from Formulation 2.2, the present expression does not consider K

as a predetermined constant. It will now vary, depending on the length of the plan. Thus,
the domain of L is much larger.

3. Each U (x) contains the special termination action, uT . If uT is applied at xk , then the action
is repeatedly applied forever, the state remains unchanged, and no more cost accumulates.
Thus, for all i ≥ k, ui = uT , xi = xk , and l(xi, uT) = 0.

The termination action is the key to allowing plans of different lengths. It will appear
throughout this book. Suppose that value iterations are performed up to K = 5, and for
the problem there exists a two-step solution plan, (u1, u2), that arrives in XG from xI . This
plan is equivalent to the five-step plan (u1, u2, uT , uT , uT) because the termination action
does not change the state, nor does it accumulate cost. The resulting five-step plan reaches
XG and costs the same as (u1, u2). With this simple extension, the forward and backward
value iteration methods of Section 2.3.1 may be applied for any fixed K to optimize over
all plans of length K or less (instead of fixing K).

The next step is to remove the dependency on K . Consider running backward value
iterations indefinitely. At some point, G∗

1 will be computed, but there is no reason why the
process cannot be continued onward to G∗

0, G∗
−1, and so on. Recall that xI is not utilized in

the backward value-iteration method; therefore, there is no concern regarding the starting
initial state of the plans. Suppose that backward value iteration was applied for K = 16
and was executed down to G∗

−8. This considers all plans of length 25 or less. Note that it
is harmless to add 9 to all stage indices to shift all of the cost-to-go functions. Instead of
running from G∗

−8 to G∗
16, they can run from G∗

1 to G∗
25 without affecting their values. The

index shifting is allowed because none of the costs depend on the particular index that is
given to the stage. The only important aspect of the value iterations is that they proceed
backward and consecutively from stage to stage.

Eventually, enough iterations will have been executed so that an optimal plan is known
from every state that can reach XG. From that stage, say k, onward, the cost-to-go
values from one value iteration to the next will be stationary, meaning that for all i ≤ k,
G∗

i−1(x) = G∗
i (x) for all x ∈ X. Once the stationary condition is reached, the cost-to-go

function no longer depends on a particular stage k. In this case, the stage index may be
dropped, and the recurrence becomes

G∗(x) = min
u

{
l(x, u) +G∗(f (x, u))

}
. (2.18)

Are there any conditions under which backward value iterations could be executed
forever, with each iteration producing a cost-to-go function for which some values are
different from the previous iteration? If l(x, u) is nonnegative for all x ∈ X and u ∈ U (x),
then this could never happen. It could certainly be true that, for any fixed K , longer
plans will exist, but this cannot be said of optimal plans. From every x ∈ X, there either
exists a plan that reaches XG with finite cost or there is no solution. For each state from
which there exists a plan that reaches XG, consider the number of stages in the optimal
plan. Consider the maximum number of stages taken from all states that can reach XG.
This serves as an upper bound on the number of value iterations before the cost-to-go

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

44 INTRODUCTORY MATERIAL

becomes stationary. Any further iterations will just consider solutions that are worse than
the ones already considered (some may be equivalent due to the termination action and
shifting of stages). Some trouble might occur if l(x, u) contains negative values. If the
state transition graph contains a cycle for which total cost is negative, then it is preferable
to execute a plan that travels around the cycle forever, thereby reducing the total cost to
−∞. Therefore, we will assume that the cost functional is defined in a sensible way so
that negative cycles do not exist. Otherwise, the optimization model itself appears flawed.
Some negative values for l(x, u), however, are allowed as long as there are no negative
cycles. (It is straightforward to detect and report negative cycles before running the value
iterations.)

Since the particular stage index is unimportant, let k = 0 be the index of the final stage,
which is the stage at which the backward value iterations begin. Hence, G∗

0 is the final
stage cost, which is obtained directly from lF . Let −K denote the stage index at which
the cost-to-go values all become stationary. At this stage, the optimal cost-to-go function,
G∗ : X → R ∪ {∞}, is expressed by assigning G∗ = G∗

−K . In other words, the particular
stage index no longer matters. The value G∗(x) gives the optimal cost to go from state
x ∈ X to the specific goal state xG.

If the optimal actions are not stored during the value iterations, the optimal cost-to-go,
G∗, can be used to efficiently recover them. Consider starting from some x ∈ X. What is
the optimal next action? This is given by

u∗ = argmin
u∈U (x)

{
l(x, u) +G∗(f (x, u))

}
, (2.19)

in which argmin denotes the argument that achieves the minimum value of the expression.
The action minimizes an expression that is very similar to (2.11). The only differences
between (2.19) and (2.11) are that the stage indices are dropped in (2.19) because the
cost-to-go values no longer depend on them, and argmin is used so that u∗ is selected.
After applying u∗, the state transition equation is used to obtain x ′ = f (x, u∗), and (2.19)
may be applied again on x ′. This process continues until a state in XG is reached. This
procedure is based directly on the dynamic programming recurrence; therefore, it recovers
the optimal plan. The function G∗ serves as a kind of guide that leads the system from
any initial state into the goal set optimally. This can be considered as a special case of a
navigation function, which will be covered in Section 8.2.2.

As in the case of fixed-length plans, the direction of the value iterations can be reversed
to obtain a forward value-iteration method for the variable-length planning problem.
In this case, the backward state transition equation, f −1, is used once again. Also, the
initial cost term lI is used instead of lF , as in (2.14). The forward value-iteration method
starts at k = 1, and then iterates until the cost-to-come becomes stationary. Once again,
the termination action, uT , preserves the cost of plans that arrived at a state in earlier
iterations. Note that it is not required to specify XG. A counterpart to G∗ may be obtained,
from which optimal actions can be recovered. When the cost-to-come values become
stationary, an optimal cost-to-come function, C∗ : X → R ∪ {∞}, may be expressed by
assigning C∗ = C∗

F , in which F is the final stage reached when the algorithm terminates.
The value C∗(x) gives the cost of an optimal plan that starts from xI and reaches x. The
optimal action sequence for any specified goal xG ∈ X can be obtained using

argmin
u−1∈U−1

{
C∗(f −1(x, u−1)) + l(f −1(x, u−1), u′)

}
, (2.20)

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 45

0 0

00

0 0 0

0

2 2 2

0

0

2

0

0

1

a

b

c

d

e

2

4

1

1

1

1

0

0

0

2

0

0

1

a

b

c

d

e

2

4

1

1

1

1

0

d

b

c

e

a

1

a

b

c

d

e

2

4

1

1

1

1

0

0 0 0

1

a

b

c

d

e

2

4

1

1

1

1

1

a

b

c

d

e

2

4

1

1

1

1

0

0 0

Figure 2.13: Compare this � gure to Figure 2.11, for which K was � xed at 4. The effect of the termination
action is depicted as dashed-line edges that yield 0 cost when traversed. This enables plans of all � nite
lengths to be considered. Also, the stages extend inde�nitely to the left (for the case of backward value
iteration).

a b c d e

G∗
0 ∞ ∞ ∞ 0 ∞

G∗
−1 ∞ 4 1 0 ∞

G∗
−2 6 2 1 0 ∞

G∗
−3 4 2 1 0 ∞

G∗
−4 4 2 1 0 ∞

G∗ 4 2 1 0 ∞
Figure 2.14: The optimal cost-to-go functions computed by backward value iteration applied in the case
of variable-length plans.

which is the forward counterpart of (2.19). The u′ is the action in U (f −1(x, u−1)) that
yields x when the state transition function, f , is applied. The iterations proceed backward
from xG and terminate when xI is reached.

Example 2.5 (Value Iteration for Variable-Length Plans) Once again, Example 2.3
is revisited; however, this time the plan length is not fixed due to the termination action.
Its effect is depicted in Figure 2.13 by the superposition of new edges that have zero cost.
It might appear at first that there is no incentive to choose nontermination actions, but
remember that any plan that does not terminate in state xG = d will receive infinite cost.

See Figure 2.14. After a few backward value iterations, the cost-to-go values become
stationary. After this point, the termination action is being applied from all reachable
states and no further cost accumulates. The final cost-to-go function is defined to be G∗.
Since d is not reachable from e, G∗(e) = ∞.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

46 INTRODUCTORY MATERIAL

a b c d e

C∗
1 ∞ 0 ∞ ∞ ∞

C∗
2 ∞ 0 1 4 ∞

C∗
3 2 0 1 2 5

C∗
4 2 0 1 2 3

C∗ 2 0 1 2 3

Figure 2.15: The optimal cost-to-come functions computed by forward value iteration applied in the case
of variable-length plans.

As an example of using (2.19) to recover optimal actions, consider starting from state
a. The action that leads to b is chosen next because the total cost 2 +G∗(b) = 4 is better
than 2 +G∗(a) = 6 (the 2 comes from the action cost). From state b, the optimal action
leads to c, which produces total cost 1 +G∗(c) = 1. Similarly, the next action leads to
d ∈ XG, which terminates the plan.

Using forward value iteration, suppose that xI = b. The following cost-to-come func-
tions shown in Figure 2.15 are obtained. For any finite value that remains constant from
one iteration to the next, the termination action was applied. Note that the last value
iteration is useless in this example. Once C∗

3 is computed, the optimal cost-to-come to
every possible state from xI is determined, and future cost-to-come functions are identical.
Therefore, the final cost-to-come is renamed C∗. �

2.3.3 Dijkstra revisited

So far two different kinds of dynamic programming have been covered. The value-
iteration method of Section 2.3.2 involves repeated computations over the entire state
space. Dijkstra’s algorithm from Section 2.2.2 flows only once through the state space,
but with the additional overhead of maintaining which states are alive.

Dijkstra’s algorithm can be derived by focusing on the forward value iterations, as in
Example 2.5, and identifying exactly where the “interesting” changes occur. Recall that
for Dijkstra’s algorithm, it was assumed that all costs are nonnegative. For any states that
are not reachable, their values remain at infinity. They are precisely the unvisited states.
States for which the optimal cost-to-come has already become stationary are dead. For
the remaining states, an initial cost is obtained, but this cost may be lowered one or more
times until the optimal cost is obtained. All states for which the cost is finite, but possibly
not optimal, are in the queue, Q.

After understanding value iteration, it is easier to understand why Dijkstra’s form of
dynamic programming correctly computes optimal solutions. It is clear that the unvisited
states will remain at infinity in both algorithms because no plan has reached them. It
is helpful to consider the forward value iterations in Example 2.5 for comparison. In a
sense, Dijkstra’s algorithm is very much like the value iteration, except that it efficiently
maintains the set of states within which cost-to-go values can change. It correctly inserts
any states that are reached for the first time, changing their cost-to-come from infinity
to a finite value. The values are changed in the same manner as in the value iterations.
At the end of both algorithms, the resulting values correspond to the stationary, optimal
cost-to-come, C∗.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 47

FORWARD LABEL CORRECTING(xG)
1 Set C(x) = ∞ for all x 	= xI , and set C(xI) = 0
2 Q.Insert(xI)
3 while Q not empty do
4 x ← Q.GetF irst()
5 forall u ∈ U (x)
6 x ′ ← f (x, u)
7 if C(x) + l(x, u) < min{C(x ′), C(xG)} then
8 C(x ′) ← C(x) + l(x, u)
9 if x ′ 	= xG then
10 Q.Insert(x ′)

Figure 2.16: A generalization of Dijkstra’s algorithm, which upon termination produces an optimal plan (if
one exists) for any prioritization of Q, as long as X is �nite . Compare this to Figure 2.4.

If Dijkstra’s algorithm seems so clever, then why have we spent time covering the
value-iteration method? For some problems it may become too expensive to maintain
the sorted queue, and value iteration could provide a more efficient alternative. A more
important reason is that value iteration extends easily to a much broader class of problems.
Examples include optimal planning over continuous state spaces (Sections 8.5.2 and
14.5), stochastic optimal planning (Section 10.2), and computing dynamic game equilibria
(Section 10.5). In some cases, it is still possible to obtain a Dijkstra-like algorithm by
focusing the computation on the “interesting” region; however, as the model becomes
more complicated, it may be inefficient or impossible in practice to maintain this region.
Therefore, it is important to have a good understanding of both algorithms to determine
which is most appropriate for a given problem.

Dijkstra’s algorithm belongs to a broader family of label-correcting algorithms, which
all produce optimal plans by making small modifications to the general forward-search
algorithm in Figure 2.4. Figure 2.16 shows the resulting algorithm. The main difference
is to allow states to become alive again if a better cost-to-come is found. This enables
other cost-to-come values to be improved accordingly. This is not important for Dijkstra’s
algorithm and A∗ search because they only need to visit each state once. Thus, the
algorithms in Figures 2.4 and 2.16 are essentially the same in this case. However, the
label-correcting algorithm produces optimal solutions for any sorting of Q, including
FIFO (breadth first) and LIFO (depth first), as long as X is finite. If X is not finite, then the
issue of systematic search dominates because one must guarantee that states are revisited
sufficiently many times to guarantee that optimal solutions will eventually be found.

Another important difference between label-correcting algorithms and the standard
forward-search model is that the label-correcting approach uses the cost at the goal state
to prune away many candidate paths; this is shown in line 7. Thus, it is only formulated
to work for a single goal state; it can be adapted to work for multiple goal states, but
performance degrades. The motivation for including C(xG) in line 7 is that there is no
need to worry about improving costs at some state, x ′, if its new cost-to-come would be
higher than C(xG); there is no way it could be along a path that improves the cost to go to
xG. Similarly, xG is not inserted in line 10 because there is no need to consider plans that
have xG as an intermediate state. To recover the plan, either pointers can be stored from

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

48 INTRODUCTORY MATERIAL

x to x ′ each time an update is made in line 7, or the final, optimal cost-to-come, C∗, can
be used to recover the actions using (2.20).

2.4 Using logic to formulate discrete planning

For many discrete planning problems that we would like a computer to solve, the state
space is enormous (e.g., 10100 states). Therefore, substantial effort has been invested in
constructing implicit encodings of problems in hopes that the entire state space does not
have to be explored by the algorithm to solve the problem. This will be a recurring theme
throughout this book; therefore, it is important to pay close attention to representations.
Many planning problems can appear trivial once everything has been explicitly given.

Logic-based representations have been popular for constructing such implicit repre-
sentations of discrete planning. One historical reason is that such representations were the
basis of the majority of artificial intelligence research during the 1950s–1980s. Another
reason is that they have been useful for representing certain kinds of planning prob-
lems very compactly. It may be helpful to think of these representations as compression
schemes. A string such as 010101010101... may compress very nicely, but it is impossible
to substantially compress a random string of bits. Similar principles are true for discrete
planning. Some problems contain a kind of regularity that enables them to be expressed
compactly, whereas for others it may be impossible to find such representations. This
is why there has been a variety of representation logics proposed through decades of
planning research.

Another reason for using logic-based representations is that many discrete planning
algorithms are implemented in large software systems. At some point, when these systems
solve a problem, they must provide the complete plan to a user, who may not care about the
internals of planning. Logic-based representations have seemed convenient for producing
output that logically explains the steps involved to arrive at some goal. Other possibilities
may exist, but logic has been a first choice due to its historical popularity.

In spite of these advantages, one shortcoming with logic-based representations is that
they are difficult to generalize. It is important in many applications to enable concepts such
as continuous spaces, unpredictability, sensing uncertainty, and multiple decision makers
to be incorporated into planning. This is the main reason why the state-space represen-
tation has been used so far: It will be easy to extend and adapt to the problems covered
throughout this book. Nevertheless, it is important to study logic-based representations to
understand the relationship between the vast majority of discrete planning research and
other problems considered in this book, such as motion planning and planning under dif-
ferential constraints. There are many recurring themes throughout these different kinds of
problems, even though historically they have been investigated by separate research com-
munities. Understanding these connections well provides powerful insights into planning
issues across all of these areas.

2.4.1 A STRIPS-like representation

STRIPS-like representations have been the most common logic-based representations
for discrete planning problems. This refers to the STRIPS system, which is considered
one of the first planning algorithms and representations [339]; its name is derived from
the STanford Research Institute Problem Solver. The original representation used first-
order logic, which had great expressive power but many technical difficulties. Therefore,

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 49

the representation was later restricted to only propositional logic use [746], which is
similar to the form introduced in this section. There are many variations of STRIPS-like
representations. Here is one formulation:

Formulation 2.4 (STRIPS-Like Planning)

1. A finite, nonempty set I of instances.

2. A finite, nonempty set P of predicates, which are binary-valued (partial) functions of one
of more instances. Each application of a predicate to a specific set of instances is called a
positive literal. A logically negated positive literal is called a negative literal.

3. A finite, nonempty set O of operators, each of which has: 1) preconditions, which are
positive or negative literals that must hold for the operator to apply, and 2) effects, which
are positive or negative literals that are the result of applying the operator.

4. An initial set S which is expressed as a set of positive literals. Negative literals are
implied. For any positive literal that does not appear in S, its corresponding negative
literal is assumed to hold initially.

5. A goal set G which is expressed as a set of both positive and negative literals.

Formulation 2.4.1 provides a definition of discrete feasible planning expressed in a
STRIPS-like representation. The three most important components are the sets of instances
I , predicates P , and operators O. Informally, the instances characterize the complete set
of distinct things that exist in the world. They could, for example, be books, cars, trees,
and so on. The predicates correspond to basic properties or statements that can be formed
regarding the instances. For example, a predicate called Under might be used to indicate
things like Under(Book, T able) (the book is under the table) or Under(Dirt, Rug).
A predicate can be interpreted as a kind of function that yields true or false values;
however, it is important to note that it is only a partial function because it might not be
desirable to allow any instance to be inserted as an argument to the predicate.

If a predicate is evaluated on an instance, for example, Under(Dirt, Rug), the ex-
pression is called a positive literal. The set of all possible positive literals can be formed
by applying all possible instances to the domains over which the predicates are defined.
Every positive literal has a corresponding negative literal, which is formed by negating the
positive literal. For example, ¬Under(Dirt, Rug) is the negative literal that corresponds
to the positive literal Under(Dirt, Rug), and ¬ denotes negation. Let a complementary
pair refer to a positive literal together with its counterpart negative literal. The various
components of the planning problem are expressed in terms of positive and negative
literals.

The role of an operator is to change the world. To be applicable, a set of preconditions
must all be satisfied. Each element of this set is a positive or negative literal that must
hold true for the operator to be applicable. Any complementary pairs that can be formed
from the predicates, but are not mentioned in the preconditions, may assume any value
without affecting the applicability of the operator. If the operator is applied, then the world
is updated in a manner precisely specified by the set of effects, which indicates positive
and negative literals that result from the application of the operator. It is assumed that the
truth values of all unmentioned complementary pairs are not affected.

Multiple operators are often defined in a single statement by using variables. For
example, Insert(i) may allow any instance i ∈ I to be inserted. In some cases, this
dramatically reduces the space required to express the problem.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

50 INTRODUCTORY MATERIAL

Figure 2.17: An example that involves putting batteries into a � ashlight.

The planning problem is expressed in terms of an initial set S of positive literals and
a goal set G of positive and negative literals. A state can be defined by selecting either
the positive or negative literal for every possible complementary pair. The initial set S

specifies such a state by giving the positive literals only. For all possible positive literals
that do not appear in S, it is assumed that their negative counterparts hold in the initial
state. The goal set G actually refers to a set of states because, for any unmentioned
complementary pair, the positive or negative literal may be chosen, and the goal is still
achieved. The task is to find a sequence of operators that when applied in succession will
transform the world from the initial state into one in which all literals of G are true.
For each operator, the preconditions must also be satisfied before it can be applied. The
following example illustrates Formulation 2.4.

Example 2.6 (Putting Batteries into a Flashlight) Imagine a planning problem that
involves putting two batteries into a flashlight, as shown in Figure 2.17. The set of instances
are

I = {Battery1, Battery2, Cap, F lashlight}. (2.21)

Two different predicates will be defined, On and In, each of which is a partial function
on I . The predicate On may only be applied to evaluate whether the Cap is On the
F lashlight and is written as On(Cap, F lashlight). The predicate In may be applied
in the following two ways: In(Battery1, F lashlight), In(Battery2, F lashlight), to
indicate whether either battery is in the flashlight. Recall that predicates are only partial
functions in general. For the predicate In, it is not desirable to apply any instance to
any argument. For example, it is meaningless to define In(Battery1, Battery1) and
In(F lashlight, Battery2) (they could be included in the model, always retaining a
negative value, but it is inefficient).

The initial set is

S = {On(Cap, F lashlight)}. (2.22)

Based on S, both ¬In(Battery1, F lashlight) and ¬In(Battery2, F lashlight) are as-
sumed to hold. Thus, S indicates that the cap is on the flashlight, but the batteries are
outside.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 51

Name Preconditions Effects
P laceCap {¬On(Cap, F lashlight)} {On(Cap, F lashlight)}
RemoveCap {On(Cap, F lashlight)} {¬On(Cap, F lashlight)}
Insert(i) {¬On(Cap, F lashlight),¬In(i, F lashlight)} {In(i, F lashlight)}

Figure 2.18: Three operators for the � ashlight problem. Note that an operator can be expressed with
variable argument(s) for which different instances could be substituted.

The goal state is

G = {On(Cap, F lashlight), In(Battery1, F lashlight),

In(Battery2, F lashlight)}, (2.23)

which means that both batteries must be in the flashlight, and the cap must be on.
The set O consists of the four operators, which are shown in Figure 2.18. Here is a

plan that reaches the goal state in the smallest number of steps:

(RemoveCap, Insert(Battery1), Insert(Battery2), P laceCap). (2.24)

In words, the plan simply says to take the cap off, put the batteries in, and place the cap
back on.

This example appears quite simple, and one would expect a planning algorithm to easily
find such a solution. It can be made more challenging by adding many more instances to
I , such as more batteries, more flashlights, and a bunch of objects that are irrelevant to
achieving the goal. Also, many other predicates and operators can be added so that the
different combinations of operators become overwhelming. �

A large number of complexity results exist for planning expressed using logic. The
graph search problem is solved efficiently in polynomial time; however, a state transition
graph is not given as the input. An input that is expressed using Formulation 2.4 may
describe an enormous state transition graph using very few instances, predicates, and
operators. In a sense, the model is highly compressed when using some logic-based
formulations. This brings it closer to the Kolmogorov complexity [250, 633] of the state
transition graph, which is the shortest bit size to which it can possibly be compressed
and then fully recovered by a Turing machine. This has the effect of making the planning
problem appear more difficult. Concise inputs may encode very challenging planning
problems. Most of the known hardness results are surveyed in Chapter 3 of [384]. Under
most formulations, logic-based planning is NP-hard. The particular level of hardness (NP,
PSPACE, EXPTIME, etc.) depends on the precise problem conditions. For example, the
complexity depends on whether the operators are fixed in advance or included in the input.
The latter case is much harder. Separate complexities are also obtained based on whether
negative literals are allowed in the operator effects and also whether they are allowed in
preconditions. The problem is generally harder if both positive and negative literals are
allowed in these cases.

2.4.2 Converting to the state-space representation

It is useful to characterize the relationship between Formulation 2.4 and the original
formulation of discrete feasible planning, Formulation 2.1. One benefit is that it imme-
diately shows how to adapt the search methods of Section 2.2 to work for logic-based
representations. It is also helpful to understand the relationships between the algorithmic
complexities of the two representations.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

52 INTRODUCTORY MATERIAL

Up to now, the notion of “state” has been only vaguely mentioned in the context of
the STRIPS-like representation. Now consider making this more concrete. Suppose that
every predicate has k arguments, and any instance could appear in each argument. This
means that there are |P | |I |k complementary pairs, which corresponds to all of the ways
to substitute instances into all arguments of all predicates. To express the state, a positive
or negative literal must be selected from every complementary pair. For convenience, this
selection can be encoded as a binary string by imposing a linear ordering on the instances
and predicates. Using Example 2.6, the state might be specified in order as

(On(Cap, F lashlight),¬In(Battery1, F lashlight1), In(Battery2, F lashlight)).
(2.25)

Using a binary string, each element can be “0” to denote a negative literal or “1” to denote
positive literal. The encoded state is x = 101 for (2.25). If any instance can appear in the
argument of any predicate, then the length of the string is |P | |I |k . The total number of
possible states of the world that could possibly be distinguished corresponds to the set of
all possible bit strings. This set has size

2|P | |I |
k

. (2.26)

The implication is that with a very small number of instances and predicates, an enor-
mous state space can be generated. Even though the search algorithms of Section 2.2
may appear efficient with respect to the size of the search graph (or the number of
states), the algorithms appear horribly inefficient with respect to the sizes of P and I .
This has motivated substantial efforts on the development of techniques to help guide
the search by exploiting the structure of specific representations. This is the subject of
Section 2.5.

The next step in converting to a state-space representation is to encode the initial state
xI as a string. The goal set, XG, is the set of all strings that are consistent with the positive
and negative goal literals. This can be compressed by extending the string alphabet to
include a “don’t care” symbol, δ. A single string that has a “0” for each negative literal, a
“1” for each positive literal, and a “δ” for all others would suffice in representing any XG

that is expressed with positive and negative literals.
Now convert the operators. For each state, x ∈ X, the set U (x) represents the set of

operators with preconditions that are satisfied by x. To apply the search techniques of
Section 2.2, note that it is not necessary to determine U (x) explicitly in advance for all
x ∈ X. Instead, U (x) can be computed whenever each x is encountered for the first time
in the search. The effects of the operator are encoded by the state transition equation.
From a given x ∈ X, the next state, f (x, u), is obtained by flipping the bits as prescribed
by the effects part of the operator.

All of the components of Formulation 2.1 have been derived from the components of
Formulation 2.4. Adapting the search techniques of Section 2.2 is straightforward. It is
also straightforward to extend Formulation 2.4 to represent optimal planning. A cost can
be associated with each operator and set of literals that capture the current state. This
would express l(x, u) of the cost functional, L, from Section 2.3. Thus, it is even possible
to adapt the value-iteration method to work under the logic-based representation, yielding
optimal plans.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 53

2.5 Logic-based planning methods

A huge body of research has been developed over the last few decades for planning using
logic-based representations [384, 842]. These methods usually exploit some structure that
is particular to the representation. Furthermore, numerous heuristics for accelerating per-
formance have been developed from implementation studies. The main ideas behind some
of the most influential approaches are described in this section, but without presenting
particular heuristics.

Rather than survey all logic-based planning methods, this section focuses on some
of the main approaches that exploit logic-based representations. Keep in mind that the
searching methods of Section 2.2 also apply. Once a problem is given using Formulation
2.4, the state transition graph is incrementally revealed during the search. In practice,
the search graph may be huge relative to the size of the problem description. One early
attempt to reduce the size of this graph was the STRIPS planning algorithm [339, 746];
it dramatically reduced the branching factor but unfortunately was not complete. The
methods presented in this section represent other attempts to reduce search complexity in
practice while maintaining completeness. For each method, there are some applications
in which the method may be more efficient, and others for which performance may be
worse. Thus, there is no clear choice of method that is independent of its particular use.

2.5.1 Searching in a space of partial plans

One alternative to searching directly in X is to construct partial plans without reference to
particular states. By using the operator representation, partial plans can be incrementally
constructed. The idea is to iteratively achieve required subgoals in a partial plan while
ensuring that no conflicts arise that could destroy the solution developed so far.

A partial plan σ is defined as

1. A set Oσ of operators that need to be applied. If the operators contain variables, these may
be filled in by specific values or left as variables. The same operator may appear multiple
times in Oσ , possibly with different values for the variables.

2. A partial ordering relation ≺σ on Oσ , which indicates for some pairs o1, o2 ∈ Oσ that
one must appear before other: o1 ≺σ o2.

3. A set Bσ of binding constraints, in which each indicates that some variables across
operators must take on the same value.

4. A set Cσ of causal links, in which each is of the form (o1, l, o2) and indicates that o1

achieves the literal l for the purpose of satisfying a precondition of o2.

Example 2.7 (A Partial Plan) Each partial plan encodes a set of possible plans. Recall
the model from Example 2.6. Suppose

Oσ = {RemoveCap, Insert(Battery1)}. (2.27)

A sensible ordering constraint is that

RemoveCap ≺σ Insert(Battery1). (2.28)

A causal link,

(RemoveCap,¬On(Cap, F lashlight), Insert(Battery1)), (2.29)

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

54 INTRODUCTORY MATERIAL

PLAN-SPACE PLANNING

1. Start with any initial partial plan, σ .

2. Find a flaw in σ , which may be 1) an operator precondition that has not achieved, or 2)
an operator in Oσ that threatens a causal constraint in Cσ .

3. If there is no flaw, then report that σ is a complete solution and compute a linear ordering
of Oσ that satisfies all constraints.

4. If the flaw is an unachieved precondition, l, for some operator o2, then find an operator,
o1, that achieves it and record a new causal constraint, (o1, l, o2).

5. If the flaw is a threat on a causal link, then the threat must be removed by updating ≺σ

to induce an appropriate operator ordering, or by updating Bσ to bind the operators in a
way that resolves the threat.

6. Return to Step 2.

Figure 2.19: Planning in the plan space is achieved by iteratively �nding a � aw in the plan and �xing it.

indicates that the RemoveCap operator achieves the literal ¬On(Cap, F lashlight),
which is a precondition of Insert(Battery1). There are no binding constraints for this
example. The partial plan implicitly represents the set of all plans for which RemoveCap

appears before Insert(Battery1), under the constraint that the causal link is not
violated. �

Several algorithms have been developed to search in the space of partial plans. To
obtain some intuition about the partial-plan approach, a planning algorithm is described
in Figure 2.19. A vertex in the partial-plan search graph is a partial plan, and an edge is
constructed by extending one partial plan to obtain another partial plan that is closer to
completion. Although the general template is simple, the algorithm performance depends
critically on the choice of initial plan and the particular flaw that is resolved in each
iteration. One straightforward generalization is to develop multiple partial plans and
decide which one to refine in each iteration.

In early works, methods based on partial plans seemed to offer substantial benefits;
however, they are currently considered to be not “competitive enough” in comparison
to methods that search the state space [384]. One problem is that it becomes more
difficult to develop application-specific heuristics without explicit references to states.
Also, the vertices in the partial-plan search graph are costly to maintain and manipulate
in comparison to ordinary states.

2.5.2 Building a planning graph

Blum and Furst introduced the notion of a planning graph, which is a powerful data
structure that encodes information about which states may be reachable [119]. For the
logic-based problem expressed in Formulation 2.4, consider performing reachability anal-
ysis. Breadth-first search can be used from the initial state to expand the state transition
graph. In terms of the input representation, the resulting graph may be of exponential size
in the number of stages. This gives precise reachability information and is guaranteed to
find the goal state.

The idea of Blum and Furst is to construct a graph that is much smaller than the
state transition graph and instead contains only partial information about reachability.
The resulting planning graph is polynomial in size and can be efficiently constructed

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 55

for some challenging problems. The trade-off is that the planning graph indicates states
that can possibly be reached. The true reachable set is overapproximated, by eliminating
many impossible states from consideration. This enables quick elimination of impossible
alternatives in the search process. Planning algorithms have been developed that extract a
plan from the planning graph. In the worst case, this may take exponential time, which is
not surprising because the problem in Formulation 2.4 is NP-hard in general. Neverthe-
less, dramatic performance improvements were obtained on some well-known planning
benchmarks. Another way to use the planning graph is as a source of information for
developing search heuristics for a particular problem.

Planning graph definition

A layered graph is a graph that has its vertices partitioned into a sequence of layers, and
its edges are only permitted to connect vertices between successive layers. The planning
graph is a layered graph in which the layers of vertices form an alternating sequence of
literals and operators:

(L1,O1, L2,O2, L3,O3, . . . , Lk,Ok, Lk+1). (2.30)

The edges are defined as follows. To each operator oi ∈ Oi , a directed edge is made from
each li ∈ Li that is a precondition of oi . To each literal li ∈ Li , an edge is made from each
operator oi−1 ∈ Oi−1 that has li as an effect.

One important requirement is that no variables are allowed in the operators. Any
operator from Formulation 2.4 that contains variables must be converted into a set that
contains a distinct copy of the operator for every possible substitution of values for the
variables.

Layer-by-layer construction

The planning graph is constructed layer by layer, starting from L1. In the first stage, L1

represents the initial state. Every positive literal in S is placed into L1, along with the
negation of every positive literal not in S. Now consider stage i. The set Oi is the set of
all operators for which their preconditions are a subset of Li . The set Li+1 is the union
of the effects of all operators in Oi . The iterations continue until the planning graph
stabilizes, which means that Oi+1 = Oi and Li+1 = Li . This situation is very similar to
the stabilization of value iterations in Section 2.3.2. A trick similar to the termination
action, uT , is needed even here so that plans of various lengths are properly handled.
In Section 2.3.2, one job of the termination action was to prevent state transitions from
occurring. The same idea is needed here. For each possible literal, l, a trivial operator
is constructed for which l is the only precondition and effect. The introduction of trivial
operators ensures that once a literal is reached, it is maintained in the planning graph for
every subsequent layer of literals. Thus, each Oi may contain some trivial operators, in
addition to operators from the initially given set O. These are required to ensure that the
planning graph expansion reaches a steady state, in which the planning graph is identical
for all future expansions.

Mutex conditions

During the construction of the planning graph, information about the conflict between
operators and literals within a layer is maintained. A conflict is called a mutex condition,
which means that a pair of literals4 or pair of operators is mutually exclusive. Both cannot

4 The pair of literals need not be a complementary pair, as defined in Section 2.4.1.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

56 INTRODUCTORY MATERIAL

Figure 2.20: The planning graph for the �ashlight example. The unlabeled operator vertices correspond
to trivial operators. For clarity, the operator and literal names are abbreviated.

be chosen simultaneously without leading to some kind of conflict. A pair in conflict is
called mutex. For each layer, a mutex relation is defined that indicates which pairs satisfy
the mutex condition. A pair, o, o′ ∈ Oi , of operators is defined to be mutex if any of these
conditions is met:

1. Inconsistent effects: An effect of o is the negated literal of an effect of o′.
2. Interference: An effect of o is the negated literal of a precondition of o′.
3. Competing needs: A pair of preconditions, one from each of o and o′, are mutex in Li .

The last condition relies on the definition of mutex for literals, which is presented next.
Any pair, l, l′ ∈ Li , of literals is defined to be mutex if at least one of the two conditions
is met:

1. Negated literals: l and l′ form a complementary pair.

2. Inconsistent support: Every pair of operators, o, o′ ∈ Oi−1, that achieve l and l′ is mutex.
In this case, one operator must achieve l, and the other must achieve l′. If there exists an
operator that achieves both, then this condition is false, regardless of the other pairs of
operators.

The mutex definition depends on the layers; therefore, it is computed layer by layer during
the planning graph construction.

Example 2.8 (The Planning Graph for the Flashlight) Figure 2.20 shows the planning
graph for Example 2.6. In the first layer, L1 expresses the initial state. The only appli-
cable operator is RemoveCap. The operator layer O1 contains RemoveCap and three
trivial operators, which are needed to maintain the literals from L1. The appearance of
¬On(Cap, F lashlight) enables the battery-insertion operator to apply. Since variables
are not allowed in operator definitions in a planning graph, two different operators (labeled
as I1 and I2) appear, one for each battery. Notice the edges drawn to I1 and I2 from
their preconditions. The cap may also be replaced; hence, P laceCap is included in O2.
At the L3 layer, all possible literals have been obtained. At O3, all possible operators,

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 57

including the trivial ones, are included. Finally, L4 = L3, and O4 will be the same as O3.
This implies that the planning graph has stabilized. �

Plan extraction

Suppose that the planning graph has been constructed up to Li . At this point, the planning
graph can be searched for a solution. If no solution is found and the planning graph has
stabilized, then no solution exists to the problem in general (this was shown in [119];
see also [384]). If the planning graph has not stabilized, then it can be extended further
by adding Oi and Li+1. The extended graph can then be searched for a solution plan. A
planning algorithm derived from the planning graph interleaves the graph extensions and
the searches for solutions. Either a solution is reported at some point or the algorithm
correctly reports that no solution exists after the planning graph stabilizes. The resulting
algorithm is complete. One of the key observations in establishing completeness is that
the literal and operator layers each increase monotonically as i increases. Furthermore,
the sets of pairs that are mutex decrease monotonically, until all possible conflicts are
resolved.

Rather than obtaining a fully specified plan, the planning graph yields a layered plan,
which is a special form of partial plan. All of the necessary operators are included, and
the layered plan is specified as

(A1, A2, . . . , Ak), (2.31)

in which each Ai is a set of operators. Within any Ai , the operators are nonmutex and may
be applied in any order without altering the state obtained by the layered plan. The only
constraint is that for each i from 1 to k, every operator in Ai must be applied before any
operators in Ai+1 can be applied. For the flashlight example, a layered plan that would be
constructed from the planning graph in Figure 2.20 is

({RemoveCap}, {Insert(Battery1), Insert(Battery2)}, {P laceCap}). (2.32)

To obtain a fully specified plan, the layered plan needs to be linearized by specifying a
linear ordering for the operators that is consistent with the layer constraints. For (2.32), this
results in (2.24). The actual plan execution usually involves more stages than the number
in the planning graph. For complicated planning problems, this difference is expected to
be huge. With a small number of stages, the planning graph can consider very long plans
because it can apply several nonmutex operators in a single layer.

At each level, the search for a plan could be quite costly. The idea is to start from Li and
perform a backward and/or search. To even begin the search, the goal literals G must be a
subset of Li , and no pairs are allowed to be mutex; otherwise, immediate failure is declared.
From each literal l ∈ G, an “or” part of the search tries possible operators that produce l

as an effect. The “and” part of the search must achieve all literals in the precondition of an
operator chosen at the previous “or” level. Each of these preconditions must be achieved,
which leads to another “or” level in the search. The idea is applied recursively until
the initial set L1 of literals is obtained. During the and/or search, the computed mutex
relations provide information that immediately eliminates some branches. Frequently,
triples and higher order tuples are checked for being mutex together, even though they are
not pairwise mutex. A hash table is constructed to efficiently retrieve this information as
it is considered multiple times in the search. Although the plan extraction is quite costly,
superior performance was shown in [119] on several important benchmarks. In the worst

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

58 INTRODUCTORY MATERIAL

case, the search could require exponential time (otherwise, a polynomial-time algorithm
would have been found to an NP-hard problem).

2.5.3 Planning as satisfiability

Another interesting approach is to convert the planning problem into an enormous Boolean
satisfiability problem. This means that the planning problem of Formulation 2.4 can be
solved by determining whether some assignment of variables is possible for a Boolean
expression that leads to a true value. Generic methods for determining satisfiability can be
directly applied to the Boolean expression that encodes the planning problem. The Davis-
Putnam procedure is one of the most widely known algorithms for satisfiability. It performs
a depth-first search by iteratively trying assignments for variables and backtracking when
assignments fail. During the search, large parts of the expression can be eliminated due
to the current assignments. The algorithm is complete and reasonably efficient. Its use
in solving planning problems is surveyed in [384]. In practice, stochastic local search
methods provide a reasonable alternative to the Davis-Putnam procedure [462].

Suppose a planning problem has been given in terms of Formulation 2.4. All literals
and operators will be tagged with a stage index. For example, a literal that appears in two
different stages will be considered distinct. This kind of tagging is similar to situation
calculus [380]; however, in that case, variables are allowed for the tags. To obtain a finite,
Boolean expression the total number of stages must be declared. Let K denote the number
of stages at which operators can be applied. As usual, the fist stage is k = 1 and the final
stage is k = F = K + 1. Setting a stage limit is a significant drawback of the approach
because this is usually not known before the problem is solved. A planning algorithm can
assume a small value for F and then gradually increase it each time the resulting Boolean
expression is not satisfied. If the problem is not solvable, however, this approach iterates
forever.

Let ∨ denote logical OR, and let ∧ denote logical AND. The Boolean expression is
written as a conjunction5 of many terms, which arise from five different sources:

1. Initial state: A conjunction of all literals in S is formed, along with the negation of all
positive literals not in S. These are all tagged with 1, the initial stage index.

2. Goal state: A conjunction of all literals in G, tagged with the final stage index, F = K + 1.

3. Operator encodings: Each operator must be copied over the stages. For each o ∈ O, let
ok denote the operator applied at stage k. A conjunction is formed over all operators at all
stages. For each ok , the expression is

¬ok ∨ (p1 ∧ p2 ∧ · · · ∧ pm ∧ e1 ∧ e2 ∧ · · · ∧ en) , (2.33)

in which p1, . . . , pm are the preconditions of ok , and e1, . . . , en are the effects of ok .

4. Frame axioms: The next part is to encode the implicit assumption that every literal that
is not an effect of the applied operator remains unchanged in the next stage. This can
alternatively be stated as follows: If a literal l becomes negated to ¬l, then an operator
that includes ¬l as an effect must have been executed. (If l was already a negative literal,
then ¬l is a positive literal.) For each stage and literal, an expression is needed. Suppose

5 Conjunction means logical AND.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 59

that lk and lk+1 are the same literal but are tagged for different stages. The expression is

(lk ∨ ¬lk+1) ∨ (ok,1 ∨ ok,2 ∨ · · · ∨ ok,j), (2.34)

in which ok,1, . . . , ok,j are the operators, tagged for stage k, that contain lk+1 as an effect.
This ensures that if ¬lk appears, followed by lk+1, then some operator must have caused
the change.

5. Complete exclusion axiom: This indicates that only one operator applies at every stage.
For every stage k, and any pair of stage-tagged operators ok and o′k , the expression is

¬ok ∨ ¬o′k, (2.35)

which is logically equivalent to ¬(ok ∧ o′k) (meaning, “not both at the same stage”).

It is shown in [515] that a solution plan exists if and only if the resulting Boolean expression
is satisfiable.

The following example illustrates the construction.

Example 2.9 (The Flashlight Problem as a Boolean Expression) A Boolean expres-
sion will be constructed for Example 2.6. Each of the expressions given below is joined
into one large expression by connecting them with ∧’s.

The expression for the initial state is

O(C,F, 1) ∧ ¬I (B1, F, 1) ∧ ¬I (B2, F, 1), (2.36)

which uses the abbreviated names, and the stage tag has been added as an argument to the
predicates. The expression for the goal state is

O(C,F, 5) ∧ I (B1, F, 5) ∧ I (B2, F, 5), (2.37)

which indicates that the goal must be achieved at stage k = 5. This value was determined
because we already know the solution plan from (2.24). The method will also work
correctly for a larger value of k. The expressions for the operators are

¬PCk ∨ (¬O(C,F, k) ∧O(C,F, k + 1))

¬RCk ∨ (O(C,F, k) ∧ ¬O(C,F, k + 1))

¬I1k ∨ (¬O(C,F, k) ∧ ¬I (B1, F, k) ∧ I (B1, F, k + 1))

¬I2k ∨ (¬O(C,F, k) ∧ ¬I (B2, F, k) ∧ I (B2, F, k + 1))

(2.38)

for each k from 1 to 4.
The frame axioms yield the expressions

(O(C,F, k) ∨ ¬O(C,F, k + 1)) ∨ (PCk)

(¬O(C,F, k) ∨O(C,F, k + 1)) ∨ (RCk)

(I (B1, F, k) ∨ ¬I (B1, F, k + 1)) ∨ (I1k)

(¬I (B1, F, k) ∨ I (B1, F, k + 1))

(I (B2, F, k) ∨ ¬I (B2, F, k + 1)) ∨ (I2k)

(¬I (B2, F, k) ∨ I (B2, F, k + 1)),

(2.39)

for each k from 1 to 4. No operators remove batteries from the flashlight. Hence, two of
the expressions list no operators.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

60 INTRODUCTORY MATERIAL

Finally, the complete exclusion axiom yields the expressions

¬RCk ∨ ¬PCk ¬RCk ∨ ¬O1k ¬RCk ∨ ¬O2k (2.40)

¬PCk ∨ ¬O1k ¬PCk ∨ ¬O2k ¬O1k ∨ ¬O2k,

for each k from 1 to 4. The full problem is encoded by combining all of the given expres-
sions into an enormous conjunction. The expression is satisfied by assigning true values
to RC1, IB12, IB23, and PC4. An alternative solution is RC1, IB22, IB13, and PC4.
The stage index tags indicate the order that the actions are applied in the recovered
plan. �

Further reading

Most of the ideas and methods in this chapter have been known for decades. Most of the search algorithms
of Section 2.2 are covered in algorithms literature as graph search [245, 406, 695, 859] and in AI literature
as planning or search methods [554, 746, 747, 780, 842, 975]. Many historical references to search in
AI appear in [842]. Bidirectional search was introduced in [800, 801] and is closely related to means-
end analysis [738]; more discussion of bidirectional search appears in [187, 186, 500, 572, 842]. The
development of good search heuristics is critical to many applications of discrete planning. For substantial
material on this topic, see [384, 553, 780]. For the relationship between planning and scheduling, see
[268, 384, 897].

The dynamic programming principle forms the basis of optimal control theory and many algorithms
in computer science. The main ideas follow from Bellman’s principle of optimality [86, 87]. These classic
works led directly to the value-iteration methods of Section 2.3. For more recent material on this topic,
see [97], which includes Dijkstra’s algorithm and its generalization to label-correcting algorithms. An
important special version of Dijkstra’s algorithm is Dial’s algorithm [274] (see [946] and Section 8.2.3).
Throughout this book, there are close connections between planning methods and control theory. One
step in this direction was taken earlier in [269].

The foundations of logic-based planning emerged from early work of Nilsson [339, 746], which
contains most of the concepts introduced in Section 2.4. Over the last few decades, an enormous
body of literature has been developed. Section 2.5 briefly surveyed some of the highlights; however,
several more chapters would be needed to do this subject justice. For a comprehensive, recent treatment
of logic-based planning, see [384]; topics beyond those covered here include constraint-satisfaction
planning, scheduling, and temporal logic. Other sources for logic-based planning include [380, 842,
963, 984]. A critique of benchmarks used for comparisons of logic-based planning algorithms appears
in [467].

Too add uncertainty or multiple decision makers to the problems covered in this chapter, jump ahead
to Chapter 10 (this may require some background from Chapter 9). To move from searching in discrete
to continuous spaces, try Chapters 5 and 6 (some background from Chapters 3 and 4 is required).

Exercises

1. Consider the planning problem shown in Figure 2.21. Let a be the initial state, and let e be
the goal state.

(a) Use backward value iteration to determine the stationary cost-to-go.

(b) Do the same but instead use forward value iteration.

2. Try to construct a worst-case example for best-�rst search that has properties similar to
that shown in Figure 2.5, but instead involves moving in a 2D world with obstacles, as
introduced in Example 2.1.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

DISCRETE PLANNING 61

142

1

b ca d e3

7

11

Figure 2.21: Another �v e-state discrete planning problem.

3. It turns out that value iteration can be generalized to a cost functional of the form

L(πK) =
K∑

k=1

l(xk, uk, xk+1) + lF (xF), (2.41)

in which l(xk, uk) in (2.4) has been replaced by l(xk, uk, xk+1).

(a) Show that the dynamic programming principle can be applied in this more general setting
to obtain forward and backward value iteration methods that solve the �x ed-length optimal
planning problem.

(b) Do the same but for the more general problem of variable-length plans, which uses termi-
nation conditions.

4. The cost functional can be generalized to being stage-dependent, which means that the
cost might depend on the particular stage k in addition to the state, xk and the action
uk. Extend the forward and backward value iteration methods of Section 2.3.1 to work for
this case, and show that they give optimal solutions. Each term of the more general cost
functional should be denoted as l(xk, uk, k).

5. Recall from Section 2.3.2 the method of de�ning a termination action uT to make the value
iterations work correctly for variable-length planning. Instead of requiring that one remains
at the same state, it is also possible to formulate the problem by creating a special state,
called the terminal state, xT . Whenever uT is applied, the state becomes xT . Describe in
detail how to modify the cost functional, state transition equation, and any other necessary
components so that the value iterations correctly compute shortest plans.

6. Dijkstra’s algorithm was presented as a kind of forward search in Section 2.2.1.

(a) Develop a backward version of Dijkstra’s algorithm that starts from the goal. Show that it
always yields optimal plans.

(b) Describe the relationship between the algorithm from part (a) and the backward value
iterations from Section 2.3.2.

(c) Derive a backward version of the A∗ algorithm and show that it yields optimal plans.

7. Reformulate the general forward search algorithm of Section 2.2.1 so that it is expressed
in terms of the STRIPS-like representation. Carefully consider what needs to be explicitly
constructed by a planning algorithm and what is considered only implicitly.

8. Rather than using bit strings, develop a set-based formulation of the logic-based planning
problem. A state in this case can be expressed as a set of positive literals.

9. Extend Formulation 2.4 to allow disjunctive goal sets (there are alternative sets of literals
that must be satis�ed). How does this affect the binary string representation?

10. Make a Remove operator for Example 2.17 that takes a battery away from the � ashlight.
For this operator to apply, the battery must be in the � ashlight and must not be blocked by
another battery. Extend the model to allow enough information for the Remove operator to
function properly.

11. Model the operation of the sliding-tile puzzle in Figure 1.1b using the STRIPS-like repre-
sentation. You may use variables in the operator de�nitions .

12. Find the complete set of plans that are implicitly encoded by Example 2.7.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

P1: JZP

book CUNY490-Lavalle 0 521 86205 1 April 14, 2006 15:46

62 INTRODUCTORY MATERIAL

13. Explain why, in Formulation 2.4, G needs to include both positive and negative literals,
whereas S only needs positive literals. As an alternative de�nition, could S have contained
only negative literals? Explain.

14. Using Formulation 2.4, model a problem in which a robot checks to determine whether
a room is dark, moves to a light switch, and �ips on the light. Predicates should indicate
whether the robot is at the light switch and whether the light is on. Operators that move the
robot and �ip the switch are needed.

15. Construct a planning graph for the model developed in Exercise 14.

16. Express the model in Exercise 14 as a Boolean satis�ability problem.

17. In the worst case, how many terms are needed for the Boolean expression for planning as
satis�ability? Express your answer in terms of |I |, |P |, |O|, |S |, and |G|.

Implementations

18. Using A∗ search, the performance degrades substantially when there are many alternative
solutions that are all optimal, or at least close to optimal. Implement A∗ search and evaluate
it on various grid-based problems, based on Example 2.1. Compare the performance for
two different cases:

(a) Using |i ′ − i| + | j ′ − j | as the heuristic, as suggested in Section 2.2.2.

(b) Using
√

(i ′ − i)2 + (j ′ − j)2 as the heuristic.

Which heuristic seems superior? Explain your answer.

19. Implement A∗, breadth-�rst, and best-�rst search for grid-based problems. For each search
algorithm, design and demonstrate examples for which one is clearly better than the other
two.

20. Experiment with bidirectional search for grid-based planning. Try to understand and explain
the trade-off between exploring the state space and the cost of connecting the trees.

21. Try to improve the method used to solve Exercise 18 by detecting when the search might
be caught in a local minimum and performing random walks to try to escape. Try using
best-�rst search instead of A∗. There is great �e xibility in possible approaches. Can you
obtain better performance on average for any particular examples?

22. Implement backward value iteration and verify its correctness by reconstructing the costs
obtained in Example 2.5. Test the implementation on some complicated examples.

23. For a planning problem under Formulation 2.3, implement both Dijkstra’s algorithm and
forward value iteration. Verify that these � nd the same plans. Comment on their differences
in performance.

24. Consider grid-based problems for which there are mostly large, open rooms. Attempt to
develop a multi-resolution search algorithm that �rst attempts to take larger steps, and
only takes smaller steps as larger steps fail. Implement your ideas, conduct experiments
on examples, and re�ne your approach accordingly.

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511546877.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511546877.003

