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Introduction

The study of derangements in transitive permutation groups has a long and rich
history, which can be traced all the way back to the origins of probability the-
ory in the early eighteenth century. In 1708, the French mathematician Pierre
de Montmort wrote one of the first highly influential books on probability,
entitled Essay d’Analyse sur les Jeux de Hazard [106], in which he presents a
systematic combinatorial analysis of games of chance that were popular at the
time. Through studying the card game treize (and variations), he calculates the
proportion of derangements in the symmetric group S13 in its natural action on
13 points, and he proposes the general formula

1
2!

− 1
3!

+ · · ·+ (−1)n

n!

for the natural action of Sn. In a second edition, published in 1713, he reports
on his correspondence with Nicolaus Bernoulli, who proved the above formula
using the inclusion-exclusion principle (see [117] for further details). In par-
ticular, it follows that the proportion of derangements in Sn tends to 1/e as n
tends to infinity.

In the context of permutation group theory, derangements have been widely
studied since the days of Jordan in the nineteenth century, finding a range of
interesting applications and connections in diverse areas such as graph theory,
number theory and topology. In more recent years, following the Classifi-
cation of Finite Simple Groups, the subject has been reinvigorated and our
understanding of derangements has advanced greatly. As we shall see, many
new results on the proportion of derangements in various families of groups
have been obtained, and there has been a focus on studying the existence of
derangements with special properties.

In the first three sections of this introductory chapter we will briefly survey
some of these results and applications, focusing in particular on derangements
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2 Introduction

of prime order. Given a fixed prime number r, we will see that the problem
of determining the existence of a derangement of order r in a finite transi-
tive permutation group G can essentially be reduced to the case where G is
a primitive almost simple group of Lie type. In this book, we aim to provide
a detailed analysis of derangements of prime order in classical groups; the
basic problem is introduced in Section 1.4, and we present a brief summary
of our main results in Section 1.5 (with more detailed results given later in
the text).

1.1 Derangements

We start by recalling some basic notions. We refer the reader to the books
by Cameron [35], Dixon and Mortimer [48] and Wielandt [120] for excellent
introductions to the theory of permutation groups.

Let G be a permutation group on a set Ω, so G is a subgroup of Sym(Ω),
the group of all permutations of Ω. We will use exponential notation for group
actions, so αg denotes the image of α ∈ Ω under the permutation g ∈ G. The
cardinality of Ω is called the degree of G.

We say that G is transitive on Ω if for all α,β ∈ Ω there exists an element
g ∈ G such that αg = β . The stabiliser in G of α , denoted by Gα , is the
subgroup of G consisting of all the permutations that fix α . The familiar Orbit-
Stabiliser Theorem implies that if G is transitive then Ω can be identified with
the set of (right) cosets of Gα in G. Moreover, the action of G on Ω is equivalent
to the natural action of G on this set of cosets by right multiplication.

Given a subgroup H of G, we will write Hg to denote the conjugate subgroup
g−1Hg = {g−1hg | h ∈ H}. It is easy to see that Gαg = (Gα)g for all α ∈ Ω,
g ∈ G. In particular, if G is transitive then Gα and Gβ are conjugate subgroups
for all α,β ∈ Ω.

The notion of primitivity is a fundamental indecomposability condition in
permutation group theory. We say that a transitive group G is imprimitive if Ω
admits a nontrivial G-invariant partition (there are two trivial partitions, namely
{Ω} and {{α} | α ∈ Ω}), and primitive otherwise. Equivalently, G is primitive
if and only if Gα is a maximal subgroup of G. The finite primitive groups are
the basic building blocks of all finite permutation groups.

Notice that if N is a normal subgroup of G, then the set of orbits of N on
Ω forms a G-invariant partition of Ω. Thus, if G is primitive, every nontrivial
normal subgroup of G is transitive. We can generalise the notion of primitivity
by defining a group to be quasiprimitive if every nontrivial normal subgroup is
transitive.
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1.1 Derangements 3

Definition 1.1.1 Let G be a group acting on a set Ω. An element of G is a
derangement (or fixed-point-free) if it fixes no point of Ω. We write Δ(G) for
the set of derangements in G. In addition, if G is finite then δ (G) = |Δ(G)|/|G|
denotes the proportion of derangements in G.

Note that if G is transitive with point stabiliser H then

Δ(G) = G\
⋃

g∈G

Hg (1.1.1)

so an element x ∈ G is a derangement if and only if xG ∩H is empty, where
xG = {g−1xg | g ∈ G} is the conjugacy class of x in G. We also observe that
Δ(G) is a normal subset of G.

Let G be a finite group acting transitively on a set Ω with |Ω| � 2. By the
Orbit-Counting Lemma we have

1
|G| ∑

x∈G

|fixΩ(x)| = 1

where fixΩ(x) = {α ∈ Ω | αx = α} is the set of fixed points of x on Ω. Since
|fixΩ(1)| = |Ω| � 2, there must be an element x ∈ G with |fixΩ(x)| = 0 and
thus G contains a derangement. This is a theorem of Jordan, which dates from
1872 (see [82]).

Theorem 1.1.2 Let G be a finite group acting transitively on a set Ω with
|Ω| � 2. Then G contains a derangement.

In particular, every nontrivial finite transitive permutation group contains a
derangement. In view of (1.1.1), Jordan’s theorem is equivalent to the fact that

G �=
⋃

g∈G

Hg (1.1.2)

for every proper subgroup H of a finite group G.
It is easy to see that Jordan’s theorem does not extend to transitive actions

of infinite groups:

(i) Let FSym(Ω) be the finitary symmetric group on an infinite set Ω; it com-
prises the permutations of Ω with finite support (that is, the permutations
that move only finitely many elements of Ω). Clearly, this transitive group
does not contain any derangements.

(ii) Let V be an n-dimensional vector space over C and let G = GL(V ) be the
general linear group of all invertible linear transformations of V . Let Ω be
the set of complete flags of V , that is, the set of subspace chains
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{0} = V0 ⊂V1 ⊂V2 ⊂ ·· · ⊂Vn−1 ⊂Vn = V

where each Vi is an i-dimensional subspace of V . The natural action of
G on V induces a transitive action of G on Ω. For each x ∈ G there is a
basis of V in which x is represented by a lower-triangular matrix (take the
Jordan canonical form of x, for example), so x fixes a complete flag and
thus G has no derangements.

(iii) More generally, consider a connected algebraic group G over an alge-
braically closed field K of characteristic p � 0, and let B be a Borel
subgroup of G. Then every element of G belongs to a conjugate of B,
so G has no derangements in its transitive action on the flag variety G/B.
In fact, by a theorem of Fulman and Guralnick [55, Theorem 2.4], if G is
a simple algebraic group acting on a coset variety G/H, then G contains
no derangements if and only if one of the following holds:
(a) H contains a Borel subgroup of G;
(b) G = Spn(K), H = On(K) and p = 2;
(c) G = G2(K), H = SL3(K).2 and p = 2.
Moreover, if G is simple then [55, Lemma 2.2] implies that Δ(G) is a
dense subset of G (with respect to the Zariski topology) if and only if H
does not contain a maximal torus of G.

As observed by Serre, Jordan’s theorem has some interesting applications in
number theory and topology (see Serre’s paper [113] for further details).

(i) A number-theoretic application. Let f ∈Z[x] be an irreducible polynomial
over Q with degree n � 2. Then f has no roots modulo p for infinitely
many primes p.

(ii) A topological application. Let f : T → S be a finite covering of a
topological space S, where f has degree n � 2 (so that | f−1(s)| = n for
all s ∈ S) and T is path-connected and non-empty. Then there exists a con-
tinuous map ϕ : S1 → S from the circle S1 that cannot be lifted to the
covering T.

In view of Jordan’s theorem, two natural questions arise:

Question 1. How abundant are derangements in transitive groups?

Question 2. Can we find derangements with special properties, such as a
prescribed order?

Both of these questions have been widely investigated in recent years, and
in the next two sections we will highlight some of the main results.
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1.2 Counting derangements 5

Remark 1.1.3 We will focus on Questions 1 and 2 above. However, there
are many other interesting topics concerning derangements that we will not
discuss. Here are some examples:

(i) Normal coverings. Let G be a finite group and recall that if H is a proper
subgroup of G then

⋃
g∈G Hg is a proper subset of G (see (1.1.2)). A

collection of proper subgroups {H1, . . . ,Ht} is a normal covering of G if

G =
t⋃

i=1

⋃
g∈G

Hg
i

and we define γ(G) to be the minimal size of a normal covering of G.
By Jordan’s theorem, γ(G) � 2, and this invariant has been investigated
in several recent papers (see [15, 16, 42], for example). The connection
to derangements is transparent: if {H1, . . . ,Ht} is a normal covering then
each x ∈ G has fixed points on the set of cosets G/Hi, for some i.

(ii) Algorithms. Given a set of generators for a subgroup G � Sn, it is easy
to determine whether or not G is transitive. If G is transitive and n � 2,
then Jordan’s theorem implies that G contains a derangement, and there
are efficient randomised algorithms to find a derangement in G. In a
recent paper, Arvind [2] has presented the first elementary deterministic
polynomial-time algorithm for finding a derangement.

(iii) Thompson’s question. A finite transitive permutation group G � Sym(Ω)
is Frobenius if |Gα | > 1 and Gα ∩Gβ = 1 for all distinct α,β ∈ Ω. By a
theorem of Frobenius, {1}∪Δ(G) is a normal transitive subgroup and thus
Δ(G) is a transitive subset of G. The following, more general question, has
been posed by J. G. Thompson.

Question. Let G � Sym(Ω) be a finite primitive permutation group. Is
Δ(G) a transitive subset of G?

This is Problem 8.75 in the Kourovka Notebook [84]. It is easy to see that
the primitivity condition here is essential; there are imprimitive groups G
such that Δ(G) is intransitive. For instance, take the natural action of the
alternating group A4 on the set of 2-element subsets of {1,2,3,4}.

1.2 Counting derangements

Let G be a transitive permutation group on a finite set Ω with |Ω| = n � 2.
Recall that Δ(G) is the set of derangements in G, and δ (G) = |Δ(G)|/|G| is
the proportion of derangements. In general, it is difficult to compute δ (G)
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precisely. Of course, Jordan’s theorem (Theorem 1.1.2) implies that δ (G) > 0,
and stronger lower bounds have been obtained in recent years. In [37], for
example, Cameron and Cohen use the Orbit-Counting Lemma to show that
δ (G) � 1/n, with equality if and only if G is sharply 2-transitive, that is, either
(G,n) = (S2,2), or G is a Frobenius group of order n(n− 1), with n a prime
power. This has been extended by Guralnick and Wan (see [73, Theorem 1.3]).

Theorem 1.2.1 Let G be a transitive permutation group of degree n � 2. Then
one of the following holds:

(i) δ (G) � 2/n;
(ii) G is a Frobenius group of order n(n−1) with n a prime power;

(iii) G = Sn and n ∈ {2,4,5}.

It is worth noting that this strengthening of the lower bound on δ (G) from
1/n to 2/n requires the classification of the finite 2-transitive groups, which in
turn relies on the Classification of Finite Simple Groups. As explained in [73],
Theorem 1.2.1 has interesting applications in the study of algebraic curves over
finite fields.

Inspired by Montmort’s formula

δ (Sn) =
1
2!

− 1
3!

+ · · ·+ (−1)n

n!

(with respect to the natural action of Sn), it is natural to consider the asymptotic
behaviour of δ (G) when G belongs to an interesting infinite family of groups.
From the above formula, we immediately deduce that δ (Sn) tends to 1/e as n
tends to infinity. Similarly, we find that δ (An) � 1/3 and δ (PSL2(q)) � 1/3
for all n,q � 5, with respect to their natural actions of degree n and q+1 (see
[12, Corollary 2.6 and Lemma 2.8]). In these two examples, we observe that
G belongs to an infinite family of finite simple groups, and δ (G) is bounded
away from zero by an absolute constant.

In fact, a deep theorem of Fulman and Guralnick [55, 56, 57, 58] shows that
this is true for any transitive simple group.

Theorem 1.2.2 There exists an absolute constant ε > 0 such that δ (G) � ε
for any transitive finite simple group G.

This theorem confirms a conjecture of Boston et al. [12] and Shalev. The
asymptotic nature of the proof does not yield an explicit constant, although
[57, Theorem 1.1] states that ε � 0.016 with at most finitely many excep-
tions. It is speculated in [12, p. 3274] that the optimal bound is ε = 2/7,
which is realised by the standard actions of PSL3(2) and PSL3(4), of degree

https://doi.org/10.1017/CBO9781139059060.002 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9781139059060.002


1.2 Counting derangements 7

7 and 21, respectively. In fact, it is easy to check that the action of the Tits
group G = 2F4(2)′ on the set of cosets of a maximal subgroup 22.[28].S3 yields
δ (G) = 89/325 < 2/7, and we expect 89/325 to be the optimal constant in
Theorem 1.2.2.

Fulman and Guralnick also establish strong asymptotic results. For instance,
they show that apart from some known exceptions, δ (G) tends to 1 as |G| tends
to infinity (the exceptions include G = An acting on the set of k-element subsets
of {1, . . . ,n} with k bounded, for example). Further information on the limiting
behaviour of the proportion of derangements in the natural action of Sn or An

on k-sets is given by Diaconis, Fulman and Guralnick [44, Section 4], together
with an interesting application to card shuffling.

As explained in [55, Section 6], one can show that the above theorem of
Fulman and Guralnick does not extend to almost simple groups. For example,
let p and r be primes such that r and |PGL2(p)| = p(p2 − 1) are coprime,
and set G = PGL2(pr):〈φ〉 and Ω = φ G, where φ is a field automorphism of
PGL2(pr) of order r. By [71, Corollary 3.7], the triple (G,PGL2(pr),Ω) is
exceptional and thus [71, Lemma 3.3] implies that every element in a coset
PGL2(pr)φ i (with 1 � i < r) has a unique fixed point on Ω. Therefore

δ (G) � |PGL2(pr)|
|G| =

1
r

and thus δ (G) tends to 0 as r tends to infinity.
It is worth noting that Theorem 1.2.2 indicates that the proportion of

derangements in simple primitive groups behaves rather differently to the
proportion of derangements in more general primitive groups. Indeed, by a
theorem of Boston et al. [12, Theorem 5.11], the set

{δ (G) | G is a finite primitive group}
is dense in the open interval (0,1).

In a slightly different direction, if G is a transitive permutation group of
degree n � 2, then Δ(G) is a normal subset of G and we can consider the
number of conjugacy classes in Δ(G), which we denote by κ(G). Of course,
Jordan’s theorem implies that κ(G) � 1. In [31], the finite primitive permuta-
tion groups with κ(G) = 1 are determined (it turns out that G is either sharply
2-transitive, or (G,n) = (A5,6) or (PSL2(8):3,28)), and this result is used to
study the structure of finite groups with a nonlinear irreducible complex char-
acter that vanishes on a unique conjugacy class. We refer the reader to [31] for
more details and further results.

An extension of the main theorem of [31] from primitive to transitive groups
has recently been obtained by Guralnick [69]. He shows that every transitive
group G with κ(G) = 1 is primitive, so no additional examples arise.
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1.3 Derangements of prescribed order

In addition to counting the number of derangements in a finite permutation
group, it is also natural to ask whether or not we can find derangements with
special properties, such as a specific order.

1.3.1 Prime powers

The strongest result in this direction is the following theorem of Fein, Kantor
and Schacher [52], which concerns the existence of derangements of prime
power order.

Theorem 1.3.1 Every nontrivial finite transitive permutation group contains
a derangement of prime power order.

This theorem was initially motivated by an important number-theoretic
application, which provides another illustration of the utility of derangements
in other areas of mathematics. Here we give a brief outline (see [52] and [87,
Chapter III] for more details; also see [68] for further applications in this
direction).

Let K be a field and let A be a central simple algebra (CSA) over K, so
A is a simple finite-dimensional associative K-algebra with centre K. By the
Artin–Wedderburn theorem, A is isomorphic to a matrix algebra Mn(D) for
some positive integer n and division algebra D. Under the Brauer equivalence,
two CSAs A and A′ over K are equivalent if A ∼= Mn(D) and A′ ∼= Mm(D) for
some n and m, and the set of equivalence classes forms an abelian group under
tensor product. This is called the Brauer group of K, denoted B(K).

Let L/K be a field extension. The inclusion K ⊆ L induces a group
homomorphism B(K) → B(L), and the relative Brauer group B(L/K) is the
kernel of this map. The connection to derangements arises from the remark-
able observation that Theorem 1.3.1 is equivalent to the fact that B(L/K) is
infinite for any nontrivial finite extension of global fields (where a global field
is a finite extension of Q, or a finite extension of Fq(t), the function field in
one variable over a finite field Fq).

In order to justify this equivalence, as explained in [52, Section 3], there is
a reduction to the case where L/K is separable, and by a further reduction one
can assume that L = K(α). Let E be a Galois closure of L/K, let Ω be the set
of roots in E of the minimal polynomial of α over K, and let G be the Galois
group Gal(E/K). Then G acts transitively on Ω, and [52, Corollary 3] states
that B(L/K) is infinite if and only if G contains a derangement of prime power
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1.3 Derangements of prescribed order 9

order. More precisely, if r is a prime divisor of |Ω| then the r-torsion subgroup
of B(L/K) is infinite if and only if G contains a derangement of r-power order.

Although the existence of derangements in Theorem 1.1.2 is an easy corol-
lary of the Orbit-Counting Lemma, the extension to prime powers in Theorem
1.3.1 appears to require the full force of the Classification of Finite Simple
Groups.

The basic strategy is as follows. First observe that if G � Sym(Ω) is an
imprimitive permutation group and every x ∈ G of prime power order fixes a
point, then x must also fix the set that contains this point in an appropriate G-
invariant partition of Ω. Hence the primitive group induced by G on a maximal
G-invariant partition also has no derangements of prime power order, so the
existence problem is reduced to the primitive case. We now consider a minimal
counterexample G. If N is a nontrivial normal subgroup of G, then N acts
transitively on Ω (by the primitivity of G), so the minimality of G implies that
N = G and thus G is simple. The proof now proceeds by working through the
list of finite simple groups provided by the Classification. It would be very
interesting to know if there exists a Classification-free proof of Theorem 1.3.1.

Remark 1.3.2 The finite primitive permutation groups with the property that
every derangement has r-power order, for some fixed prime r, are investigated
in [32]. The groups that arise are almost simple or affine, and the almost simple
groups with this extremal property are determined in [32, Theorem 2].

1.3.2 Isbell’s Conjecture

Let G be a finite transitive permutation group. Although Theorem 1.3.1
guarantees the existence in G of a derangement of prime power order, the proof
does not provide any information about the primes involved. However, there
are some interesting conjectures in this direction. For example, it is conjectured
that if a particular prime power dominates the degree of G, then G contains a
derangement that has order a power of that prime. This is known as Isbell’s
Conjecture.

Conjecture 1.3.3 Let p be a prime. There is a function f (p,b) with the
property that if G is a transitive permutation group of degree n = pab with
(p,b) = 1 and a � f (p,b), then G contains a derangement of p-power order.

The special case p = 2 arises naturally in the study of n-player games, and
the conjecture dates back to work of Isbell on this topic in the late 1950s [77,
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78, 79]. The formulation of the conjecture stated above is due to Cameron,
Frankl and Kantor [38, p. 150].

Following [78], let us briefly explain the connection to n-player games.
A fair game (or homogeneous game) is a method for resolving binary ques-
tions without giving any individual player an advantage. If such a game has n
players, then it can be modelled mathematically as a family W of subsets of a
set X of size n, called winning sets, with the following four properties:

(a) If A ⊆ B ⊆ X and A ∈ W then B ∈ W .
(b) If A ∈ W then X \A �∈ W .
(c) If A �∈ W then X \A ∈ W .
(d) If G � Sym(X) is the setwise stabiliser of W , then G is transitive on X.

For example, if n is odd then ‘majority rules’, where W is the set of all subsets
of X of size at least n/2, is a fair game.

We claim that the existence of a fair game with n players is equivalent to the
existence of a transitive permutation group of degree n with no derangements
of 2-power order (see [77, Lemma 1]).

To see this, suppose that W is a fair game with n players and associated
group G. Clearly, if n is odd then G has no derangements of 2-power order, so
let us assume that n is even. A derangement in G of 2-power order would map
some subset A of size n/2 to its complement, but this is ruled out by (b) and
(c) above.

Conversely, suppose G � Sym(X) is a transitive permutation group of
degree n with no derangements of 2-power order. As noted above, if n is odd
then G preserves the fair game ‘majority rules’, so let us assume that n is even.
Consider the action of G on the set of subsets of X of size n/2, and suppose
that G contains an element g that maps such a subset to its complement. Then
g is a derangement. Moreover, if the cycles of g have length n1, . . . ,nk, then gm

is a derangement of 2-power order, where m = [n′1, . . . ,n
′
k] is the least common

multiple of the n′i, and n′i is the largest odd divisor of ni. This is a contradiction.
Therefore, the orbits of G on the set of subsets of size n/2 can be labelled

O1, . . . ,O�,O
c
1 , . . . ,O

c
�

where Oc
i = {X \A | A ∈ Oi}. Then

W = {A ⊆ X | B ⊆ A for some B ∈ Oi, 1 � i � �}
is preserved by G and so it models a fair game with n players. This justifies the
claim.

Isbell’s Conjecture remains an open problem, although some progress has
been made in special cases. For example, Bereczky [8] has shown that if n =
pab, where p is an odd prime, a � 1 and p+1 < b < 3

2 (p+1), then G contains
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1.3 Derangements of prescribed order 11

a derangement of p-power order. An even more general version of Isbell’s
Conjecture, due to Cameron [35, p. 176], was refuted by Crestani and Spiga
[43] for p � 5, and more recently by Spiga [114] for p = 3.

1.3.3 Semiregular elements

In view of Theorem 1.3.1, it is natural to ask whether or not every nontrivial
finite transitive permutation group contains a derangement of prime order. In
fact, it is not too difficult to see that there are transitive groups with no such ele-
ments, but examples appear to be somewhat rare. Following [39], we say that
a transitive permutation group is elusive if it does not contain a derangement
of prime order. For instance, the 3-transitive action of the smallest Mathieu
group M11 on 12 points is elusive since M11 has a unique conjugacy class of
involutions, and also a unique class of elements of order 3 (and moreover, the
point stabiliser PSL2(11) contains elements of order 2 and 3).

The first construction of an elusive group was given by Fein, Kantor and
Schacher in [52]. Let p be a Mersenne prime, let G be the group

AGL1(p2) = {x �→ ax+b | a,b ∈ Fp2 , a �= 0}
of affine transformations of Fp2 and let H be the subgroup of transformations
with a,b ∈ Fp. Then the natural action of G on the set of cosets of H gives
a transitive permutation group of degree p(p + 1) with the property that all
elements of order 2 and p have fixed points. Therefore, G is elusive. Gener-
alisations of this construction are given in [39], producing elusive groups of
degree pm(p + 1) for all Mersenne primes p and positive integers m. In par-
ticular, this family of examples shows that the natural extension of Isbell’s
Conjecture, from prime-powers to primes, is false.

A nontrivial permutation is said to be semiregular if all of its cycles have the
same length. Clearly, a derangement of prime order is semiregular, and since
any power of a semiregular element is either trivial or semiregular, the exis-
tence of a semiregular element is equivalent to the existence of a derangement
of prime order.

Determining the existence of semiregular elements is a classical problem
with a long history. For example, Burnside [33, p. 343] showed that if G is a
primitive permutation group of degree pa, where p is a prime and a > 1, and
G contains a cycle of length pa, then G is 2-transitive. This was later extended
by Schur [112], who proved that any primitive permutation group of compos-
ite degree n containing an n-cycle is 2-transitive. The complete list of such
2-transitive groups was later independently determined by Jones [80] and Li
[90], following earlier work of Feit [53]. These results have found a wide range
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of applications in combinatorics, including coding theory [9], Cayley graphs
of cyclic groups (see [91], for example) and rotary embeddings of graphs on
surfaces [92]. In a different direction, the existence of semiregular elements
has also been used to study tame ramification in number fields [81].

1.3.4 The Polycirculant Conjecture

The notion of a semiregular permutation arises naturally in graph theory. In
order to describe the connection, let us recall some standard terminology. A
digraph Γ consists of a set VΓ of vertices and a set AΓ of ordered pairs of dis-
tinct elements of VΓ, called arcs. If Γ has the property that (u,v) ∈ AΓ if and
only if (v,u) ∈ AΓ, then Γ is called a graph. In this situation, the set of edges
of Γ is denoted by EΓ = {{u,v} | (u,v) ∈ AΓ}, and we say that u is adjacent
to v, denoted u ∼ v, if {u,v} ∈ EΓ. An automorphism of a digraph Γ is a per-
mutation g of VΓ such that (u,v) ∈ AΓ if and only if (ug,vg) ∈ AΓ. We denote
the group of all automorphisms of Γ by Aut(Γ). If Aut(Γ) acts transitively
on VΓ then we say that Γ is vertex-transitive. Similarly, Γ is arc-transitive if
Aut(Γ) acts transitively on AΓ, and edge-transitive if Aut(Γ) acts transitively
on EΓ.

In 1981, Marušič [101, Problem 2.4] asked the following question.

Question. Does every finite vertex-transitive digraph admit a semiregular
automorphism?

Note that in Marušič’s terminology in [101], a digraph Γ is galactic if it
has a semiregular automorphism. For any prime p, he showed that a transi-
tive permutation group of p-power degree, or degree mp with m � p, has a
derangement of order p. The same question for graphs has subsequently been
posed by both Leighton [89] and Jordan [83], in 1983 and 1988, respectively.

The existence of a semiregular automorphism is closely related to the notion
of a Cayley digraph. Given a group G and subset S with 1 �∈ S, the Cayley
digraph Cay(G,S) is the digraph with vertex set G and the property that (g,h)
is an arc if and only if hg−1 ∈ S. Note that Cay(G,S) is connected if and only
if G = 〈S〉. If S is symmetric in the sense that S = S−1 := {s−1 | s ∈ S}, then
(g,h) is an arc if and only if (h,g) is an arc, so in this situation we refer
to the Cayley graph of G with respect to S. The group G acts on itself by
right multiplication, mapping arcs to arcs, and so it induces a regular group
of automorphisms of Cay(G,S) (in particular, Cay(G,S) is vertex-transitive).
Sabidussi [110] showed that a digraph Γ is a Cayley digraph if and only if the
full automorphism group of Γ contains a regular subgroup.
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Figure 1.3.1 The Petersen graph

Clearly, every Cayley digraph admits a semiregular automorphism. How-
ever, not all vertex-transitive digraphs are Cayley digraphs. For example, it is
easy to see that the familiar Petersen graph in Figure 1.3.1 is not a Cayley
graph, but it visibly has a semiregular automorphism of order 5.

A Cayley digraph of a cyclic group is called a circulant. Notice that a circu-
lant with n vertices admits a semiregular automorphism of order n. Similarly,
a digraph Γ with n vertices is called a bicirculant if it has a semiregular
automorphism of order n/2; for example, the Petersen graph has this prop-
erty (with n = 10). Bicirculants have been studied by various authors in
recent years, see [100] for example, and the notion has been extended to
tricirculants, etc.

The existence of a semiregular automorphism of a graph Γ has other appli-
cations. For example, it facilitates a particularly succinct notation to describe
the vertices and adjacency relation in Γ (see [10, 54], for example). Indeed,
if g ∈ Aut(Γ) is semiregular, with r cycles of length m, then we can repre-
sent the graph Γ using only r vertices, with each vertex corresponding to one
of the cycles of g. A label m|k on a vertex corresponding to the m-cycle of
g containing the vertices v1,v2, . . . ,vm of Γ indicates that each vi is adjacent
to vi+k, where addition is calculated modulo m. Similarly, given two m-cycles
u1,u2, . . . ,um and v1,v2, . . . ,vm, an unlabelled edge between the correspond-
ing nodes signifies that ui is adjacent to vi, while an edge labelled by a positive
integer k means that ui is adjacent to vi+k. This representation of Γ corresponds
to the quotient of Γ by the partition of VΓ determined by the cycles of g. This is
called the Frucht notation for Γ. For instance, the representation of the Petersen
graph is given in Figure 1.3.2. This notation can be adjusted appropriately for
digraphs.

Semiregular automorphisms of graphs have also been used to construct
Hamiltonian paths and cycles. As explained in [1], this can be done by lift-
ing such a path or cycle in the quotient graph corresponding to the semiregular
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5 2

5|1

Figure 1.3.2 Frucht notation for the Petersen graph

automorphism. These automorphisms have also played a role in the enumera-
tion of all vertex-transitive graphs with a small number of vertices (see [103],
for example).

The existence of elusive permutation groups implies that there are transitive
groups that do not contain semiregular elements. However, not every transitive
permutation group is the full automorphism group of a digraph. For example,
G = M11 has a 2-transitive action on 12 points, so the only digraphs with 12
vertices that are preserved by G are the complete graph and the edgeless graph
on 12 vertices, both of which admit semiregular automorphisms.

In order to generalise Marušič’s question, we need the notion of 2-closure.
Let G be a permutation group on a finite set Ω. The 2-closure of G, denoted
by G(2), is the largest subgroup of Sym(Ω) that preserves the orbits of G on
Ω×Ω. For instance, if G is 2-transitive then

{(α,α) | α ∈ Ω}, {(α,β ) | α,β ∈ Ω,α �= β}

are the orbits of G on Ω×Ω, so G(2) = Sym(Ω). We say that G is 2-closed
if G = G(2). Note that the automorphism group Aut(Γ) of a finite digraph
Γ is 2-closed: any permutation that fixes the orbits of Aut(Γ) on ordered
pairs of vertices also fixes AΓ setwise, and is therefore an automorphism of
Γ. However, not every 2-closed group is the full automorphism group of a
digraph. For example, the regular action of the Klein 4-group C2 ×C2 on
four points is 2-closed, but it is not the full automorphism group of any
digraph.

In 1997, Klin [34, Problem 282 (BCC15.12)] extended Marušič’s question
to 2-closed groups. This is now known as the Polycirculant Conjecture.

Conjecture 1.3.4 Every nontrivial finite transitive 2-closed permutation
group contains a derangement of prime order.

One obvious way to attack this conjecture is to determine all elusive groups
and show that none are 2-closed. Although elusive groups have been much
studied in recent years (see [39, 51, 62] for some specific constructions), a
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complete classification remains out of reach. However, the following result of
Giudici [61] classifies the quasiprimitive elusive groups.

Theorem 1.3.5 Let G � Sym(Ω) be an elusive permutation group with a tran-
sitive minimal normal subgroup. Then G = M11 � K acting with its product
action on Ω = Δk for some k � 1, where K is a transitive subgroup of Sk and
|Δ| = 12.

The proof of Theorem 1.3.5 relies on the list of pairs (G,H) given in [95,
Table 10.7], where G is a simple group and H is a maximal subgroup of G with
the property that |G| and |H| have the same set of prime divisors.

None of the groups arising in Theorem 1.3.5 are 2-closed and so every min-
imal normal subgroup of a counterexample to the Polycirculant Conjecture
must be intransitive.

Further progress in this direction has been made by Giudici and Xu in
[65], where all the elusive biquasiprimitive permutation groups are determined.
(A transitive permutation group is biquasiprimitive if it contains a nontriv-
ial intransitive normal subgroup, and all nontrivial normal subgroups have at
most two orbits.) As a corollary, it follows that every locally quasiprimitive
graph has a semiregular automorphism. (A graph Γ with automorphism group
G is locally quasiprimitive if for all vertices v ∈ VΓ, the stabiliser Gv acts
quasiprimitively on the set of vertices adjacent to v.) This family of graphs
includes all arc-transitive graphs of prime valency, and all 2-arc transitive
graphs.

Another approach to the Polycirculant Conjecture, and also the original
question of Marušič, is to show that digraphs with additional properties must
admit a semiregular automorphism. For instance, Marušič and Scapellato [102]
showed that every vertex-transitive graph of valency 3, or with 2p2 vertices
(p a prime), has a semiregular automorphism. Similarly, all vertex-transitive
graphs of valency 4 [50], or with a square-free number of vertices [49], also
have semiregular automorphisms. In fact, [64] reveals that any vertex-transitive
group of automorphisms of a connected graph of valency at most 4 contains a
semiregular element, and any vertex-transitive digraph of out-valency at most 3
admits a semiregular automorphism. By the main theorem of [88], all distance-
transitive graphs have a semiregular automorphism. This remains an active area
of current research.

1.3.5 Derangements of prime order

Let G be a transitive permutation group on a finite set Ω. Notice that G contains
a derangement of prime order r only if r divides |Ω|. One of the main aims of
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this book is to initiate a quantitative study of derangements of prime order,
motivated by the following basic question:

Question. Let r be a prime divisor of |Ω|. Does G contain a derangement of
order r?

This question leads us naturally to the following local notion of elusivity,
which was introduced in [23].

Definition 1.3.6 Let G be a transitive permutation group on a finite set Ω and
let r be a prime divisor of |Ω|. Then G is r-elusive if it does not contain a
derangement of order r.

In this terminology, G is elusive if and only if it is r-elusive for every prime
divisor r of |Ω|. Similarly, we say that G is strongly r-elusive if r divides |Ω|
and G does not contain a derangement of r-power order.

Recall that G is primitive if a point stabiliser Gα is a maximal subgroup
of G. The existence of a core-free maximal subgroup imposes restrictions on
the abstract structure of G (for instance, it implies that G has at most two
minimal normal subgroups). This is formalised in the statement of the O’Nan–
Scott Theorem, which describes the structure of a finite primitive permutation
group. This important theorem divides primitive groups into a certain number
of classes according to the structure of the socle (the subgroup generated by
the minimal normal subgroups) and the action of a point stabiliser. The precise
number of classes depends on how fine a subdivision is required; for example,
see [35, Section 4.5] for a subdivision into four classes, and [94] and [109,
Section 6] for more refined subdivisions. Roughly speaking, the theorem states
that a primitive group G � Sym(Ω) either preserves some natural structure on
Ω, for example a product structure, or the structure of an affine space, or there
is a nonabelian simple group T such that

T � G � Aut(T )

In the latter case, G is an almost simple group.
In many situations, the O’Nan–Scott Theorem can be used to reduce a gen-

eral problem concerning primitive groups to the almost simple case. At this
point, the Classification of Finite Simple Groups can be invoked to describe the
possibilities for T (and thus G), and the vast literature on finite simple groups
(in particular, information on their subgroup structure, conjugacy classes and
representations) can be brought to bear on the problem.
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For example, in order to determine all the r-elusive primitive permutation
groups, the O’Nan–Scott Theorem was used in [23] to establish the following
reduction theorem (see [23, Theorem 2.1]).

Theorem 1.3.7 Let G � Sym(Ω) be a finite primitive permutation group with
socle N. Let r be a prime divisor of |Ω|. Then one of the following holds:

(i) G is almost simple;
(ii) N contains a derangement of order r;

(iii) G � H �Sk acting with its product action on Ω = Δk for some k � 2, where
H � Sym(Δ) is primitive, almost simple and the socle of H is r-elusive.

In view of Theorem 1.3.7, we may focus our attention on the almost simple
primitive groups. Let G be such a group, with socle T. By the Classification of
Finite Simple Groups, there are four cases to consider:

(a) T is an alternating group An of degree n � 5;
(b) T is one of 26 sporadic simple groups;
(c) T is a simple classical group;
(d) T is a simple group of exceptional Lie type.

By Theorem 1.3.5, the 3-transitive action of M11 on 12 points is the only almost
simple primitive elusive group.

All the r-elusive groups in cases (a) and (b) are determined in [23]. For
example, in case (a) the main theorem is the following (see [23, Section 3]).

Theorem 1.3.8 Let G = An or Sn be an almost simple primitive permutation
group on a set Ω with point stabiliser H. Let r be a prime divisor of |Ω|.

(i) If H acts primitively on {1, . . . ,n}, then G is r-elusive if and only if r = 2
and (G,H) = (A5,D10) or (A6,PSL2(5)).

(ii) Let Ω be the set of partitions of {1, . . . ,n} into b parts of size a with
a,b � 2. Write a ≡ � (mod r) and b ≡ k (mod r) with 0 � �, k < r. Then
G is r-elusive if and only if r � a and one of the following holds:
(a) � = 0;
(b) k = 0 and � = 1;
(c) 0 < k� < r and either b < r or (k + r)� � ka+ r.

(iii) Let Ω be the set of k-element subsets of {1, . . . ,n} with 1 � k < n/2. Write
n ≡ i (mod r) and k ≡ j (mod r) with 0 � i, j < r.
(a) If r is odd, then G is r-elusive if and only if r � k and i � j.
(b) G is 2-elusive if and only if k is even, or n is odd, or G = An and n/2

is odd.
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Table 1.4.1 The finite simple classical groups

Type Notation Conditions

Linear PSLn(q) n � 2, (n,q) �= (2,2),(2,3)
Unitary PSUn(q) n � 3, (n,q) �= (3,2)
Symplectic PSpn(q)′ n � 4 even

Orthogonal

{
Ωn(q)
PΩ±

n (q)
nq odd, n � 7
n � 8 even

Further results are established in [23]. For example, the conjugacy classes
of derangements of prime order are determined for almost all primitive actions
of almost simple sporadic groups (including the Baby Monster sporadic group
for example, and almost all primitive actions of the Monster). In addition, the
strongly r-elusive primitive actions of the almost simple groups with socle an
alternating or sporadic group are determined in [23]. We also show that if r is
the largest prime divisor of |Ω|, then such a group G contains a derangement
of order r, unless G = M11, |Ω| = 12 and r = 3 (see [23, Corollary 1.2]).

In view of Theorem 1.3.7, and the work in [23], the challenge now is to
extend the study of r-elusivity to almost simple groups of Lie type. Here we
will focus on classical groups; derangements of prime order in almost simple
groups of exceptional Lie type will be investigated in future work.

1.4 Derangements in classical groups

Let G � Sym(Ω) be a primitive almost simple classical group over Fq with
socle T and natural (projective) module V of dimension n. Let H = Gα be
a point stabiliser. The possibilities for T (up to isomorphism) are listed in
Table 1.4.1. These groups will be formally introduced in Chapter 2, where
the notation and given conditions will be explained. In Chapter 2 we will also
describe the associated geometries and automorphisms of the classical groups.

We are interested in the following problem:

Problem 1.4.1 For each prime divisor r of |Ω|, determine whether T is
r-elusive, that is, determine whether or not T contains a derangement of
order r.

Let x be an element of T. Recall that

(i) H is a maximal subgroup of G such that G = HT , and
(ii) x is a derangement if and only if xG ∩H is empty.
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Therefore, in order to attack Problem 1.4.1 we require detailed information on
the subgroup structure of G (in order to determine the possibilities for H). We
also need a description of the G-classes of elements of prime order in T, and we
need to study the fusion of the H-classes of such elements in G (to determine
whether xG ∩H is non-empty for all x ∈ T of a given prime order).

In view of (ii) above, our aim in Chapter 3 is to bring together a range of
results on conjugacy classes of elements of prime order in the finite classical
groups. Most of these results can be found in the literature, in one form or
another, but it is desirable to have a single reference for this important infor-
mation. Indeed, a detailed description of conjugacy classes is essential for our
application to derangements, and more generally we expect that the content
of Chapter 3 will be useful in many other problems involving finite classical
groups.

Let V be the natural T-module, let x ∈ T be an element of prime order r,
and write q = p f where p is a prime. (Here V is an n-dimensional vector space
over Fqu , where u = 2 if T is a unitary group, otherwise u = 1.) Let F be the
algebraic closure of Fq and set V = V ⊗F. Since x ∈ PGL(V ), we may define
x̂ ∈ GL(V ) to be a preimage of x.

In order to describe the conjugacy class of x in G, we distinguish the cases
r = p and r �= p. In the former case, x is a unipotent element; 1 is the only
eigenvalue of x̂ on V , and the G-class of x is essentially determined by the
Jordan block structure of x̂ on V . If r �= p then x is semisimple; here x̂ ∈ GL(V )
is diagonalisable and the G-class of x can typically be described in terms of
the multiset of eigenvalues of x̂ on V . In both cases we will discuss class rep-
resentatives, and we will provide information on the centraliser CG(x) and the
type of subspace decompositions of V fixed by x. Some of these results are
conveniently summarised in the tables in Appendix B. We will also discuss the
conjugacy classes of outer automorphisms of T of prime order.

The case r = 2 requires special attention. Indeed, our treatment of semisim-
ple involutions is one of the main features of Chapter 3. This detailed analysis
is needed for the application to derangements, and more generally it is designed
to complement the extensive information in [67, Table 4.5.1] by Gorenstein,
Lyons and Solomon.

The main theorem on the subgroup structure of finite classical groups is
due to Aschbacher. In [3], Aschbacher introduces eight geometric families of
subgroups of G, denoted by Ci (1 � i � 8), which are defined in terms of the
underlying geometry of the natural T-module V . For example, these collec-
tions include the stabilisers of suitable subspaces of V , and the stabilisers of
appropriate direct sum and tensor product decompositions of V . Essentially,
Aschbacher’s main theorem states that if H is a maximal subgroup of G with
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Table 1.4.2 Aschbacher’s subgroup collections

Collection Description

C1 Stabilisers of subspaces, or pairs of subspaces, of V
C2 Stabilisers of decompositions V =

⊕t
i=1 Vi, where dimVi = a

C3 Stabilisers of prime degree extension fields of Fq
C4 Stabilisers of decompositions V = V1 ⊗V2
C5 Stabilisers of prime index subfields of Fq
C6 Normalisers of symplectic-type r-groups, r �= p
C7 Stabilisers of decompositions V =

⊗t
i=1 Vi, where dimVi = a

C8 Stabilisers of nondegenerate forms on V
S Almost simple absolutely irreducible subgroups
N Novelty subgroups (T = PΩ+

8 (q) or Sp4(q)′ (p = 2), only)

HT = G, then either H is contained in one of the Ci collections, or H is almost
simple and the socle of H acts absolutely irreducibly on V . Following [86],
we use S to denote the latter collection of non-geometric subgroups. It turns
out that a small additional subgroup collection (denoted by N ) arises when
T = Sp4(q)′ (with p = 2) or PΩ+

8 (q), due to the existence of certain exceptional
automorphisms. A brief description of these subgroup collections is presented
in Table 1.4.2, and we refer the reader to Section 2.6 for further details.

Our study of derangements in finite classical groups is organised in terms
of the subgroup collections in Table 1.4.2. The subspace actions correspond-
ing to subgroups in C1 require special attention, and they are handled first in
Chapter 4. Here we need to determine whether a given prime order element in
T fixes an appropriate subspace (or pair of subspaces) of V . In order to answer
this question, we need the detailed information on conjugacy class representa-
tives recorded in Chapter 3 (in particular, we need to understand the subspace
decompositions of V fixed by such elements). The remaining geometric sub-
group collections Ci, with 2 � i � 8, are handled in Chapter 5, together with
the small collection of novelty subgroups denoted by N . In Chapter 6, we
present detailed results on the r-elusivity of the low-dimensional almost simple
classical groups.

Rather different techniques are required to deal with the non-geometric
actions corresponding to the subgroups in the collection S . If H is such a sub-
group of G, with (simple) socle S, then there exists an absolutely irreducible
representation ρ : Ŝ → GL(V ), where Ŝ is a covering group of S. However, it
is not easy to use this representation-theoretic description of the embedding
of H in G to study the fusion of H-classes in G (of course, even the dimen-
sions of the irreducible FqŜ-modules are not known, in general). Therefore, a
somewhat different approach is required, and we will study the r-elusivity of
S -actions of finite classical groups in a separate paper.
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1.5 Main results

We are now in a position to discuss some of our main results on derangements
of prime order in almost simple classical groups. More detailed results will
be presented in Chapters 4, 5 and 6; some of these statements are necessarily
somewhat involved, with reference to a number of tables, so in this section
we will state simplified versions. We also give precise references for the more
detailed statements that can be found later in the text.

As before, let G � Sym(Ω) be a primitive almost simple classical group
over Fq with socle T and natural (projective) module V of dimension n. Let
H = Gα be a point stabiliser, and define the subgroup collections as in Table
1.4.2. Write q = p f , where p is a prime, and assume that H �∈ S .

Theorem 1.5.1 Let r be a prime divisor of |Ω|.
(i) If H ∈ C1 ∪C2, r = p > 2 and T is r-elusive, then (G,H) belongs to a

known list of cases.
(ii) In all other cases, T is r-elusive if and only if (G,H,r) belongs to a known

list of cases.

Remark 1.5.2 Some comments on the statement of Theorem 1.5.1.

(a) For H ∈ C1 ∪C2, we refer the reader to the theorems referenced in Table
1.5.1, which provide detailed results. For example, if H ∈ C1 and r �= p is
odd, then T is r-elusive if and only if (G,H,r) is one of the cases recorded
in Theorem 4.1.6. As indicated in Theorems 4.1.4 and 5.2.1, in some (but
not all) cases we are able to present necessary and sufficient conditions for
r-elusivity when r = p > 2, which typically depend on number-theoretic
properties of partitions of n.

(b) If H ∈ Ci (with 3 � i � 8), then the precise conditions for r-elusivity are
stated in Theorem 5.i.1 and the specific cases that arise are listed in Table
5.i.2 (for i �= 7). We find that the collection of primes r for which T is
r-elusive is rather restricted:
● If H ∈ C4 ∪C7 then T is r-elusive only if r = 2.
● If H ∈ C3 and T is r-elusive then either r = 2, or T = PSLε

n(q), H is of
type GLε

n/k(q
k) and r = k.

● If H ∈ C5 is a subfield subgroup over Fq0 , where q = qk
0, then T is r-

elusive only if r ∈ {2,3,5,k, p}.
● If H ∈ C6 then T is r-elusive only if r � 3, or if r is a Mersenne or

Fermat prime.
● If H ∈ C8 then T is r-elusive only if r ∈ {2,3,5, p}.
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Table 1.5.1 References for Ci-actions, i = 1,2

r = p > 2 r �= p, r > 2 r = 2

C1 4.1.4 4.1.6 4.1.7
C2 5.2.1 5.2.3 5.2.5

(c) By definition, if T is not r-elusive then T contains a derangement of order r.
In this situation, specific derangements are usually identified in the proofs
of the main theorems.

In the next theorem, we highlight the special case r = 2.

Theorem 1.5.3 T is 2-elusive if and only if |Ω| is even and (G,H) is one of the
cases in Table 4.1.3 (for H ∈ C1) or Table 5.1.2 (in all other cases).

We say that T is 2′-elusive if |Ω| is divisible by an odd prime, but T does not
contain a derangement of odd prime order.

Theorem 1.5.4 Let G be a primitive almost simple classical group with socle
T. Then T is not 2′-elusive.

This is a special case of the main theorem of [22], which describes the
structure of quasiprimitive and biquasiprimitive groups that are 2′-elusive. In
particular, if G is a primitive almost simple group with socle T and point sta-
biliser H, then T is 2′-elusive if and only if (G,H) is one of the following (in
terms of the Atlas [41] notation):

(M11,PSL2(11)), (2F4(2)′,PSL2(25)), (2F4(2),PSL2(25).23)

Our final theorem concerns the r-elusivity of the low-dimensional classical
groups with n � 5.

Theorem 1.5.5 Let G be a primitive almost simple classical group with socle
T and point stabiliser H, where

T ∈ {PSL2(q),PSLε
3(q),PSLε

4(q),PSp4(q)′,PSLε
5(q)} (1.5.1)

Let r be a prime. Then T is r-elusive if and only if (G,H,r) is one of the cases
recorded in Tables 6.4.1–6.4.8.

The proof of Theorem 1.5.5 is given in Chapter 6. For H �∈ S , this is
a corollary of Theorem 1.5.1, noting that it is straightforward to determine
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necessary and sufficient conditions in part (i) when n is small. A complete list
of the subgroups in S is given in [13, Chapter 8] (also see Table 6.3.1), and
we study each possibility in turn, working with the corresponding irreducible
representation (and its character) to investigate the fusion of H-classes in G.

Corollary 1.5.6 Let G be a primitive almost simple classical group over Fq

with point stabiliser H and socle T as in (1.5.1). Let r > 5 be a prime. Then T
is r-elusive only if one of the following holds:

(i) H ∈ C5 is a subfield subgroup over Fq0 , where q = qk
0 and r ∈ {k, p}.

(ii) T = PSLn(q), n ∈ {3,5} and H is a C8-subgroup of type GUn(q0), where
q = q2

0 and r = p.
(iii) H ∈ S has socle S and (T,S,r) is one of the following:

(a) T = PSLε
5(q), S = PSL2(11) and r = 11;

(b) T = PSL5(3), S = M11 and r = 11;
(c) T = PSLε

4(q), S = A7 or PSL2(7), and r = 7;
(d) T = PSLε

3(q), S = PSL2(7) and r = 7.
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