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CANTOR’S THEOREM MAY FAIL FOR FINITARY PARTITIONS

GUOZHEN SHEN

Abstract. A partition is finitary if all its members are finite. For a set A, B(A) denotes the set of
all finitary partitions of A. It is shown consistent with ZF (without the axiom of choice) that there exist
an infinite set A and a surjection from A onto B(A). On the other hand, we prove in ZF some theorems
concerning B(A) for infinite sets A, among which are the following:

(1) If there is a finitary partition of A without singleton blocks, then there are no surjections from A
onto B(A) and no finite-to-one functions from B(A) to A.

(2) For all n ∈ �, |An | < |B(A)|.
(3) |B(A)| �= |seq(A)|, where seq(A) is the set of all finite sequences of elements of A.

§1. Introduction. In 1891, Cantor [1] proved that, for all sets A, there are no
surjections from A onto P (A) (the power set of A). Under the axiom of choice,
for infinite sets A, several sets related to A have the same cardinality as P (A) or
A; for example, S(A) (the set of all permutations of A) and Part(A) (the set of all
partitions of A) have the same cardinality as P (A), and A2, fin(A) (the set of all
finite subsets of A), seq(A) (the set of all finite sequences of elements of A), and
seq1-1(A) (the set of all finite sequences without repetition of elements of A) have the
same cardinality as A. However, without the axiom of choice, this is no longer the
case. In 1924, Tarski [19] proved that the statement that A2 has the same cardinality
as A for all infinite sets A is in fact equivalent to the axiom of choice.

Over the past century, various variations of Cantor’s theorem have been
investigated in ZF (the Zermelo–Fraenkel set theory without the axiom of choice),
with A or P (A) replaced by a set which has the same cardinality under the axiom
of choice. Specker [18] proves that, for all infinite sets A, there are no injections
from P (A) into A2. Halbeisen and Shelah [5] prove that |fin(A)| < |P (A)| and
|seq1-1(A)| �= |P (A)| �= |seq(A)|. Forster [3] proves that there are no finite-to-one
functions from P (A) to A. Recently, Peng and Shen [8] prove that there are no
surjections from � × A onto P (A), and Peng, Shen, and Wu [9] prove that the
existence of an infinite set A and a surjection from A2 onto P (A) is consistent with
ZF. The variations of Cantor’s theorem with P (A) replaced by S(A) are investigated
in [2, 15–17].

For a set A, let B(A) be the set of all finitary partitions of A, where a partition is
finitary if all its members are finite. We use the symbol B to denote this notion just
because |B(n)| is the nth Bell number. The axiom of choice implies that B(A) and
P (A) have the same cardinality for infinite sets A, but each of “|B(A)| < |P (A)|”,
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2 GUOZHEN SHEN

“|P (A)| < |B(A)|”, and “|B(A)| and |P (A)| are incomparable” for some infinite
set A is consistent with ZF. Recently, Phansamdaeng and Vejjajiva [10] prove that
|fin(A)| < |B(A)| for all infinite sets A.

In this paper, we further study the variations of Cantor’s theorem with P (A)
replaced by B(A). We show that Cantor’s theorem may fail for finitary partitions in
the sense that the existence of an infinite set A and a surjection from A onto B(A) is
consistent with ZF. Nevertheless, we prove in ZF some theorems concerning B(A)
for infinite sets A, among which are the following:

(1) If there is a finitary partition of A without singleton blocks, then there are no
surjections from A onto B(A) and no finite-to-one functions from B(A) to A.

(2) For all n ∈ �, |An| < |B(A)|.
(3) |B(A)| �= |seq(A)|.

§2. Some notation and preliminary results. Throughout this paper, we shall work
in ZF. In this section, we indicate briefly our use of some terminology and notation.
For a function f, we use dom(f) for the domain of f, ran(f) for the range of f, f[A]
for the image of A under f, f–1[A] for the inverse image of A under f, and f�A for
the restriction of f to A. For functions f and g, we use g ◦ f for the composition
of g and f. We write f : A→ B to express that f is a function from A to B, and
f : A� B to express that f is a function from A onto B. For a set A, |A| denotes
the cardinality of A.

Definition 2.1. Let A,B be arbitrary sets.

(1) |A| = |B |, or A ≈ B , if there is a bijection between A and B.
(2) |A| � |B |, or A � B , if there is an injection from A into B.
(3) |A| �∗ |B |, or A �∗ B , if there is a surjection from a subset of B onto A.
(4) |A| < |B | if |A| � |B | and |A| �= |B |.

Clearly, if A � B then A �∗ B , and if A �∗ B then P (A) � P (B).
In the sequel, we shall frequently use expressions like “one can explicitly define”

in our formulations, which is illustrated by the following example.

Theorem 2.2 (Cantor–Bernstein). From injections f : A→ B and g : B → A,
one can explicitly define a bijection h : A→ B .

Proof. See [4, Theorem 3.14]. �

Formally, Theorem 2.2 states that one can define a class function H without free
variables such that, whenever f is an injection from A into B and g is an injection
from B into A,H (f, g) is defined and is a bijection between A and B. Consequently,
if |A| � |B | and |B | � |A|, then |A| = |B |.

Definition 2.3. Let A be a set and let f be a function.

(1) A is Dedekind infinite if � � A; otherwise, A is Dedekind finite.
(2) A is power Dedekind infinite if P (A) is Dedekind infinite; otherwise, A is power

Dedekind finite.
(3) f is (Dedekind) finite-to-one if for every z ∈ ran(f), f–1[{z}] is (Dedekind)

finite.

https://doi.org/10.1017/jsl.2024.24 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.24


CANTOR’S THEOREM MAY FAIL FOR FINITARY PARTITIONS 3

Clearly, if f and g are (Dedekind) finite-to-one functions, so is g ◦ f (cf. [12,
Fact 2.8]). It is well known that A is Dedekind infinite if and only if there exists
a bijection between A and a proper subset of A. For power Dedekind infinite sets,
recall Kuratowski’s celebrated theorem.

Theorem 2.4 (Kuratowski). A is power Dedekind infinite if and only if � �∗ A.

Proof. See [4, Proposition 5.4]. �

The following two facts are Corollaries 2.9 and 2.11 of [12], respectively.

Fact 2.5. If A is power Dedekind infinite and there exists a finite-to-one function
from A to B, then B is power Dedekind infinite.

Fact 2.6. If An is power Dedekind infinite, so is A.

Definition 2.7. Let P be a partition of A. We say that P is finitary if all blocks
of P are finite, and write ns(P) for the set of non-singleton blocks of P. For x ∈ A,
we write [x]P for the unique block of P which contains x. The equivalence relation
∼P on A induced by P is defined by

x ∼P y if and only if [x]P = [y]P.

Definition 2.8. Let A be an arbitrary set.

(1) Part(A) is the set of all partitions of A.
(2) Partfin(A) = {P ∈ Part(A) | P is finite}.
(3) B(A) = {P ∈ Part(A) | P is finitary}.
(4) Bfin(A) = {P ∈ B(A) | ns(P) is finite}.
(5) fin(A) is the set of all finite subsets of A.
(6) seq(A) = {f | f is a function from an n ∈ � to A}.
(7) seq1–1(A) = {f | f is an injection from an n ∈ � into A}.

Below we list some basic relations between the cardinalities of these sets. We first
note that fin(A) �∗ seq1–1(A) � seq(A). The next three facts are Facts 2.13, 2.16,
and 2.17 of [12], respectively.

Fact 2.9. If A is infinite, then fin(A) and P (A) are power Dedekind infinite.

Fact 2.10. seq1–1(A) � fin(fin(A)).

Fact 2.11. There is a finite-to-one function from fin(fin(A)) to fin(A).

The next three facts are Facts 2.19, 2.20, and Corollary 2.23 of [15], respectively.

Fact 2.12. If A is non-empty, then seq(A) is Dedekind infinite.

Fact 2.13. If A is Dedekind finite, then there is a Dedekind finite-to-one function
from seq(A) to �.

Fact 2.14. If A is Dedekind infinite, then seq(A) ≈ seq1–1(A).

Fact 2.15. Part(A) � P (A2).

Proof. The function that maps each partition P of A to ∼P is an injection from
Part(A) into P (A2). �
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4 GUOZHEN SHEN

Corollary 2.16. If A is power Dedekind finite, then Part(A), and hence also
Partfin(A) and B(A), are Dedekind finite.

Proof. If A is power Dedekind finite, so is A2 by Fact 2.6, and thus P (A2) is
Dedekind finite, which implies that also Part(A), Partfin(A) and B(A) are Dedekind
finite by Fact 2.15. �

Fact 2.17. Bfin(A) � fin(fin(A)).

Proof. The function that maps each P ∈ Bfin(A) to ns(P) is an injection from
Bfin(A) into fin(fin(A)). �

Fact 2.18. Bfin(A) � Partfin(A).

Proof. If A is finite, then Bfin(A) = Partfin(A); otherwise, the function that
maps each P ∈ Bfin(A) to ns(P) ∪ {

⋃
(P \ ns(P))} is an injection from Bfin(A) into

Partfin(A). �

Fact 2.19. If |A| � 5, then fin(A) � Bfin(A) and P (A) � Partfin(A).

Proof. Let E = {a, b, c, d, e} be a 5-element subset of A. We define functions
f : fin(A) → Bfin(A) and g : P (A) → Partfin(A) by setting, forB ∈ fin(A) andC ∈
P (A),

f(B) =

⎧⎪⎨
⎪⎩

({B} ∪ [A \ B]1) \ {∅}, if B is not a singleton,
{{a, x}, E \ {a, x}} ∪ [A \ (B ∪ E)]1, if B = {x} for some x �= a,
{{a}, {b, c}, {d, e}} ∪ [A \ E]1, if B = {a},

and

g(C ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
{C,A \ C} \ {∅}, if a /∈ C,
({C,A \ (C ∪ E)} ∪ [E \ C ]1) \ {∅}, if a ∈ C, |C ∩ E| � 3,
{C \ {a}, {a}, E \ C,A \ (C ∪ E)} \ {∅}, if a ∈ C, |C ∩ E| = 4,
{C \ {b, c, d, e}, {b, c}, {d, e}, A \ C} \ {∅}, if E ⊆ C,

where [D]1 denotes the set of 1-element subsets of D. It is easy to see that f and g
are injective. �

The following corollary immediately follows from Facts 2.9 and 2.19.

Corollary 2.20. If A is infinite, then Bfin(A) and B(A) are power Dedekind
infinite.

For infinite sets A, the relations between the cardinalities of fin(A), P (A), Bfin(A),
B(A), Partfin(A), Part(A), and P (A2) can be visualized by Figure 1 (where for two
sets X and Y,X −→ Y means |X | � |Y |,X Y means |X | < |Y |, andX Y
means |X | �= |Y |).

In Figure 1, the �-relations have already been established, and the inequalities
|fin(A)| < |P (A)| and |fin(A)| < |B(A)| are proved in [5, Theorem 3] and [10,
Theorem 3.7], respectively. The inequalities |Bfin(A)| < |Partfin(A)| and |Bfin(A)| �=
|P (A)| will be proved in Section 4. The other relations not indicted in the figure
cannot be proved in ZF, as shown in the next section.
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§3. Permutation models and consistency results. We refer the readers to [4,
Chapter 8] or [6, Chapter 4] for an introduction to the theory of permutation
models. Permutation models are not models of ZF; they are models of ZFA (the
Zermelo–Fraenkel set theory with atoms). Nevertheless, they indirectly give, via the
Jech–Sochor theorem (cf. [4, Theorem 17.2] or [6, Theorem 6.1]), models of ZF.

Let A be the set of atoms, let G be a group of permutations of A, and let F be
a normal filter on G. We write symG(x) for the set {� ∈ G | �x = x}, where � ∈ G
extends to a permutation of the universe by

�x = {�y | y ∈ x}.
Then x belongs to the permutation model V determined by G and F if and only if
x ⊆ V and symG(x) ∈ F.

For each E ⊆ A, we write fixG(E) for the set {� ∈ G | ∀a ∈ E(�a = a)}. Let
I ⊆ P (A) be a normal ideal and let F be the normal filter on G generated by
the subgroups {fixG(E) | E ∈ I}. Then x belongs to the permutation model V
determined by G and I if and only if x ⊆ V and there exists an E ∈ I such that
fixG(E) ⊆ symG(x); that is, every � ∈ G fixing E pointwise also fixes x. Such an E
is called a support of x.

3.1. A model for |B(A)| �∗ |A| and |B(A)| < |P (A)|. We construct a per-
mutation model VB in which the set A of atoms satisfies |B(A)| �∗ |A| and
|B(A)| < |P (A)|. The atoms are constructed by recursion as follows:

(i) A0 = ∅ and G0 = {∅} is the group of all permutations of A0.
(ii) An+1 = An ∪ {(n, P, k) | P ∈ B(An) and k ∈ �}.

(iii) Gn+1 is the group of permutations of An+1 consisting of all permutations h
for which there exists a g ∈ Gn such that:
• g = h�An;
• for each P ∈ B(An), there exists a permutation q of � such that
h(n, P, k) = (n, {g[D] | D ∈ P}, q(k)) for all k ∈ �.

Let A =
⋃
n∈� An be the set of atoms, let G be the group of permutations of A

consisting of all permutations � such that ��An ∈ Gn for all n ∈ �, and let F be the
normal filter on G generated by the subgroups {fixG(An) | n ∈ �}. The permutation
model determined by G and F is denoted by VB .

Lemma 3.1. For every P ∈ B(A), P ∈ VB if and only if ns(P) ⊆ P (Am) for some
m ∈ �.

Proof. Let P ∈ B(A). If ns(P) ⊆ P (Am) for some m ∈ �, then clearly
fixG(Am) ⊆ symG(P), which implies that P ∈ VB . For the other direction, suppose
P ∈ VB and let m ∈ � be such that fixG(Am) ⊆ symG(P); that is, every � ∈ G
fixing Am pointwise also fixes P. We claim ns(P) ⊆ P (Am). Assume towards a
contradiction that x ∼P y for some distinct x, y such that one of x and y is
not in Am. Suppose that x = (n,Q, k) and y = (n′, Q′, k′), and assume without
loss of generality n′ � n. Then x /∈ Am and thus m � n. Let l ∈ � be such that
(n,Q, l) /∈ [y]P and let q be the transposition that swaps k and l. Since P is
finitary, such an l exists. Let h be the permutation of An+1 such that h fixes An
pointwise and for all R ∈ B(An) and all j ∈ �, h(n,R, j) = (n,R, q(j)) if R = Q,
and h(n,R, j) = (n,R, j) otherwise. Then h ∈ Gn+1 fixes An+1 \ {x, (n,Q, l)}
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6 GUOZHEN SHEN

pointwise. Hence h(y) = y. Extend h in a straightforward way to some � ∈ G.
Then � ∈ fixG(Am ∪ {y}) and �(x) = (n,Q, l) /∈ [y]P . Thus � moves P, which is a
contradiction. �

Lemma 3.2. In VB , |B(A)| �∗ |A| and |B(A)| < |P (A)|.

Proof. Let Φ be the function on {P ∈ B(A) | ∃m ∈ �(ns(P) ⊆ P (Am))}
defined by

Φ(P) = {(nP, P ∩ P (AnP ), k) | k ∈ �},

where nP is the least m ∈ � such that ns(P) ⊆ P (Am). Clearly, Φ ∈ VB . In VB , by
Lemma 3.1, Φ is an injection from B(A) into P (A), and the sets in the range of
Φ are pairwise disjoint, which implies that |B(A)| �∗ |A|. Since |P (A)| �∗ |A| by
Cantor’s theorem, it follows that |B(A)| < |P (A)|. �

Now the next theorem immediately follows from Lemma 3.2 and the Jech–Sochor
theorem.

Theorem 3.3. It is consistent with ZF that there exists an infinite set A for which
|B(A)| �∗ |A| and |B(A)| < |P (A)|.

3.2. A model for |P (A)| < |B(A)| < |Partfin(A)|. We show that the ordered
Mostowski model VM (cf. [4, pp. 198–202] or [6, Section 4.5]) is a model of this
kind. Recall that the set A of atoms carries an ordering <M which is isomorphic
to the ordering of the rational numbers, the permutation group G consists of all
automorphisms of 〈A,<M〉, and VM is determined by G and finite supports. Clearly,
the ordering<M belongs to VM (cf. [4, Lemma 8.10]). In VM, A is infinite but power
Dedekind finite (cf. [4, Lemma 8.13]), and thus, by Fact 2.6 and Corollary 2.16,
P (A2) and B(A) are Dedekind finite.

Lemma 3.4. In VM, B(A) = Bfin(A).

Proof. Let P ∈ VM be a finitary partition of A and let E be a finite support of
P. We claim ns(P) ⊆ P (E). Assume towards a contradiction that x ∼P y for some
distinct x, y such that x /∈ E. Since P is finitary, we can find a � ∈ fixG(E ∪ {y})
such that �(x) /∈ [y]P . Hence � moves P, contradicting that E is a support of P.
Thus ns(P) ⊆ P (E), so P ∈ Bfin(A). �

The next two lemmas are Lemmas 8.11(b) and 8.12 of [4], respectively.

Lemma 3.5. Every x ∈ VM has a least support.

Lemma 3.6. If E is an n-element subset of A, then E supports exactly 22n+1 subsets
of A.

Lemma 3.7. For eachn ∈ �, letB�n be the number of partitions of n without singleton
blocks; that is,

B�n = |{P ∈ B(n) | ns(P) = P}|.

If n � 23, then 22n+2 < B�n .

https://doi.org/10.1017/jsl.2024.24 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.24


CANTOR’S THEOREM MAY FAIL FOR FINITARY PARTITIONS 7

Proof. For each n ∈ �, let Bn be the nth Bell number; that is, Bn = |B(n)|.
Recall Dobinski’s formula (see, for example, [11]):

Bn =
1
e

∞∑
k=0

kn

k!
.

It is easy to see that Bn = B�n + B�n+1. Hence, for n � 23, we have

B�n >
Bn–1

2
>

8n–1

2e · 8!
=

2n–5

2e · 8!
· 22n+2 � 218

2e · 8!
· 22n+2 > 22n+2. �

Lemma 3.8 In VM, |P (A)| < |B(A)| < |Partfin(A)| < |Part(A)| < |P (A2)|.

Proof. In VM, since P (A2) is Dedekind finite, and the injections constructed in
the proofs of Facts 2.15 and 2.18 are clearly not surjective, it follows that |Bfin(A)| <
|Partfin(A)| < |Part(A)| < |P (A2)|. By Lemma 3.4, it remains to show that |P (A)| <
|B(A)|.

For a finite subset E of A, we can use<M to define an ordering of the subsets of A
supported by E and an ordering of the finitary partitions P of A with ns(P) ⊆ P (E).
Let D = {ai | i < 46} be a 46-element subset of A. In VM, we define an injection f
from P (A) into B(A) as follows.

Let C ∈ VM be a subset of A. By Lemma 3.5, C has a least support E. Suppose
that C is the kth subset of A with E as its least support. Let n = |D � E|, where �
denotes the symmetric difference. Now, if |E| � 23, definef(C ) to be the kth finitary
partition P of A with

⋃
ns(P) = E; otherwise, definef(C ) to be the (B�n – k – 1)th

finitary partition P of A with
⋃

ns(P) = D � E. In the second case, n � 23, and
thus B�n – k – 1 > 22n+1 by Lemmas 3.6 and 3.7. Thus f is injective. Since D is a
finite support of f, it follows that f ∈ VM.

Finally, since B(A) is Dedekind finite and f is not surjective, it follows that
|P (A)| < |B(A)|. �

Now the next theorem immediately follows from Lemmas 3.4 and 3.8 and the
Jech–Sochor theorem.

Theorem 3.9. It is consistent with ZF that there exists an infinite set A for which
B(A) = Bfin(A) and |P (A)| < |B(A)| < |Partfin(A)| < |Part(A)| < |P (A2)|.

3.3. A model in which B(A) is incomparable with P (A) or Partfin(A). We use a
variation of the basic Fraenkel model (cf. [4, pp. 195–196] or [6, Section 4.3]). Let
A be an uncountable set of atoms, let G be the group of all permutations of A, and
let VF be the permutation model determined by G and countable supports.

Lemma 3.10. In VF, |B(A)| � |Partfin(A)|, |Bfin(A)| � |P (A)|, and
|P (A)| � |B(A)|.

Proof. (1) |B(A)| � |Partfin(A)|. Assume towards a contradiction that in VF

there is an injection f from B(A) into Partfin(A). Let B be a countable support
of f. Let {an | n ∈ �} ⊆ A \ B with ai �= aj whenever i �= j. Consider the finitary
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partition P = {{a2n, a2n+1} | n ∈ �} ∪ [A \ {an | n ∈ �}]1 ∈ VF. Since f(P) is a
finite partition, there must be i, j ∈ � with i �= j such that a2i and a2j are in the
same block of f(P). The transposition that swaps a2i and a2i+1 fixes P, and thus
also fixes f(P), which implies that a2i+1 and a2j are also in the same block of
f(P). Hence, the transposition that swaps a2i+1 and a2j fixes f(P), but it moves P,
contradicting that f is injective.

(2) |Bfin(A)| � |P (A)|. Assume towards a contradiction that in VF there is
an injection g from Bfin(A) into P (A). Let C be a countable support of g.
Let a0, a1, a2, a3 be four distinct elements of A \ C . Consider the finitary parti-
tion P = {{a0, a1}, {a2, a3}} ∪ [A \ {a0, a1, a2, a3}]1 ∈ VF. Clearly, for any i, j < 4
with i �= j, there is a � ∈ fixG(C ) such that �(P) = P and �(ai) = aj . Hence,
{a0, a1, a2, a3} ⊆ g(P) or {a0, a1, a2, a3} ⊆ A \ g(P). Thus, the transposition that
swaps a0 and a2 fixes g(P), but it moves P, contradicting that g is injective.

(3) |P (A)| � |B(A)|. Assume towards a contradiction that in VF there is an
injection h from P (A) into B(A). Let D be a countable support of h. Let C be
a denumerable subset of A \D. Take x ∈ C and y ∈ A \ (C ∪D). We claim that
{x} ∈ h(C ). Assume not; since h(C ) is finitary, we can find a z ∈ C such that
z /∈ [x]h(C ), and then the transposition that swaps x and z would fix C but move
h(C ), which is a contradiction. Similarly, {y} ∈ h(C ). Hence, the transposition that
swaps x and y fixes h(C ), but it moves C, contradicting that h is injective. �

Now the next theorem immediately follows from Fact 2.19, Lemma 3.10, and the
Jech–Sochor theorem.

Theorem 3.11. It is consistent with ZF that there exists an infinite set A such that:

(i) |B(A)| and |Partfin(A)| are incomparable;
(ii) |B(A)| and |P (A)| are incomparable;

(iii) |Bfin(A)| and |P (A)| are incomparable.

As easily seen, for infinite well-orderable A, |A| = |fin(A)| = |Bfin(A)| and
|P (A)| = |B(A)| = |Partfin(A)| = |Part(A)| = |P (A2)|. Therefore, Theorems 3.3,
3.9, and 3.11 show that Figure 1 is optimal in the sense that the �,<, or �= relations
between the cardinalities of these sets not indicted in the figure cannot be proved in
ZF. However, we do not know whether |Partfin(A)| < |B(A)| for some infinite set A
is consistent with ZF.

§4. Theorems inZF. In this section, we prove inZF some results concerning B(A),
as well as the inequalities |Bfin(A)| < |Partfin(A)| and |Bfin(A)| �= |P (A)| indicted
in Figure 1.

Although Cantor’s theorem may fail for B(A), it does hold under the existence
of auxiliary functions.

Definition 4.1. Let f be a function on A. An auxiliary function for f is a function
g defined on ran(f) such that, for all z ∈ ran(f), g(z) is a finitary partition of
f–1[{z}] with at least one non-singleton block.
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fin(A)

Bfin(A)

B(A)

P (A)

Partfin(A)

Part(A)

P (A2)

Figure 1. Relations between the cardinalities of some sets.

Lemma 4.2. From a function f : A→ B(A) and an auxiliary function for f, one
can explicitly define a finitary partition of A not in ran(f).

Proof. Use Cantor’s diagonal construction. Let f be a function from A to B(A)
and let g be an auxiliary function for f. Let h be the function on ran(f) defined by

h(P) =

{
{{z} | f(z) = P}, if x ∼P y for some distinct x, y ∈ f–1[{P}],
g(P), otherwise.

Then
⋃
P∈ran(f) h(P) is a finitary partition of A not in ran(f). �

4.1. A general result. We prove a general result which states that, if B(A) is
Dedekind infinite, then there are no Dedekind finite-to-one functions from B(A) to
fin(A).

Lemma 4.3. For any infinite ordinal α, one can explicitly define an injection
f : α × α → α.

Proof. See [18, 2.1]. �

Lemma 4.4. From an infinite ordinal α, one can explicitly define an injection
f : fin(α) → α.

Proof. See [4, Theorem 5.19]. �
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Lemma 4.5. From a finite-to-one functionf : α → A, whereα is an infinite ordinal,
one can explicitly define an injection g : α → A.

Proof. See [12, Lemma 3.3]. �

The main idea of the following proof is originally from [5, Theorem 3].

Lemma 4.6. From an injection f : α → fin(A), where α is an infinite ordinal, one
can explicitly define an injection h : α → fin(A) such that the sets in ran(h) are
pairwise disjoint and contain at least two elements.

Proof. Let f be an injection from α into fin(A), where α is an infinite ordinal.
Let ∼ be the equivalence relation on A defined by

x ∼ y if and only if ∀� < α(x ∈ f(�) ↔ y ∈ f(�)).

Clearly, for every x ∈
⋃

ran(f), the equivalence class [x]∼ is finite.
We want to show that there are αmany such equivalence classes. In order to prove

this, define a function Ψ on
⋃

ran(f) by

Ψ(x) =
{
� < α

∣∣ x ∈ f(�) and
⋂
{f(�) | � < � and x ∈ f(�)} � f(�)

}
.

We claim that, for all x, y ∈
⋃

ran(f),

x ∼ y if and only if Ψ(x) = Ψ(y). (1)

Clearly, if x ∼ y then Ψ(x) = Ψ(y). For the other direction, assume towards a
contradiction that Ψ(x) = Ψ(y) but not x ∼ y. Let � < α be the least ordinal such
that x ∈ f(�) is not equivalent to y ∈ f(�). Without loss of generality, assume that
x ∈ f(�) but y /∈ f(�). Since y /∈ f(�), we have � /∈ Ψ(y) = Ψ(x), which implies
that

⋂
{f(�) | � < � and x ∈ f(�)} ⊆ f(�). Since, for all � < �, x ∈ f(�) if and

only if y ∈ f(�), it follows that y ∈
⋂
{f(�) | � < � and x ∈ f(�)} ⊆ f(�), which

is a contradiction.
We also claim that, for all x ∈

⋃
ran(f),

Ψ(x) ∈ fin(α). (2)

Let 	 be the least ordinal such that x ∈ f(	). Then 	 is the first element of
Ψ(x). For all �, � ∈ Ψ(x) with � < �, iff(	) ∩ f(�) = f(	) ∩ f(�), then

⋂
{f(�) |

� < � and x ∈ f(�)} ⊆ f(	) ∩ f(�) ⊆ f(�), contradicting that � ∈ Ψ(x). Hence,
the function that maps each � ∈ Ψ(x) tof(	) ∩ f(�) is an injection from Ψ(x) into
P (f(	)). Since P (f(	)) is finite, it follows that Ψ(x) is finite.

Now, by Lemma 4.4, we can explicitly define an injection p : fin(α) → α. By (2),
ran(Ψ) ⊆ fin(α). Let R be the well-ordering of ran(Ψ) induced by p; that is, R =
{(a, b) | a, b ∈ ran(Ψ) and p(a) < p(b)}. Let 
 be the order type of 〈ran(Ψ), R〉,
and let Θ be the unique isomorphism of 〈ran(Ψ), R〉 onto 〈
,∈〉. It is easy to see
that 
 is an infinite ordinal.

Again, by Lemma 4.4, we can explicitly define an injection q : fin(
) → 
.
By (1), the function that maps each � < α to Ψ[f(�)] is an injection from α into
fin(ran(Ψ)). Let g be the function on α defined by

g(�) = Θ–1(q(Θ[Ψ[f(�)]])).
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g is visualized by the following diagram:

g : α → fin(ran(Ψ)) → fin(
) → 
 → ran(Ψ)
� �→ Ψ[f(�)] �→ Θ[Ψ[f(�)]] �→ q(Θ[Ψ[f(�)]]) �→ g(�).

Hence, g is an injection from α into ran(Ψ).
By Lemma 4.3, we can explicitly define an injection s : α × α → α. Then the

function h on α defined by

h(�) = Ψ–1[{g(s(�, 0)), g(s(�, 1))}]

is the required function. �

Corollary 4.7. From an injection f : α → fin(A), where α is an infinite ordinal,
one can explicitly define a surjection g : A� α and an auxiliary function for g.

Proof. Let f be an injection from α into fin(A), where α is an infinite ordinal.
By Lemma 4.6, we can explicitly define an injection h : α → fin(A) such that the sets
in ran(h) are pairwise disjoint and contain at least two elements. Now, the function
g on A defined by

g(x) =

{
the unique � < α for which x ∈ h(�), if x ∈

⋃
ran(h),

0, otherwise,

is a surjection from A onto α, and the function t on α defined by

t(�) =

{
{h(0)} ∪ {{x} | x ∈ A \

⋃
ran(h)}, if � = 0,

{h(�)}, otherwise,

is an auxiliary function for g. �

Now we are ready to prove our main theorem.

Theorem 4.8. If B(A) is Dedekind infinite, then there are no Dedekind finite-to-one
functions from B(A) to fin(A).

Proof. Assume towards a contradiction that B(A) is Dedekind infinite and there
is a Dedekind finite-to-one function Φ : B(A) → fin(A). Let h be an injection from
� into B(A). In what follows, we get a contradiction by constructing by recursion
an injection H from the proper class of ordinals into the set B(A).

For n ∈ �, take H (n) = h(n). Now, we assume that α is an infinite ordinal and
H �α is an injection from α into B(A). Then Φ ◦ (H �α) is a Dedekind finite-to-one
function fromα to fin(A). Since all Dedekind finite subsets ofα are finite, Φ ◦ (H �α)
is finite-to-one. By Lemma 4.5, Φ ◦ (H �α) explicitly provides an injection f : α →
fin(A). Therefore, by Corollary 4.7, from f, we can explicitly define a surjection
g : A� α and an auxiliary function t for g. Then (H �α) ◦ g is a surjection from A
ontoH [α] and t ◦ (H �α)–1 is an auxiliary function for (H �α) ◦ g. Hence, it follows
from Lemma 4.2 that we can explicitly define an H (α) ∈ B(A) \H [α] from H �α
(and Φ). �

We draw some corollaries from the above theorem. The next two corollaries
immediately follows from Theorem 4.8 and Facts 2.10, 2.11, and 2.17.
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Corollary 4.9. If B(A) is Dedekind infinite, then there are no Dedekind
finite-to-one functions from B(A) to seq1–1(A).

Corollary 4.10. If B(A) is Dedekind infinite, then there are no Dedekind
finite-to-one functions from B(A) to Bfin(A), and thus |Bfin(A)| < |B(A)|.

Corollary 4.11. If B(A) �= Bfin(A), then |Bfin(A)| < |B(A)|.

Proof. Suppose B(A) �= Bfin(A). Clearly, |Bfin(A)| � |B(A)|. If |B(A)| =
|Bfin(A)|, since Bfin(A) ⊂ B(A), it follows that B(A) is Dedekind infinite,
contradicting Corollary 4.10. Hence, |Bfin(A)| < |B(A)|. �

The following corollary is also proved in [10, Theorem 3.7].

Corollary 4.12. For all infinite sets A, |fin(A)| < |B(A)|.

Proof. By Fact 2.19, |fin(A)| � |Bfin(A)| � |B(A)|. If |B(A)| = |fin(A)|, since
the injection constructed in the proof of Fact 2.19 is not surjective, it follows that
B(A) is Dedekind infinite, contradicting Theorem 4.8. Thus, |fin(A)| < |B(A)|. �

4.2. |B(A)| �= |seq(A)|. We need the following result, which is a Kuratowski-like
theorem for B(A).

Theorem 4.13. For all sets A, the following are equivalent:

(i) B(A) is Dedekind infinite;
(ii) ns(P) is power Dedekind infinite for some P ∈ B(A);

(iii) P (�) � B(A).

Proof. (i) ⇒ (ii). Suppose that B(A) is Dedekind infinite. Assume towards a
contradiction that ns(P) is power Dedekind finite for allP ∈ B(A). Let 〈Pk | k ∈ �〉
be a denumerable family of finitary partitions of A. We define by recursion
a sequence 〈Qn | n ∈ �〉 of finitary partitions of A such that ns(Qj) �= ∅ and⋃

ns(Qi) ∩
⋃

ns(Qj) = ∅ whenever i �= j as follows.
Let n ∈ � and assume that Qi has already been defined for all i < n. Let B =⋃
i<n

⋃
ns(Qi). By assumption, ns(Qi) is power Dedekind finite, so is

⋃
ns(Qi) by

Fact 2.5. Hence, B is power Dedekind finite. Consider the following two cases:
Case 1. For a least k ∈ �, x ∼Pk y for some distinct x, y ∈ A \ B . Then we define

Qn = {[z]Pk \ B | z ∈ A \ B} ∪ {{z} | z ∈ B}.

It is easy to see that Qn is a finitary partition of A such that ns(Qn) �= ∅ and⋃
ns(Qi) ∩

⋃
ns(Qn) = ∅ for all i < n.

Case 2. Otherwise. Then, for all k ∈ � and all x ∈
⋃

ns(Pk) \ B ,

[x]Pk ∩ B �= ∅ and [x]Pk \ B = {x}. (3)

Define by recursion a sequence 〈km | m ∈ �〉 of natural numbers as follows.
Let m ∈ � and assume that kj has been defined for j < m. By assumption,

ns(Pkj ) is power Dedekind finite, so is
⋃

ns(Pkj ) by Fact 2.5. Therefore,
B ∪

⋃
j<m

⋃
ns(Pkj ) is power Dedekind finite. Hence, there is a k ∈ � such that

ns(Pk) � P (B ∪
⋃
j<m

⋃
ns(Pkj )). Define km to be the least such k. Then
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⋃
ns(Pkm ) � B ∪

⋃
j<m

⋃
ns(Pkj ). (4)

Let f and g be the functions on � defined by

f(m) =
⋃

ns(Pkm ) \
(
B ∪

⋃
j<m

⋃
ns(Pkj )

)
,

g(m) = {[x]Pkm ∩ B | x ∈ f(m)}.

By (3), for every m ∈ �, g(m) is a finitary partition of a subset of B, and hence
∼g(m) is an element of P (B2). Since P (B2) is Dedekind finite by Fact 2.6, there are
least l0, l1 ∈ � with l0 < l1 such that ∼g(l0) = ∼g(l1), and thus g(l0) = g(l1). Let

D =
{
{x, y}

∣∣ x ∈ f(l0), y ∈ f(l1) and [x]Pkl0
∩ B = [y]Pkl1

∩ B
}
.

Since l0 < l1,f(l0) ∩ f(l1) = ∅, and thus, by (3), the sets in D are pairwise disjoint.
By (4), f(m) �= ∅ for all m ∈ �, and since g(l0) = g(l1), it follows that D �= ∅.
Now, we define

Qn = D ∪ {{z} | z ∈ A \
⋃
D}.

ThenQn is a finitary partition of A such that ns(Qn) = D �= ∅; sinceB ∩
⋃
D = ∅,

it follows that
⋃

ns(Qi) ∩
⋃

ns(Qn) = ∅ for all i < n.
Finally,

Q =
⋃
n∈�

ns(Qn) ∪
{
{z}

∣∣ z ∈ A \
⋃
n∈�

⋃
ns(Qn)

}
is a finitary partition of A such that ns(Q) =

⋃
n∈� ns(Qn) is power Dedekind

infinite, which is a contradiction.
(ii) ⇒ (iii). Suppose that P is a finitary partition of A such that ns(P) is power

Dedekind infinite. Let p be a surjection from ns(P) onto �. Then the function h on
P (�) defined by

h(u) = p–1[u] ∪ {{z} | z ∈ A \
⋃
p–1[u]}

is an injection from P (�) into B(A).
(iii) ⇒ (i). Obviously. �

Corollary 4.14. If B(A) is Dedekind infinite, then there are no Dedekind
finite-to-one functions from B(A) to seq(A).

Proof. Assume towards a contradiction that B(A) is Dedekind infinite and there
exists a Dedekind finite-to-one function from B(A) to seq(A). If A is Dedekind
infinite, then seq(A) ≈ seq1–1(A) by Fact 2.14, contradicting Corollary 4.9.
Otherwise, by Fact 2.13, there is a Dedekind finite-to-one function from seq(A)
to �. By Theorem 4.13, B(�) ≈ P (�) � B(A), and therefore there is a Dedekind
finite-to-one function from B(�) to �, contradicting again Corollary 4.9. �

Corollary 4.15. For all non-empty sets A, |B(A)| �= |seq(A)|.

Proof. For all non-empty sets A, if |B(A)| = |seq(A)|, then it follows from
Fact 2.12 that B(A) is Dedekind infinite, contradicting Corollary 4.14. �
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We do not know whether |B(A)| �= |seq1-1(A)| for all infinite sets A is provable
in ZF.

4.3. |An| < |B(A)|. The main idea of the following proof is originally from [20,
Lemma (i)] (cf. also [14]).

Lemma 4.16. For all n ∈ �, if |A| � 2n(2n+1 – 1), then |An| � |Bfin(A)|.

Proof. Let n ∈ � and let A be a set with at least 2n(2n+1 – 1) elements. Since
2i = 1 +

∑
k<i 2k , we can choose 2n(2n+1 – 1) distinct elements of A so that they

are divided into n + 1 sets Hi (i � n) with

Hi = {ai,j | j < 2n} ∪ {bi,x | x ∈ Hk for some k < i}.

We construct an injection f from An into Bfin(A) as follows. Without loss of
generality, assume that A ∩ � = ∅.

Let s ∈ An. Let is be the least i � n for which ran(s) ∩Hi = ∅. There is such an
i because |ran(s)| � n. Let ts be the function on n defined by

ts(j) =

{
s(j), if s(j) �= s(k) for all k < j,
max{k < j | s(j) = s(k)}, otherwise.

Clearly, ts ∈ seq1–1(A ∪ n). Let us be the function on n defined by

us(j) =

⎧⎪⎨
⎪⎩
ais ,n+ts (j), if ts(j) ∈ n,
bis ,ts (j), if ts(j) ∈ Hk for some k < is ,
ts(j), otherwise.

Then it is easy to see that us ∈ seq1–1(A). Now, we define

f(s) =
{
{ais ,j , us(j)}

∣∣ j < n} ∪ {
{z}

∣∣ z ∈ A \ ({ais ,j | j < n} ∪ ran(us))
}
.

Clearly, f(s) ∈ Bfin(A). We prove that f is injective by showing that s is uniquely
determined by f(s) in the following way.

First, is is the least i � n such that Hi ∩
⋃

ns(f(s)) �= ∅. Second, us is the
function on n such that {ais ,j , us(j)} ∈ f(s) for all j < n. Then, ts is the function
on n such that, for every j < n, either ts(j) is the unique element of n for
which us(j) = ais ,n+ts (j), or ts(j) is the unique element of

⋃
k<is
Hk for which

us(j) = bis ,ts (j), or ts(j) = us(j) /∈ His . Finally, s is the function on n recursively
determined by

s(j) =

{
ts(j), if ts(j) ∈ A,
s(ts(j)), otherwise.

Hence, f is an injection from An into Bfin(A). �

Corollary 4.17. For all n ∈ � and all infinite sets A, |An| < |B(A)|.

Proof. By Lemma 4.16, |An| � |Bfin(A)| � |B(A)|. If |B(A)| = |An|, since the
injection constructed in the proof of Lemma 4.16 is not surjective, B(A) is Dedekind
infinite, contradicting Corollary 4.14. Thus, |An| < |B(A)|. �
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Lemma 4.18. If A is Dedekind infinite, then |seq(A)| � |Bfin(A)|.

Proof. Let h be an injection from � into A. By the proof of Lemma 4.16, from
h�(2n(2n+1 – 1)), we can explicitly define an injection

fn : An → {P ∈ B(A) | |ns(P)| = n}.

Then
⋃
n∈� fn is an injection from seq(A) into Bfin(A). �

The following corollary immediately follows from Lemma 4.18 and Corollary 4.15.

Corollary 4.19. For all Dedekind infinite sets A, |seq(A)| < |B(A)|.

4.4. A Cantor-like theorem for B(A). Under the assumption that there is a finitary
partition of A without singleton blocks, we show that Cantor’s theorem holds for
B(A). The key step of our proof is the following lemma.

Lemma 4.20. From a finitary partition P of A without singleton blocks and a
surjection f : A� α, where α is an infinite ordinal, one can explicitly define a
surjection g : A� α and an auxiliary function for g.

Proof. Let P be a finitary partition of A without singleton blocks, and let f be
a surjection from A onto α, where α is an infinite ordinal. Let

Q = {f[E] | E ∈ P}.

Clearly, Q ⊆ fin(α). By Lemma 4.4, we can explicitly define an injection
p : fin(α) → α. Let R be the well-ordering of Q induced by p; that is, R = {(a, b) |
a, b ∈ Q and p(a) < p(b)}. Since P is a partition of A, Q is a cover of α. Define a
function h from α to Q by setting, for � ∈ α,

h(�) = the R-least c ∈ Q such that � ∈ c.

Since � ∈ h(�) and h(�) is finite for all � ∈ α, h is a finite-to-one function from α
to Q. Hence, by Lemma 4.5, h explicitly provides an injection from α into Q. Since
p�Q is an injection from Q into α, it follows from Theorem 2.2 that we can explicitly
define a bijection q between Q and α.

Now, the function g on A defined by

g(x) = q(f[[x]P ])

is a surjection from A onto α, and the function t on α defined by

t(�) = {E ∈ P | q(f[E]) = �}

is an auxiliary function for g. �

Theorem 4.21. For all infinite sets A, if there is a finitary partition of A without
singleton blocks, then there are no surjections from A onto B(A).

Proof. Let A be an infinite set and let P be a finitary partition of A without
singleton blocks. Assume towards a contradiction that there is a surjection
Φ : A� B(A). By Corollary 2.20, B(A) is power Dedekind infinite, so is A.
Since

⋃
ns(P) = A is power Dedekind infinite, so is ns(P) by Fact 2.5. Hence, by

Theorem 4.13, B(A) is Dedekind infinite. Let h be an injection from � into B(A).
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In what follows, we get a contradiction by constructing by recursion an injection H
from the proper class of ordinals into B(A).

For n ∈ �, take H (n) = h(n). Now, we assume that α is an infinite ordinal and
H �α is an injection from α into B(A). Then (H �α)–1 ◦ Φ is a surjection from a
subset of A onto α and thus can be extended by zero to a surjection f : A� α. By
Lemma 4.20, from P and f, we can explicitly define a surjection g : A� α and an
auxiliary function t for g. Then (H �α) ◦ g is a surjection from A onto H [α] and
t ◦ (H �α)–1 is an auxiliary function for (H �α) ◦ g. Hence, it follows from Lemma 4.2
that we can explicitly define an H (α) ∈ B(A) \H [α] from H �α (and P,Φ). �

Under the same assumption, we also show that there are no finite-to-one functions
from B(A) to An.

Theorem 4.22. For all infinite sets A, if there is a finitary partition of A without
singleton blocks, then there are no finite-to-one functions from B(A) to An for every
n ∈ �.

Proof. Let A be an infinite set and let P be a finitary partition of A without
singleton blocks. Assume towards a contradiction that there is a finite-to-one
function from B(A) to An for some n ∈ �. By Corollary 2.20, B(A) is power
Dedekind infinite, so is A by Facts 2.5 and 2.6. Since

⋃
ns(P) = A is power Dedekind

infinite, so is ns(P) by Fact 2.5. Hence, by Theorem 4.13, B(A) is Dedekind infinite,
contradicting Corollary 4.14. �

4.5. The inequalities |Bfin(A)| < |Partfin(A)| and |Bfin(A)| �= |P (A)|.

Lemma 4.23. If A is power Dedekind infinite, then there are no finite-to-one
functions from P (A) to fin(A).

Proof. See [12, Corollary 3.7]. �

The next corollary immediately follows from Lemma 4.23 and Facts 2.11 and
2.17.

Corollary 4.24. If A is power Dedekind infinite, then there are no finite-to-one
functions from P (A) to Bfin(A).

Theorem 4.25. For all infinite sets A, |Bfin(A)| < |Partfin(A)|.

Proof. Let A be an infinite set. By Fact 2.18, |Bfin(A)| � |Partfin(A)|. Assume
|Partfin(A)| = |Bfin(A)|. Since the injection constructed in the proof of Fact 2.18
is not surjective, Partfin(A) is Dedekind infinite, and thus A is power Dedekind
infinite by Corollary 2.16. Now, by Fact 2.19, |P (A)| � |Partfin(A)| = |Bfin(A)|,
contradicting Corollary 4.24. Hence, |Bfin(A)| < |Partfin(A)|. �

Finally, we prove |Bfin(A)| �= |P (A)|. For this, we need the following number-
theoretic lemma.

Lemma 4.26. For each n ∈ �, let Bn be the nth Bell number; that is, Bn = |B(n)|.
Then Bm is not a power of 2 for all m � 3.
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Proof. Letm � 3. ThenBm > 4. It suffices to prove thatBm is not divisible by 8.
By [7, Theorem 6.4], Bn+24 ≡ Bn(mod 8) for all n ∈ �. But Bn modulo 8 for n from
0 to 23 are

1, 1, 2, 5, 7, 4, 3, 5, 4, 3, 7, 2, 5, 5, 2, 1, 3, 4, 7, 1, 4, 7, 3, 2.

Hence, Bm is not divisible by 8. �
Lemma 4.27. If fin(P (A)) is Dedekind infinite, then A is power Dedekind infinite.

Proof. See [13, Theorem 3.2]. �
Theorem 4.28. For all non-empty sets A, |P (A)| �= |Bfin(A)|.
Proof. If A is a singleton, |P (A)| = 2 �= 1 = |Bfin(A)|. Suppose |A| � 2, and

fix two distinct elements a, b of A. Assume toward a contradiction that there is a
bijection Φ between P (A) and Bfin(A). We define by recursion an injection f from
� into fin(P (A)) as follows.

Take f(0) = {{a}, {b}}. Let n ∈ �, and assume that f(0), ... , f(n) have been
defined and are pairwise distinct elements of fin(P (A)). Let ∼ be the equivalence
relation on A defined by

x ∼ y if and only if ∀C ∈ f(0) ∪ ··· ∪ f(n)(x ∈ C ↔ y ∈ C ).

Since f(0), ... , f(n) are finite, the quotient set A/∼ is a finite partition of A. Let
k = |A/∼| and let U = {

⋃
W |W ⊆ A/∼}. Then |U | = 2k and

f(0) ∪ ··· ∪ f(n) ⊆ U. (5)

Since {a}, {b} ∈ A/∼, we have k � 2. Let D =
⋃
{
⋃

ns(P) | P ∈ Φ[U ]}. Since
U is finite and Φ[U ] ⊆ Bfin(A), it follows that D is finite. Let m = |D| and let
E = {P ∈ Bfin(A) |

⋃
ns(P) ⊆ D}. Then |E| = Bm and Φ[U ] ⊆ E. Hence, 2k =

|U | = |Φ[U ]| � |E| = Bm. Since k � 2, we havem � 3, which implies that Bm �= 2k

by Lemma 4.26, and hence Φ[U ] ⊂ E. Now, we define f(n + 1) = Φ–1[E \ Φ[U ]].
Then f(n + 1) is a non-void finite subset of P (A). By (5), it follows that f(n + 1)
is disjoint from each of f(0), ... , f(n), and thus is distinct from each of them.

The existence of the above injection f shows that fin(P (A)) is Dedekind infinite,
which implies that, by Lemma 4.27, A is power Dedekind infinite, contradicting
Corollary 4.24. �

§5. Open questions. We conclude the paper with the following five open questions.

Question 5.1. Are the following statements consistent with ZF?
(1) There exist an infinite set A and a finite-to-one function from B(A) to A.
(2) There exists an infinite set A for which |B(A)| < |S3(A)|, where S3(A) is the

set of permutations of A with exactly three non-fixed points.
(3) There exists an infinite set A for which |B(A)| = |seq1-1(A)|.
(4) There exists an infinite set A for which |Partfin(A)| < |B(A)|.
(5) There exist an infinite set A and a surjection from A2 onto Part(A).
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