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ADJUNCTION AND INVERSION OF ADJUNCTION

OSAMU FUJINO® anp KENTA HASHIZUME

Abstract. We establish adjunction and inversion of adjunction for log
canonical centers of arbitrary codimension in full generality.

§81. Introduction

Throughout this paper, we work over C, the complex number filed. We establish the
following adjunction and inversion of adjunction for log canonical centers of arbitrary
codimension.

THEOREM 1.1. Let X be a normal variety, and let A be an effective R-divisor on X such
that Kx + A is R-Cartier. Let W be a log canonical center of (X,A), and let v: Z — W be
the normalization of W. Then we have the adjunction formula

V' (Kx+A)=Kz+Bz+ My
with the following properties:

(A) (X,A) is log canonical in a neighborhood of W if and only if (Z,Bz+ Myz) is an NQC
generalized log canonical pair. Here the abbreviation “NQC” stands for “nef Q-Cartier
combinations”.

(B) (X,A) is log canonical in a neighborhood of W and W is a minimal log canonical center
of (X,A) if and only if (Z,Bz+ Mz) is an NQC generalized Kawamata log terminal
pair.

For the definition of NQC generalized log canonical pairs and NQC generalized Kawamata
log terminal pairs, see [13, §2].

For the formulation of adjunction and inversion of adjunction for log canonical centers of
arbitrary codimension in full generality, the notion of b-divisors, which was first introduced
by Shokurov, is very useful. In fact, the R-divisors Bz and Mz in Theorem 1.1 are the
traces of certain R-b-divisors B and M on Z, respectively. The precise version of Theorem
1.1 is the following.

THEOREM 1.2 (Adjunction and inversion of adjunction). Let X be a normal variety,
and let A be an effective R-divisor on X such that Kx + A is R-Cartier. Let W be a log
canonical center of (X,A), and let v: Z — W be the normalization of W. Then there exist
a b-potentially nef R-b-divisor M and an R-b-divisor B on Z such that By is effective with

Z/*(Kx—l-A) =Kz;+Mz+Byz.
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120 0. FUJINO AND K. HASHIZUME

More precisely, there exists a projective birational morphism p: Z' — Z from a smooth
quasi-projective variety Z' such that:

(i) M =My and My is a potentially nef R-divisor on Z'.

(ii) K+B=Kz +By.

(iii) SuppByz: is a simple normal crossing divisor on Z'.

(iv) vop (B3!) = WNNIe(X, A) holds set-theoretically, where Nle(X,A) denotes the non-lc
locus of (X,A).

(v) vop (B%}) =Wwn (NIC(X,A)UUW@/W WT>, where W1 runs over log canonical
centers of (X,A) which do not contain W, holds set-theoretically.

Hence, (Z,Bz+My) is generalized log canonical, that is, B?l =0, if and only if (X,A)
is log canonical in a neighborhood of W. Moreover, (Z,Bz+My) is generalized Kawamata
log terminal, that is, B%l =0, if and only if (X,A) is log canonical in a neighborhood of W
and W is a minimal log canonical center of (X,A). We note that My is semi-ample when
dimW =1. We also note that if Kx + A is Q-Cartier, then B and M become Q-b-divisors
by construction.

In this paper, the R-b-divisors B and M in Theorem 1.2 are defined by using the notion
of basic R-slc-trivial fibrations. Here, we explain an alternative definition of B and M for
the reader’s convenience. For the details of Definition 1.3, see [11, §5] and [10, Def. 2.1].

DEFINITION 1.3 (see [11, §5], [10, Def. 2.1], and Remark 6.1). Let (X,A), W, and
v: Z — W be as in Theorem 1.2. For any higher birational model p: Z — Z, we consider
all prime divisors T over X such that a(7,X,A) = —1 and the center of T on X is W.
We take a log resolution f: Y — X of (X,A) so that T is a prime divisor on Y and the
induced map fr: T --» Z is a morphism. We put Aq = (Ay —T)|r, where Ay is defined
by Ky +Ay = f*(Kx +A). For any prime divisor P on Z, we define a real number apT
by

apr =sup{\ € R|(T,Ap+ Af;P) is sub log canonical over the generic point of P}.

Then the trace B; of B on 7 is defined as
BZ = zp:(l — ir%fap’T)P,

where P runs over prime divisors on Z and T runs over prime divisors over X such that
a(T,X,A)=—1 and the center of T on X is W. When W is a prime divisor on X, T is the
strict transform of W on Y. In this case, we can easily check that B; = (fr).Ar holds. We
consider the R-line bundle £ on X associated with Kx + A. We fix an R-Cartier R-divisor
D; on Z whose associated R-line bundle is p*v*(L|w ). Then the trace M 5 of M on 7 is
defined as

We simply write

PV (Kx+A)=K;+B;+Mj,

if there is no danger of confusion (see also Remark 6.1).
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As we saw in Definition 1.3, the R-b-divisor B on Z depends only on the singularities
of (X,A) near W. Conversely, Theorem 1.2(ii)—(v) implies that B remembers properties of
the singularities of (X,A) near W. If we put By =Bz and Mz = My, then Theorem 1.1
directly follows from Theorem 1.2. Our new formulation of adjunction and inversion of
adjunction includes some classical results as special cases. The following corollary is the case
of dimW = dimX — 1, which recovers the classical adjunction and inversion of adjunction.

COROLLARY 1.4 (Classical adjunction and inversion of adjunction). In Theorem 1.1,
we further assume that dimW =dim X — 1, that is, W is a prime divisor on X. Then My
and Bz become zero and Shokurov’s different, respectively. Then (A) recovers Kawakita’s
inversion of adjunction on log canonicity. By (B), we have that (X,A) is purely log terminal
in a neighborhood of W if and only if (Z,Bz) is Kawamata log terminal.

We know that we have already had many related results. We only make some remarks
on [3], [12].

REMARK 1.5 (Hacon’s inversion of adjunction). In [12, Th. 1], Hacon treated inversion
of adjunction on log canonicity for log canonical centers of arbitrary codimension under the
extra assumption that A is a boundary Q-divisor. We note that the b-divisor B(V; X, A)
in [12] coincides with B in Theorem 1.2 by [10, Th. 1.2]. In [11, Th. 5.4], we proved a
generalization of [12, Th. 1]. We note that B in [11, Th. 5.4] coincides with B in Theorem 1.2.
Hence, Theorem 1.2 can be seen as a complete generalization of [11, Th. 5.4] and [12, Th. 1].

REMARK 1.6 (Generalized adjunction and inversion of adjunction by Filipazzi). In
[3], Filipazzi established some related results for generalized pairs (see, e.g., [3, Th. 1.6].
Although they are more general than Theorems 1.1 and 1.2 in some sense, they do not
include Theorem 1.1.

The main ingredients of Theorem 1.2 are the existence theorem of log canonical
modifications established in [11] and the theory of basic slc-trivial fibrations in [6], [7].
Hence, this paper can be seen as a continuation of [7], [11]. Moreover, the theory of partial
resolutions of singularities of pairs in [2] is indispensable. We do not use Kawakita’s inversion
of adjunction (see [15, Th.]) nor the Kawamata—Viehweg vanishing theorem. If Kx + A is
Q-Cartier, then Theorem 1.2 easily follows from [6], [7], [11]. Unfortunately, however, the
framework of basic slc-trivial fibrations discussed in [6] is not sufficient for our purposes in
this paper. Hence, we establish the following result.

THEOREM 1.7 (Corollary 5.2). Let f: (X,B) =Y be a basic R-slc-trivial fibration, and
let B and M be the discriminant and moduli R-b-divisors associated with f: (X,B) =Y,
respectively. Then we have the following properties:

(i) K+B is R-b-Cartier, where K is the canonical b-divisor of Y.
(i) M is b-potentially nef, that is, there exists a proper birational morphism o:Y' —Y

from a normal variety Y' such that My is a potentially nef R-divisor on Y’ and that
M =My holds.

If f: (X,B) =Y is a basic Q-slc-trivial fibration, then Theorem 1.7 is nothing but [6,
Th. 1.2], which is the main result of [6]. More precisely, we establish the following theorem.

THEOREM 1.8 (see Theorem 5.1). Let f: (X,B) =Y be a projective surjective morphism
from a simple normal crossing pair (X, B) to a smooth quasi-projective variety Y such that
every stratum of X is dominant onto Y and f.Ox ~ Oy with:
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e B = B=! holds over the generic point of Y,
e there exists an R-Cartier R-divisor D on Y such that Ky + B ~gr f*D holds, and
o rank f,Ox ([—(B<H])=1.

We assume that there exists a simple normal crossing divisor ¥ on Y such that Supp D C X
and that every stratum of (X,SuppB) is smooth over Y\ X. Let B and M be the
discriminant and moduli R-b-divisors associated t with f: (X,B) =Y, respectively. Then:

(i) K+B =Ky +By holds, where K is the canonical b-divisor of Y, and
(i) My is a potentially nef R-divisor on Y with M = My .

Note that Theorem 1.8 completely generalizes [14, Lem. 2.8]. By Theorem 1.8, we can
use the framework of basic slc-trivial fibrations in [6] for R-divisors. We also note that the
main part of this paper is devoted to the proof of Theorem 1.8. In the proof of Theorem 1.2,
we naturally construct a basic R-slc-trivial fibration f: (V,Ay) — Z by taking a suitable
resolution of singularities of the pair (X, A). The R-b-divisors B and M on Z in Theorem 1.2
are the discriminant and moduli R-b-divisors associated with f: (V,Ay ) — Z, respectively.

CONJECTURE 1.9. In Theorem 1.8, My is semi-ample.

If Conjecture 1.9 holds true, then M in Theorem 1.2 is b-semi-ample, that is, My is
semi-ample. Note that Conjecture 1.9 follows from [6, Conj. 1.4]. When dimY = 1, we can
easily check that My is semi-ample by [9, Cor. 1.4]. Unfortunately, however, it is still
widely open. In this paper, we prove Conjecture 1.9 for basic sle-trivial fibrations of relative
dimension one under some extra assumption (see Theorem 7.2). Then we establish the
following theorem.

THEOREM 1.10 (see Corollary 7.3). If W is a codimension 2 log canonical center of
(X,A) in Theorem 1.2, then M is b-semi-ample.

Theorem 1.10 generalizes Kawamata’s result (see [16, Th. 1]). For the details, see
Corollary 7.3.

We briefly look at the organization of this paper. In §2, we recall some basic definitions
and results. In §3, we introduce the notion of basic R-slc-trivial fibrations and recall the
main result of [6]. In §4, we slightly generalize the main result of [6]. This generalization (see
Theorem 4.1) seems to be indispensable in order to treat basic R-sle-trivial fibrations. In
§5, we establish a fundamental theorem for basic R-sle-trivial fibrations (see Theorems 1.8
and 5.1). In §6, we prove the main result, that is, adjunction and inversion of adjunction
for log canonical centers of arbitrary codimension, in full generality. More precisely, we
first establish Theorem 1.2. Then we see that Theorem 1.1 and Corollary 1.4 easily follow
from Theorem 1.2. In §7, we treat adjunction and inversion of adjunction for log canonical
centers of codimension 2.

§2. Preliminaries

In this paper, we freely use the standard notation as in [4]-[7]. A scheme means a
separated scheme of finite type over C. A variety means an integral scheme, that is, an
irreducible and reduced separated scheme of finite type over C. We note that Q and R
denote the sets of rational numbers and real numbers, respectively. We also note that Q¢
and Rsq are the sets of positive rational numbers and positive real numbers, respectively.
Similarly, Q>0 denotes the set of nonnegative rational numbers.
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Here, we collect some basic definitions for the reader’s convenience. Let us start with the
definition of potentially nef divisors.

DEFINITION 2.1 (Potentially nef divisors; see [6, Def. 2.5]). Let X be a normal variety,
and let D be a divisor on X. If there exist a completion Xt of X, that is, XT is a complete
normal variety and contains X as a dense Zariski open subset, and a nef divisor DT on
XT such that D = D[y, then D is called a potentially nef divisor on X. A finite Qs¢-
linear (resp. Rso-linear) combination of potentially nef divisors is called a potentially nef
Q-divisor (resp. R-divisor).

We give two important remarks on potentially nef R-divisors.

REMARK 2.2. Let D be a nef R-divisor on a smooth projective variety X. Then D is not
necessarily a potentially nef R-divisor. This means that D is not always a finite R g-linear
combination of nef Cartier divisors on X.

REMARK 2.3. Let X be a normal variety, and let D be a potentially nef R-divisor on
X. Then D-C > 0 for every projective curve C on X. In particular, D is m-nef for every
proper morphism 7: X — S to a scheme §.

It is convenient to use b-divisors to explain several results. Here, we do not repeat the
definition of b-divisors. For the details, see [6, §2].

DEFINITION 2.4 (Canonical b-divisors). Let X be a normal variety, and let w be a top

rational differential form of X. Then (w) defines a b-divisor K. We call K the canonical
b-divisor of X.

DEFINITION 2.5 (R-Cartier closures). The R-Cartier closure of an R-Cartier R-divisor
D on a normal variety X is the R-b-divisor D with trace

EY = f*D7
where f: Y — X is a proper birational morphism from a normal variety Y.
We use the following definition in order to state our results (see Theorem 1.2).

DEFINITION 2.6 [6, Def. 2.12]. Let X be a normal variety. An R-b-divisor D of X is
b-potentially nef (resp. b-semi-ample) if there exists a proper birational morphism X’ — X
from a normal variety X’ such that D = Dy, that is, D is the R-Cartier closure of Dy,
and that Dy is potentially nef (resp. semi-ample). An R-b-divisor D of X is R-b-Cartier if
there is a proper birational morphism X’ — X from a normal variety X’ such that D =D .
Obviously, D is said to be Q-b-Cartier when Dx/ is Q-Cartier and D =D .

For the reader’s convenience, let us recall the definition of singularities of pairs. The
following definition is standard and is well known.

DEFINITION 2.7 (Singularities of pairs). Let X be a variety, and let E be a prime divisor
on Y for some birational morphism f: Y — X from a normal variety Y. Then E is called
a divisor over X. A normal pair (X,A) consists of a normal variety X and an R-divisor A
on X such that Kx + A is R-Cartier. Let (X,A) be a normal pair, and let f: Y — X be a
projective birational morphism from a normal variety Y. Then we can write

Ky =f*(Kx+A)+> a(E,X,A)E
E
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with

fa (Za(E,X,A)E) =—A,

where E runs over prime divisors on Y. We call a(E, X, A) the discrepancy of E with respect
to (X, A). Note that we can define the discrepancy a(F, X,A) for any prime divisor F over
X by taking a suitable resolution of singularities of X. If a(E, X,A) > —1 (resp. > —1) for
every prime divisor F over X, then (X,A) is called sub log canonical (resp. sub Kawamata
log terminal). We further assume that A is effective. Then (X,A) is called log canonical
and Kawamata log terminal if it is sub log canonical and sub Kawamata log terminal,
respectively. When A is effective and a(F,X,A) > —1 holds for every exceptional divisor F
over X, we say that (X,A) is purely log terminal.

Let (X, A) be alog canonical pair. If there exists a projective birational morphism f: Y —
X from a smooth variety Y such that both Exc(f), the exceptional locus of f, and Exc(f)U
Supp f, 1A are simple normal crossing divisors on Y and that a(F,X,A) > —1 holds for
every f-exceptional divisor £ on Y, then (X,A) is called divisorial log terminal (dlt). It is
well known that if (X,A) is purely log terminal, then it is dlt.

In this paper, the notion of non-lc loci and log canonical centers is indispensable.

DEFINITION 2.8 (Non-lc loci and log canonical centers). Let (X,A) be a normal pair.
If there exist a projective birational morphism f:Y — X from a normal variety Y and
a prime divisor £ on Y such that (X,A) is sub log canonical in a neighborhood of the
generic point of f(F) and that a(E, X,A) = —1, then f(FE) is called a log canonical center
of (X,A).

From now on, we further assume that A is effective. The non-lc locus of (X,A), denoted
by Nle(X,A), is the smallest closed subset Z of X such that the complement (X\ Z,A|x\z)
is log canonical. We can define a natural scheme structure on Nlc(X, A) by the non-lc ideal
sheaf Inpo(X,A) of (X,A). For the definition of InxLc(X,A), see [4, §7].

We omit the precise definition of NQC generalized log canonical pairs and NQC
generalized Kawamata log terminal pairs here since we need it only in Theorem 1.1 and the
statement of Theorem 1.2 is sharper than that of Theorem 1.1. For the basic definitions and
properties of generalized polarized pairs, we recommend the reader to see [13, §2]. Note that
the notion of generalized pairs plays a crucial role in the recent study of higher-dimensional
algebraic varieties.

DEFINITION 2.9. Let X be an equidimensional reduced scheme. Note that X is not
necessarily regular in codimension one. Let D be an R-divisor (resp. a Q-divisor), that is,
D is a finite formal sum ) . d;D;, where D; is an irreducible reduced closed subscheme of X
of pure codimension one and d; € R (resp. d; € Q) for every i such that D; # D; for i # j.
We put

D=l = Z diDi, D™= Z Dy, D7 = Z d;D;, and [D]= Z[dﬂDu
di=1

d; <1 d;>1 7
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where [d;] is the integer defined by d; < [d;] < d; +1. We note that |D] = —[—D] and
{D} =D —|D|. Similarly, we put

D='=Y"d;D;.

di>1

Let D be an R-divisor (resp. a Q-divisor) as above. We call D a subboundary R-divisor
(resp. Q-divisor) if D = D=! holds. When D is effective and D = D<! holds, we call D a
boundary R-divisor (resp. Q-divisor).

We further assume that f: X — Y is a surjective morphism onto a variety Y such that
every irreducible component of X is dominant onto Y. Then we put

DY = Z d;D; and D"= Z d; D;.
f(D;)CY f(Dy)=Y

We call DV (resp. D") the vertical part (resp. horizontal part) of D with respect to
f: X=>Y.

§3. On basic slc-trivial fibrations

Roughly speaking, a basic slc-trivial fibration is a canonical bundle formula for simple
normal crossing pairs. It was first introduced in [6] based on [8]. Let us start with the
definition of simple normal crossing pairs.

DEFINITION 3.1 (Simple normal crossing pairs). A pair (X, B) consists of an equidi-
mensional reduced scheme X and an R-divisor B on X. We say that the pair (X,B) is
simple normal crossing at a point x € X if X has a Zariski open neighborhood U of z that
can be embedded in a smooth variety M, where M has a regular system of parameters
(1,..,Tp,Y1,---,Yr) at =0 in which U is defined by a monomial equation

xl...mp:O

and
B|U:Zai(yi:0)|U, OéiER.
i=1

We say that (X, B) is a simple normal crossing pair if it is simple normal crossing at every
point of X.

Let (X, B) be a simple normal crossing pair, and let v: X” — X be the normalization.
We define B” by Kxv+ B” =v*(Kx + B), that is, BY is the sum of the inverse images of
B and the singular locus of X. Then a stratum of (X, B) is an irreducible component of X
or the v-image of some log canonical center of (X", B¥).

Let (X,B) be a simple normal crossing pair, and let X = (J;.; X; be the irreducible
decomposition of X. Then a stratum of X means an irreducible component of X;, N---NX;,
for some {i1,...,ix} C I. It is easy to see that W is a stratum of X if and only if W is a
stratum of (X,0).

We introduce the notion of basic sle-trivial fibrations. In [6], we only treat basic Q-slc-
trivial fibrations.
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DEFINITION 3.2 (Basic sle-trivial fibrations; see [6, Def. 4.1]). A pre-basic Q-slc-trivial
(resp. R-sle-trivial) fibration f: (X,B) — Y consists of a projective surjective morphism
f: X =Y and a simple normal crossing pair (X, B) satisfying the following properties:

(1) Y is a normal variety.

(2) Every stratum of X is dominant onto Y and f.Ox ~ Oy.

(3) B is a Q-divisor (resp. an R-divisor) such that B = B<! holds over the generic point
of Y.

(4) There exists a Q-Cartier Q-divisor (resp. an R-Cartier R-divisor) D on Y such that
Kx+B~q f*D (resp. Kx+ B ~g f*D), that is, Kx + B is Q-linearly (resp. R-linearly)
equivalent to f*D.

If a pre-basic Q-slc-trivial (resp. R-sle-trivial) fibration f: (X, B) — Y also satisfies
(5) rank f.Ox([—(B<Y]) =1,
then it is called a basic Q-slc-trivial (resp. R-slc-trivial) fibration.

If there is no danger of confusion, we sometimes use (pre-)basic sle-trivial fibrations to
denote (pre-)basic Q-slc-trivial fibrations or (pre-)basic R-slc-trivial fibrations.

REMARK 3.3 (see Remark 4.5). The condition f,Ox ~ Oy in (2) in Definition 3.2 does
not play an important role. Moreover, we have to treat the case where Oy C f.Ox in this
paper. The reader can find that we do not need the condition f,Ox ~ Oy in many places
in [6]. Hence, it may be better to remove the condition f,Ox ~ Oy from the definition of
pre-basic sle-trivial fibrations (see [6, Def. 4.1] and Definition 3.2). However, we keep it here
not to cause unnecessary confusion.

Note that the condition f.,Ox =~ Oy always holds for basic slc-trivial fibrations even
when we remove it from the definition of pre-basic slc-trivial fibrations. We will see it
more precisely. It is sufficient to see that if every stratum of X is dominant onto Y with
rank f,Ox ([—(B<!)]) = 1, then the natural map Oy — f.Ox must be an isomorphism.
We note that there are natural inclusions

Oy — f*OX — f*OX((_(B<1)‘|)

since [—(B<1)] is effective. Hence, Oy — f.Ox is an isomorphism over some nonempty
Zariski open subset of Y and rank f,Ox =1 holds. We consider the Stein factorization

f: X — Z:=Specy f,.0x Y

of f: X =Y. Since every irreducible component of X is dominant onto Y, Z is a variety.
Moreover, a: Z — Y is birational since rank f,Ox = 1. By Zariski’s main theorem, a: Z —Y
is an isomorphism. Hence, the natural map Oy — f.Ox is an isomorphism.

In order to define discriminant R-b-divisors and moduli R-b-divisors for basic sle-trivial
fibrations, we need the notion of induced (pre-)basic slc-trivial fibrations.

DEFINITION 3.4 (Induced (pre-)basic sle-trivial fibrations [6, 4.3]). Let f: (X,B) =Y
be a (pre-)basic sle-trivial fibration, and let o: Y’ — Y be a generically finite surjective

morphism from a normal variety Y. Then we have an induced (pre-)basic slc-trivial fibration
f'(X',Bx/) =Y’ where By is defined by p*(Kx + B) = Kx/ + Bx/, with the following
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commutative diagram:

(X’,Bx/) -~ (X,B)

O

Y/

o

where X’ coincides with X xy Y’ over a nonempty Zariski open subset of Y. More precisely,
(X’,Bx-) is a simple normal crossing pair with a morphism X’ — X xy Y’ that is an
isomorphism over a nonempty Zariski open subset of Y’ such that X’ is projective over Y’
and that every stratum of X’ is dominant onto Y.

Now, we are ready to define discriminant R-b-divisors and moduli R-b-divisors for basic
sle-trivial fibrations.

DEFINITION 3.5 (Discriminant and moduli R-b-divisors [6, 4.5]). Let f: (X,B) =Y be
a (pre-)basic sle-trivial fibration as in Definition 3.2. Let P be a prime divisor on Y. By
shrinking Y around the generic point of P, we assume that P is Cartier. We set

bp:max{tGR

(X", B +tv* f*P) is sub log canonical
over the generic point of P ’

where v: X¥ — X is the normalization and Kxv» + BY =v*(Kx + B), that is, B” is the sum
of the inverse images of B and the singular locus of X, and set

By =) (1-bp)P,
P
where P runs over prime divisors on Y. Then it is easy to see that By is a well-defined
R-divisor on Y and is called the discriminant R-divisor of f: (X,B) — Y. We set

My =D — Ky — By
and call My the moduli R-divisor of f: (X,B) — Y. By definition, we have
Kx + B ~p f*(Ky + By + My).

Let 0: Y’ — Y be a proper birational morphism from a normal variety Y’, and let
f(X',Bx/) = Y’ be an induced (pre-)basic slc-trivial fibration by o: Y/ — Y. We can
define By, Ky, and My such that ¢*D = Ky + By:+ My, 0.By' = By, 0, Ky = Ky,
and o.My, = My . We note that By is independent of the choice of (X', Bx-), that is, By~
is well defined. Hence, there exist a unique R-b-divisor B such that By, = By for every
c:Y’ =Y and a unique R-b-divisor M such that My, = My for every o: Y’ — Y. Note
that B is called the discriminant R-b-divisor and that M is called the moduli R-b-divisor
associated with f: (X,B) — Y. We sometimes simply say that M is the moduli part of
f(X,B)—=Y.

Let g: V — Y be a proper surjective morphism from an equidimensional normal scheme
V onto a normal variety Y such that every irreducible component of V' is dominant onto
Y. Let G be an R-divisor on V such that Ky + G is R-Cartier. Assume that (V,G) is sub
log canonical over the generic point of Y. Let o: Y/ — Y be a generically finite surjective
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morphism from a normal variety Y’. Then we have the following commutative diagram:

(V',G") = (V,G)

/| lg

Y Y,

o

where V' is the normalization of the main components of V xy Y’ and G’ is defined by
Ky +G' = p*(Ky +G). Then we can define the discriminant R-divisor By on Y and the
discriminant R-b-divisor B as in Definition 3.5. Let f: (X,B) — Y be a (pre-)basic slc-
trivial fibration, and let v: X¥ — X be the normalization with Kx» + BY = v*(Kx + B).
Then the discriminant R-b-divisor B associated with f: (X,B) — Y defined in Definition
3.5 obviously coincides with that of for: (X¥,BY) — Y by definition.

Let us see the main result of [6].

THEOREM 3.6 [6, Th. 1.2]. Let f: (X,B) =Y be a basic Q-slc-trivial fibration, and
let B and M be the discriminant and moduli Q-b-divisors associated with f: (X,B) =Y,
respectively. Then we have the following properties:

(i) K+ B is Q-b-Cartier, where K is the canonical b-divisor of Y.

(ii) M is b-potentially nef, that is, there exists a proper birational morphism o:Y' =Y
from a normal variety Y’ such that My is a potentially nef Q-divisor on' Y’ and that
M =My..

The following result was established in [9].
THEOREM 3.7 [9, Cor. 1.4]. In Theorem 3.6, if Y is a curve, then My is semi-ample.
We close this section with important remarks on [6].

REMARK 3.8. In part (d) in [6, §6], we assume that Supp My C Supp Xy . However, this
condition is unnecessary. This is because if P is not an irreducible component of Supp 3y,
then we can always take a prime divisor @ on V such that multg(—By +h*By) =0,
h(Q) = P, and multg h*P =1 (see [6, Prop. 6.3(iv)]).

REMARK 3.9. In [6, 6.1], we assume that Supp (B — f*(By + My)) is a simple normal
crossing divisor on X. However, we do not need this assumption. All we need in [6, 6.1] is
the fact that the support of {A} is a simple normal crossing divisor on X. We note that

Supp{A} C Supp (B — f*(By +My))
always holds since A = Kx/y + B — f*(By + My).

84. Fundamental theorem for basic Q-slc-trivial fibrations

In this section, we slightly generalize the main theorem of [6] (see Theorem 3.6). The
following theorem is the main result of this section.

THEOREM 4.1 (see [6, Th. 1.2]). Let f: (X,B) =Y be a basic Q-slc-trivial fibration
such that Y is a smooth quasi-projective variety. We write Kx + B ~q f*D. Assume that
there exists a simple normal crossing divisor ¥ on Y such that Supp D C ¥ and that every
stratum of (X,Supp B) is smooth over Y \ X. Then:
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(i) K+B=Ky By holds.
(ii) My is a potentially nef Q-divisor on Y with M = My .

In §5, Theorem 4.1 is generalized for basic R-slc-trivial fibrations (see Theorems 1.8
and 5.1). We note that Theorem 4.1 is indispensable for the proof of Theorem 5.1 in §5.
For the proof of Theorem 4.1, we prepare a lemma on simultaneous partial resolutions of
singularities of pairs. Let us recall the main result of [2].

THEOREM 4.2 [2, Th. 1.4]. Let X be a reduced scheme, and let D be a Q-divisor on X.
Let U be the largest open subset of X such that (U,D|y) is a simple normal crossing pair.
Then there is a morphism f: X — X, which is a composition of blowups, such that:

e the exceptional locus Exc(f) is of pure codimension one,
o putting D = f 7D+ Exc(f), then (X,D) is a simple normal crossing pair, and
e fis an isomorphism over U.

REMARK 4.3 (Functoriality; see [2, Rem. 1.5(3)]). By [2, Rem. 1.5(3)], for every reduced
scheme X and a Q-divisor D on X, we may take fy: X — X of Theorem 4.2 satisfying the
following functoriality. Suppose that we are given an étale or a smooth morphism ¢: X —Y
of reduced schemes and Q-divisors Dx and Dy on X and Y, respectively, such that:

e "Dy = Dx and
e the number of irreducible components of X (resp. Supp Dx) at a point z € X coincides
with that of ¥ (resp. Supp Dy) at ¢(x) € Y for every x € X.

Then, the morphisms fx: X — X and fy:Y — Y as in Theorem 4.2 form the diagram of
the fiber product

. v

P

fx O fr

-~

S

— Y,
¢
that is, X = X xy Y.
The following lemma is a key lemma for the proof of Theorem 4.1.
LEMMA 4.4. Let (X,B) be a simple normal crossing pair such that B is a Q-divisor.
Let f: X =Y be a surjective morphism onto a smooth variety Y such that every stratum

of (X,Supp B) is smooth over Y. We put A = Kx + B and assume that bA ~ 0 for some
positive integer b. We consider a b-fold cyclic cover

b—1
m: X =Specy P Ox(liA]) — X
i=0
associated with bA ~0. We put K+ By =" (Kx + B). Let U be the largest Zariski open
subset of X such that (U,Bg|g) is a simple normal crossing pair. Then there exists a

morphism d: V — X given by a composition of blowups such that:

(i) dis an isomorphism over U,
(ii) (V,Bv) is a simple normal crossing pair, where Ky + By = d*(K g+ Bg), and
(iii) every stratum of (V,Supp By) is smooth over Y.
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Proof. Let us quickly recall the b-fold cyclic cover 7: X — X. We fix a rational function
¢ on X such that bA = div(¢). As usual, we can define an Ox-algebra structure of
P"—s Ox([iA]) by bA = div(¢). We note that

Ox ([iA]) x Ox(ljA]) = Ox ([(i+4)A])
is well defined for 0 <1i,7 <b—1 by [iA|+ |jA] < |(i+j)A]| and that
Ox(L(i-+)A)) = Ox(L(i-+7 - H)A))
for i+ j > b defined by the multiplication with ¢~*. We put

b—1
T X = Specx@OX(LiAJ)

=0

and call it a b-fold cyclic cover associated with bA ~ 0. By construction, 7: X = X is
étale outside Supp{A}. We note that X is normal over a neighborhood of the generic point
of every irreducible component of Supp{A}. We also note that ()~( ,Bg) is simple normal
crossing in codimension one. Throughout this proof, we freely use the following commutative
diagram:

(X,B) <"— (X,Bg) <> (V. By)
|
Y

STEP 1. Let U and Z be affine open neighborhood of z € X and y = f(z) € Y,
respectively. Without loss of generality, we may assume that U is a simple normal crossing
divisor on a smooth affine variety W since (X,B) is a simple normal crossing pair. By
shrinking W, U, and Z suitably, we get the following commutative diagram:

UC_L>W
p

o\
Z,

where ¢ is the natural closed embedding U < W. From now on, we repeatedly shrink W, U,
and Z suitably without mentioning it explicitly. Since every stratum of X is smooth over
Y, we may assume that p is a smooth morphism between smooth affine varieties. U

STEP 2. Since p: W — Z is a smooth morphism, there exists a commutative diagram:

w2~ zxCn
x J,pl
Z,

where ¢ is étale and p; is the first projection (see, e.g., [1, Chap. VII, Def. 1.1 and Th.
1.8]). By choosing a coordinate system (z1,...,z,) of C" suitably and shrinking U and W
if necessary, we may further assume that U is defined by a monomial

xl...l’pzo
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on W, where x; = g*z; for 1 <i <p, and
T
Bly =Y ai(y;i=0)[y with «;€Q
i=1

holds, where y; = g* 2,4 for 1 <i <r. Here, we used the hypothesis that every stratum of
(X,Supp B) is smooth over Y.

STEP 3. We put L = (z;---2, =0) in C". Then we have the following commutative
diagram.

glu

U——=7ZxL

M 2

Z
Note that g|y is étale because it is the base change of g by L < C™. We put

D= ai(z:=0)
i=1

on C™. Let py: Z x C™ — C" be the second projection. Then B|y = g*p5D|y holds.

STEP 4. Without loss of generality, we may assume that Kz ~ 0 by shrinking Z suitably.
Then Ky ~ 0 holds. Hence, by using the second projection ps: Z x C™ — C", we have

0~ bA|y =b(Ky + Blu) ~ byl (p5D]zxL)-

Since g|y is étale, we see that all the coefficients of bp5D|z ., are integers. Since po is the
second projection and D + L is a simple normal crossing divisor on C", all the coefficients
of bD are integers. Therefore, we have bD ~ 0. We fix a rational function ¢ on C” such that
bD = div(c). We consider the b-fold cyclic cover a.: M — C™ associated with bD = div (o).
We put N =a~'L. We define By by Kx + By = (a|n)*(Kr+ D|1) and put Bz n = p5Bny,
where po: Z X N — N is the second projection. Then we get the following commutative
diagram:

U9z NP2 N 0

l iide(alN)ialN lo&
glu

UHZXL?LC—>C”

P1
flu i

Z,

where ¢’': U' — Z x N is the base change of g|y: U — Z x L by idz x (a|n). We put By =
9*Bzxn. Then Ky + By is equal to the pullback of Ky + B|y to U'.

STEP 5. Since a: M — C™ is the b-fold cyclic cover associated with bD = div(o), we
see that

b—1

M = Specen @ Ocn ([iD]).

=0
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Since poog: W — Z x C™ — C" is the composition of an étale morphism and the second
projection, we have g*p3|iD]|y = |ig*p5;D]|v = |iB]|v = [iB|v ], where the last equality
follows from that (U, B|y) is a simple normal crossing pair. Let oy be a rational function
on U which is the pullback of o. Then bB|y = div(oy) because we have bD = div(c). By
the construction of U’ — U, we see that

b—1
U’ = Specy @ Ou([iBlu))
i=0
and U’ — U is the b-fold cyclic cover associated with bB|y = div(oy).

We recall that A = Kx + B and X — X is the b-fold cyclic cover associated with bA =
div(¢). We put ¢y as the restriction of ¢ to U. Then, the morphism 7= 1(U) — U is the
b-fold cyclic cover associated with bA|y = div(¢y). Now, A|y — Bly is a Cartier divisor on
U and b(A|y — Bly) = div(¢y - o). With this relation, we construct a b-fold cyclic cover
7: U — U. Then 7 is étale, 7*(A|y — B|y) is Cartier, and 7*(A|y — B|y) ~ 0. So there exists
a rational function & on U such that £* =7*(¢y -0y '), equivalently, 7*(Aly — Bly) = div(€).
From this, the b-fold cyclic cover U I — U associated with br*A|y = div(7* ¢y ) is isomorphic
to the b-fold cyclic cover U;r — U associated with br* By = div(t*oy) = div(m* ¢y - £7°).
Since 7: U — U is étale, the construction of U;r shows that U;r — U is the base change of
U’ — U by U — U. Similarly, we see that U{r — U is the base change of 7=1(U) — U by

U—U.
Ul s v Ul 2> 7= 1(U)
| o | | =
U?U U - U

We put a; : UlT — 7 YU) and as: U2T — U’. By construction, a; and as are étale. We see
that the composition U] — 7~ (U) — U is isomorphic to the composition U] — U’ — U by
construction. By this isomorphism, we obtain that aj(Bg|.-1(y)) is isomorphic to a3 By .

In this way, there exist étale morphisms a: UT — 7= 1(U) and a’: UT — U’ over Z such
that U}L ~ Ut~ Ug with the following commutative diagram:

Ut
X
7~ Y(U) U’
[

such that a* (B_f(|7r—1(U)) = a’*BU/.

U

STEP 6. We apply [2, Th. 1.4] (see Theorem 4.2) to the pair ()Z',B)}). Then we obtain
a morphism d: V' — X given by a composite of blowups satisfying (i) and (ii). Hence, all
we have to do is to check that d: V — X satisfies (iii).

STEP 7. Recall that By n =p3Bn, where pa: Z x N — N, and By = ¢"* Bz« n. Recall
also the relation a* (B g|r-1(v)) = a’* Bys. We apply [2, Th. 1.4] (see Theorem 4.2) to N and
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By, and we obtain a morphism 3: N’ — N given by a composition of blowups. We apply
[2, Th. 1.4] again to Z x N and Bz« . Then we get a morphism idz x 5: Zx N' — Z x N
by the functoriality of [2, Th. 1.4] (see Remark 4.3). We put V =d~!(z=}(U)) C V, and we
apply [2, Th. 1.4] to the pair of UT and a*(Bglr—1(v)), and the pair of U’ and By:. Then
we obtain morphisms V1 — U and V/ — U’.

We check that we may apply the functoriality (see Remark 4.3) to the morphisms

g:U —-ZxN,d:U"-U', and a: U' = 77 }(U)
(see the diagram in the next paragraph) and divisors
Bzun on Z x N,By on U, and Bg|,-1(yy on 7~ "(U) and their pullbacks.

We only check the second condition of Remark 4.3 for schemes because the case of divisors
can be proved by the same way. By construction, ¢’ is the base change of g|;: U — Z x L by
the morphism Z x N — Z x L. Because Z x L is a simple normal crossing divisor on Z x C"
and g|y is étale, by arguing locally, we see that g|y satisfies the second condition of Remark
4.3. Then so does ¢’ since ¢’ is constructed by the base change of g|y. Similarly, a’ (resp. a)
is constructed with the base change of 7: U — U by U’ — U (resp. 7 1(U) = U), and U
is a simple normal crossing divisor on W. Thus, the same argument as above implies that
a’ and a satisfy the second condition of Remark 4.3. Thus, we may apply the functoriality
(see Remark 4.3) to the above morphisms and divisors.
Applying the functoriality (see Remark 4.3), we have the following diagram:

Vv vt 1% Zx N’
dlvl | l O l O l
7 U)<7—Ul —=U" ——=ZxN,

a g

where each square is the fiber product. By construction, all the upper horizontal morphisms
are étale. Let By+ (resp. Byp) be the sum of the birational transform of a*By: (resp.
Bg|x-1(t)) and the exceptional locus of VT — UT (resp. V — 7 1(U)). Then, every stratum
of (VT,Supp By+) is smooth over Z. Since each irreducible component of VT is smooth over
Zand Vi 5V is étale, we see that each irreducible component of V is smooth over Z. By a
similar argument, we see that every stratum of (17, Supp Byy) is smooth over Z. This implies

that d: V — X satisfies (iii).
We finish the proof of Lemma 4.4.
Before we start the proof of Theorem 4.1, we make an important remark on [6].

REMARK 4.5 (see Remark 3.3). In Theorem 4.1, we can write
1
KX—i—B—i—gdiV(cp) =f*D

for some positive integer b and a rational function ¢ € I'(X,K% ), where Kx is the sheaf
of total quotient rings of Ox and K% denotes the sheaf of invertible elements in Kx, such
that b(Kx + B — f*D) ~ 0. In general, b is larger than b(F,Br) in [6, §6]. We take a b-fold
cyclic cover m: X — X associated with bA ~ 0, where A = Kx + B — f*D, as in [6, §6].
Then the general fiber of h: V' — Y is not necessarily connected in [6, §6]. Moreover, V
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is not necessarily connected. This means that [6, Prop. 6.3(ii)] does not hold true since
the natural map Oy — h,Oy is not always an isomorphism. Fortunately, the condition
h.Oy ~ Oy is not necessary for the proof of the other properties of [6, Prop. 6.3]. We note
that the condition h,Oy ~ Oy is unnecessary in [6, Lem. 7.3 and Th. 8.1]. Hence, it may
be better to remove the condition f.Ox ~ Oy from part (2) in Definition 3.2.

Let b be the smallest positive integer such that b(Kx + B — f*D) ~ 0. Then we can write

1
KX+B+5div(gp) = f*D.

As usual, we consider the b-fold cyclic cover m: X — X associated with bA = div(e™1),
where A = Kx + B — f*D. Let bf be any positive integer with b* > 2. We put ¢! = gobu.
Then we get

Kx+B+ %div(gpﬁ) = f*D.
Let m#: X* — X be the bb*-fold cyclic cover associated with bb* A = div ((¢#)~!). We take the
H-invariant part of 7#: X* — X, where H is the subgroup of the Galois group Gal(X*/X) ~
ZJbW*Z of . X* — X corresponding to bZ/bb*Z. Then we can recover 7: X — X. Note
that 7#: X* — X is decomposed into b* components and that each component is isomorphic
tom: X — X.

Let us prove Theorem 4.1.

Proof of Theorem 4.1. Here, we only explain how to modify the proof of [6, Th. 1.2] by
using Lemma 4.4.

By taking a completion as in [6, Lem. 4.12], we may further assume that Y is projective.
By Lemma 4.4, we can construct a commutative diagram (6.4) in [6, §6] satisfying (a)—
(g) such that ¥y =3 holds without taking birational modifications of Y. Here, we do not
require the condition Supp My C Supp Xy in part (d) in [6, §6] (see Remark 3.8). We also
do not require the condition that the general fiber of h: V' — Y is connected (see Remark
4.5). The covering arguments and [6, Prop. 6.3] work without any modifications. We note
that Y is a smooth projective variety. In what follows, we apply the proof of [6, Th. 8.1].
Let v: Y/ — Y be a projective birational morphism from a normal variety Y’. By replacing
Y’ with a higher model if necessary, we may assume that Y’ is smooth and that v~ '3y
is a simple normal crossing divisor on Y’. With [6, Lem. 7.3], we construct 7: Y —Y a
unipotent reduction of the local monodromies around YXy. Then the induced fibration over
Y satisfies [6, Prop. 6.3(iv) and (v)]. As in the proof of [6, Th. 8.1], we get a diagram:

such that 7/ is finite and the induced fibration over Y satisfies [6, Prop. 6.3(iv) and (v)].
By [6, Th. 3.1], we see that My is a nef Cartier divisor and 7"*My- = My~. Moreover, we
have 7*My = My and 7*My+ = My because 7 and 7’ are both finite (see [6, Lem. 4.10]).
Thus, we have that My is a nef Q-divisor and v*My = My~. This is Theorem 4.1 (ii).
Theorem 4.1(i) immediately follows from Theorem 4.1(ii). So we are done. O
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§5. Fundamental theorem for basic R-slc-trivial fibrations

In this section, we establish the following fundamental theorem for basic R-slc-trivial
fibrations.

THEOREM 5.1 (see Theorem 1.8). Let f: (X,B) =Y be a basic R-slc-trivial fibration
such that Y is a smooth quasi-projective variety. We write Kx + B ~gr f*D. Assume that
there exists a simple normal crossing divisor X on Y such that Supp D C % and that every
stratum of (X,Supp B) is smooth over Y \ ¥. Then:

(i) K+B =Ky +By holds, and
(i) My is a potentially nef R-divisor on Y with M = My .

By Theorem 5.1, which is obviously a generalization of Theorem 4.1, we can use the
theory of basic sle-trivial fibrations in [6], [7] for R-divisors. The following formulation may
be useful. Hence, we state it explicitly here for the reader’s convenience. We note that if
f: (X,B) =Y is a basic Q-slc-trivial fibration, then Corollary 5.2 is nothing but [6, Th.
1.2].

COROLLARY 5.2 [6, Th. 1.2]. Let f: (X,B) =Y be a basic R-slc-trivial fibration, and
let B and M be the discriminant and moduli R-b-divisors associated with f: (X,B) =Y,
respectively. Then we have the following properties:

(i) K+B is R-b-Cartier, where K is the canonical b-divisor of Y.
(i) M is b-potentially nef, that is, there exists a proper birational morphism o:Y' —Y

from a normal variety Y’ such that My is a potentially nef R-divisor on Y’ and that
M =My holds.

REMARK 5.3 (see [9, Cor. 1.4]). In Theorem 5.1 and Corollary 5.2, we can easily see
that My is semi-ample when Y is a curve by Theorem 3.7 and Lemma 5.4.

Let us start with an easy lemma.

LEMMA 5.4. Let f: (X,B) =Y be a basic R-slc-trivial fibration with Kx + B ~r f*D.
Then there exist a Q-divisor B; on X, a Q-Cartier Q-divisor D; on Y, and a positive real
number r; for 1 <1<k such that:

(1) Zleri =1 with Zle r;B; = B and Zle r;D; =D,

(2) SuppB = SuppB;, |B>!| = B!, and [—(B<Y)] = [—(B;1)] hold for every i,

(3) if coeffs(B) € Q for a prime divisor S on X, then coeffg(B) = coeffg(B;) holds for
every 1,

(4) Supp D = Supp D; holds for every i,

(5) if coeffr(D) € Q for a prime divisor T on Y, then coeffr(D) = coeffr(D;) holds for
every i, and

(6) Kx+ Bj;~q f*D; holds for every i.

In particular, f: (X,B;) =Y is a basic Q-slc-trivial fibration with Kx + B; ~q f*D; for
every . Moreover, if t1,...,tx are real numbers such that 0 < t; <1 for every i with
Zle t; = 1, then f: (X,ZletiBZ) —Y is a basic R-slc-trivial fibration with

Kx +Zf:1 t;B; ~r f* (Zlet,;Di).
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Proof. The proof of [6, Lem. 11.1] works with some suitable minor modifications.
Therefore, we can take B;, D;, and r; for 1 <4 < k satisfying (1)-(6). By (2), B; = B="'
holds over the generic point of Y for every i. By (2) again, rank f.Ox([—(B:1)]) =
rank f,Ox ([—(B<')]) = 1. Hence, f: (X,B; ) — Y is a basic Q-slc-trivial fibration with
Kx + B; ~q f*D; for every i. We put B= Z _,tiB;. Then B = B=1 holds over the generic
point of Y by (2). By (2) again, we see that [—(§<1ﬂ = [—(B<1)] holds. Therefore,
f:(X,B) =Y is a basic R-slc-trivial fibration. 0

We also need the following lemma.

LEMMA 5.5. Let f: (X,B) =Y be a basic R-sle-trivial fibration. Let B denote the
discriminant R-b-divisor associated with f: (X,B) — Y. Suppose that there are Q-divisors
By,...,By on X and real numbers r1,...,r, such that Zle ri=1 and ZLI r;B; =B. We
put

i=1

k
0<t; <1 for every i with Zti = 1}.
i=1
Assume that f: (X,A) =Y has the structure of a basic R-slc-trivial fibration for every A €
P. For A € P, B2 denotes the discriminant R-b-divisor of the basic R-slc-trivial fibration
[ (X,A) =Y. Then, we can find Ay,...,A; € P which are Q>¢-linear combinations of
Bi,..., By and positive real numbers s1,...,s; such that:

’Z] 185 =1 (de] 15jA; =B, and

l Aj
[ ] BY = 2371 SJBY .

Here, By (resp. Béj) is the trace of the discriminant R-b-divisor B (resp. B3 ) on Y.

Proof. Since B is an R-b-divisor, it is sufficient to prove the lemma for a resolution of
Y’ —Y and the induced basic slc-trivial fibrations f’: (X',Bx/) =Y and f': (X', (B;)x’) —
Y. Moreover, by Definition 3.5 and taking the normalization of X, we may assume that X
is a disjoint union of smooth varieties. Therefore, by replacing X, Y, B, and B;, we may
assume that Y is smooth and there are simple normal crossing divisors Xx on X and >y
on Y such that:

e Supp B C X x and Supp B; C X x for every i,

e 3% C 713y C X, where X% is the vertical part of Yy,
e f is smooth over Y \ ¥y, and

e Y x is relatively simple normal crossing over Y \ Xy

Then it is clear that Supp By C ¥y and Supp B$ C Xy for all A € P. We consider a rational
convex polytope

C=1qv=(v1,...,0x Zvj—l c [0,1]*.

Then we may identify C with P by putting A, =), v;B; € P for v = (vq,...,v;) € C. We
define vg € C to be the point such that A, = B.

Fix a prime divisor ) on Y which is a component of Xy. We shrink Y near the generic
point of @ so that all components of f*@) dominate Q. We can write f*Q =), mp,F;,
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where P; are components of ¥x such that f(P;) = Q, and mp, = coeff p, (f*Q). We fix a
component P g o) of f*Q such that

= min

1—COGEP(B’Q>(B) . {1—c0effpi(B)}
MPp,q) Pi .

mp,

i

lfcoeffp<B’Q) (B) .

Note that is the log canonical threshold of (X, B) with respect to f*@Q over

MP(B,Q)

the generic point of @ because (X, B+ puf*Q) is sub log canonical over the generic point of
Q if and only if coeff p,(B) + ump, <1 for all P;. For every component P; of f*Q, we can
define a function

1 —coeffp; o (Av) ~ 1—coeffp, (Ay)

MPg, q) mp;

HP) (v) =

and the half-space
B = {vec| HP) (v) <0},

It is easy to check that H (") are rational affine functions and the half spaces H g;i) contain

vy since vy is the point such that A, = B. Therefore, the set

— (Ps)
Cq:=CnN (ﬂ S >
P;
is a rational polytope in C containing vy, where P; runs over components of f*@). We put
t(Ay,Q) :=1—coeff (Bé”)

=sup{p € R|(X,A, + pf*Q) is sub log canonical over the generic point of Q}.

Then, by the definitions of H gf), every v € Cq satisfies

- . 1)

MPpP )

H(A,,Q) = min

7

1 —coeff p, (Ay) 1 —COGEP(B,Q)(Av)
mp.

[

Here, to prove the first equality, we used the fact that (X, A, + pf*@) is sub log canonical
over the generic point of @ if and only if coeff p, (A, ) + pmp, <1 for all P;.
Finally, we define

¢ :=(Ca:
Q

where () runs over all irreducible components of Xy. It is easy to see that C’ is a rational
polytope in C and C’ contains vy. Thus, we can find rational points v1,...,v; and positive
real numbers sq,...,5 such that 22:1 sj =1 and Zi-:l sjv; = vg. We put A; = A, for

each 1 < j <![. Then B=A,, = 22:1 5;A;. For every component () of ¥y, the equation
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(1) implies that

1B,Q) = —Mrea®) (see (1)

MP Q)

l
B 1 —coeftp, o, (Zj:13jAj) (B_Zl siA)
_ - J=1°J=7J

MPg,q)

1 —coeffp . . (A))
l B, l
= Zj:l S5  m— (Zj:l sj=1)

MP5.q)
!
= 215 1(4;,Q) (see (1)).
Since t(A;,Q) =1 —coeffg (Bé’) for every 1 < j <[ and every irreducible component
of Yy, we see that By = 23‘21 sjBéj. U

We are ready to prove Theorem 5.1.

Proof of Theorem 5.1. Fix an arbitrary projective birational morphism o: Y’ — Y from
a normal quasi-projective variety Y, and let

(X’,Bx/) = (X,B)

7 |1

Y’ Y

be the induced basic R-slc-trivial fibration (see Definition 3.4). It is sufficient to show that
0*(Ky +By )= Ky'+ By, and My is a potentially nef R-divisor on Y with c*My = My.

We pick Q-divisors By,..., B on X, Q-divisors Dq,...,D; on Y and positive real numbers
r1,...,7t as in Lemma 5.4. Then, the following properties hold:

o Zle T, = 1 with Z?:l T'iBi = B and Zle TiDi = D,

e Supp B = Supp B; and Supp D = Supp D; hold for every 4, and

o Kx + B; ~q f*D; holds for every 1.

We put D) =c*D; and we define B, by Kx:+ B! = p*(Kx + B;) for any 1 <14 < k. Then
[ (X',B]) =Y are basic Q-slc-trivial fibrations with Kx:+ Bj ~q f"*D;. As in Lemma
5.5, we put

k
P = {Zt,»Bg

i=1

k
0 <t; <1 for every i with Zti = 1}.

i=1

We may assume that f': (X', A) — Y’ is a basic R-slc-trivial fibration for every A € P’. We
define Py as

k

=1

k
t; € Q and 0 <t; <1 for every 7 with Ztizl}-

i=1

Note that Bx: € P'.
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Pick any A = Zle t;B} € 77(’@. Since p. Bl = B;, we have i, A = Zle t; B; such that t; € Q.
Therefore, the morphism f: (X, u.A) — Y is a basic Q-slc-trivial fibration such that Kx +
A ~q f* (Zle tiDi). Let B2 and M be the discriminant Q-b-divisor and the moduli Q-
b-divisor of the basic Q-slc-trivial fibration f: (X, u«A) — Y, respectively. Because we have
Supp(X:f:1 tiDi) C Supp D and Supp p«A C Supp B, we may apply Theorem 4.1. Therefore,
for every A € Py, it follows that o*(Ky +B%) = Ky/ +B%, and M#% is a potentially nef Q-
divisor on Y with 0*M#% = M2$,. It also follows from the construction that f’: (X', A) — Y’
is the basic Q-slc-trivial fibration induced from f: (X,pu.A) — Y such that Kx +A ~q
i (Zle t;D}). Tt is because Kx/ + A = p*(Kx + p.A) by construction.

We apply Lemma 5.5 to f': (X', Bx/) = Y" and P’. Then, we can find Ay,...,A; € Py
and positive real numbers sq,...,s; such that:

° 22:1 s; =1 and Z;Zl sjA; = Bx/, and
[ J By/ = Zl- 1 S]B)A/f

J:
Since B and B#i are R-b-divisors, we have By = 22.:1 sjBéj. Then

l l
o*(Ky +By) =0 | Ky +Y_s;By’ | = s;0"(Ky +By’)
j=1 j=1

l l
j : A j : A
j=1

j=1
=Ky +By-.

Therefore, we have 0*(Ky +By) = Ky’ + By/. Recalling that o: Y/ — Y is an arbitrary
projective birational morphism, we see that part (i) of Theorem 5.1 holds, that is,

K+B :Ky —I—By.

As in the third paragraph, for each j, we define D’Aj to be the Q-divisor on Y’ associated
with the basic Q-slc-trivial fibration f': (X',A;) = Y’. Note that Kx/+A; ~q f’*D’Aj for

all j. Since 2321 sj=1and 22‘21 sjA; = Bx/, we have 0*D = 23‘21 sj D}y, By the relation
By = 23‘21 sjB$7 and the definition of the moduli R-b-divisors (see Definition 3.5), we
have

l l
A A
My, = E s; My and My = E s; My~ .
Jj=1 Jj=1

Then My is a potentially nef R-divisor on Y and
l l
O'*MY :0’* ZSJM)A/J :Zs]M}A/f :MY/.
j=1 Jj=1

Here, we used O'*Méj = Mé? for every j, which follows from the third paragraph. We
complete the proof. U

The following result is essentially obtained in the proof of Theorem 5.1. We explicitly
state it here for future use.
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THEOREM 5.6. Let f: (X,B)—Y be a basic R-slc-trivial fibration with Kx + B ~g f*D
Then there are Q-divisors By,...,B; on X, Q-Cartier Q-divisors Dq,...,D; on Y, and
positive real numbers r1,...,1; satisfying the following properties:

. Z;erj =1 with Z;Zl rjB; =B and 2321 riD;j =D,

e Supp B = SuppB;, |B”!| = LB]?IJ, and [—(B<1)] = f—(Bflﬂ hold for every j,

o if coeffg(B) € Q for a prime divisor S on X, then coeff 3(B) = coeff 3(B;) holds for every
J;

e Supp D = Supp D; holds for every j,

o if coeffr (D) € Q for a prime divisor T on Y, then coeffr(D) = coeffr(D;) holds for every
I

o Kx + Bj ~q f*D; holds for every j,

eB=>_,7;Bj as b-divisors, where B (resp. B;) is the discriminant R-b-divisor (resp.
the discriminant Q-b-divisor) of f: (X,B) =Y (resp. f: (X,B;) =Y ), and

e M= 22:1 riM; as b-divisors, where M (resp. M; ) is the moduli R-b-divisor (the moduli
Q-b-divisor) associated with f: (X,B) =Y (resp. f: (X,B;) =Y).

Sketch of Proof. It can be proved by Theorem 5.1 and Lemmas 5.4 and 5.5. We only
outline the proof.

We note that the properties of Theorem 5.6 except the last two properties correspond to
parts (1)—(6) of Lemma 5.4, respectively. By Lemma 5.4, we can find Q-divisors El,...,gk
on X, Q-Cartier Q-divisors 151, Dk on Y, and positive real numbers 71,...,7 satisfying
parts (1)—(6) of Lemma 5.4. Then B;, D;, and 7 satisfy all the properties of Theorem 5.6
except the last two properties. More specifically, Bl, DZ, and 7; satisfy:

o Zleﬁ =1 with Zle 7:B; = B and Zleﬁﬁi = D (see part (1) of Lemma 5.4),
e Supp B = Supp B; and Supp D = Supp D; hold for every 4, and
o Kx + B; ~q f*D; holds for every i (see part (6) of Lemma 5.4),

and parts (2)—(5) in Lemma 5.4. We take a smooth higher model o: Y’ — Y so that the
induced basic R-slc-trivial fibration f’: (X', B") — Y satisfies the property that there exists
a simple normal crossing divisor ¥’ on Y’ such that Suppo*D C ¥’ and that every stratum
of (X’,Supp B’) is smooth over Y\ X’. The morphism X’ — X is denoted by . For each
1<i<k, let B’ be a Q-divisor on X’ defined by KX/+B/ =pu (KX+B) Note that
Kx/ —|—B{ ~q o *D;. We may assume that Suppo*D; C ¥’ and that every stratum of
(X', Supp E;) is smooth over Y\ ¥’ for every i by taking o: Y’ — Y suitably. We define

k
= {Ztiég

k
0<t; <1 for every ¢ with Zti = 1}.

i=1 i=1
By Lemma 5.5, we can find Bj,...,B] € P, which are Q>¢-linear combinations of Bj,..., B
and positive real numbers rq,...,r; such that:

. Zé’:ﬁj =1 and 22:1 rjB; = B', and
By =3 7By
Here, B; is the discriminant Q-b-divisor associated with f’: (X', B}) — Y. By Theorem

5.1, we have K+ B = Ky’ + By’ and K+ B; = Ky +Bj;y,. We put B; = ;L*B;- for each
1 <j <. Then we can find Q-divisors D1,...,D; on Y such that Kx + B; ~q f*D; and
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l . .
> ._11riDj = D. By construction, we can easily see that By ...,B;, D1,...,D;, and r1,...,7y

=1
constructed above satisfy the desired properties.

86. Proof of Theorem 1.2

In this section, we prove Theorem 1.2, which is the main result of this paper. Then we
treat Theorem 1.1 and Corollary 1.4. We note that we freely use the framework of quasi-log
schemes in the proof of Theorem 1.2. For the details of quasi-log schemes, see [5, Chap. 6].
Let us start with the proof of Theorem 1.2.

Proof of Theorem 1.2. From Step 1 to Step 3, we define a natural quasi-log scheme
structure on Z. This part is essentially contained in [5, Chap. 6] and [7].

STEP 1. In this step, we give a natural quasi-log scheme structure on W' := W U
Nlc(X,A). This step is essentially the adjunction for quasi-log schemes (see [5, Th. 6.3.5(1)]).

We put W’ := WUNIc(X,A) as above. We sketch how to define a natural quasi-log
scheme structure on W’. Let f: Y — X be a projective birational morphism from a smooth
quasi-projective variety Y such that Ky + Ay = f*(Kx +A) and that Supp Ay is a simple
normal crossing divisor on Y. By taking some more blowups, we may assume that the union
of all log canonical centers of (Y, Ay ) mapped to W’ by f, which is denoted by V| is a union
of some irreducible components of Ay, As usual, we put A= [—(A$!)] and N = |AJ!]
and consider the following short exact sequence:

0—>0y(A—N-V")—= Oy (A—N)— Oy/(A—N) — 0.
By taking R'f., we obtain
0— f.Oy(A—N—V') — f,0y(A—N) — f,Oy(A—N)
LRV Oy (A= N—-V') — ..

The connecting homomorphism § is zero since no associated prime of R! f,Oy(A— N —V")
is contained in W’ = f(V’) (see [4, Th. 6.3 (i)] and [5, Th. 5.6.2(i)]). Hence, we have

O%f*OY(A—N—V/) —>f*OY<A—N) %f*Ov/(A—N) — 0.

Note that Inrc(X,A) = f.Oy(A— N) by definition. We put Zy» = f.Oy(A— N —V') and
Zyw: _ = f+Oy/(A—N). We define Ay by (Ky +Ay)|y» = Ky/+Ays. Then

(le (KX +A)|W/7f: (VlvAV') - W/)

is a quasi-log scheme. By construction, Nglc(W’, (Kx + A)|w) = Nlc(X,A) holds. By
construction again, a subset C'C X is a glc stratum of [W’,(Kx + A)|w] if and only if
C is a log canonical center of (X,A) included in W. We note that the above construction
is independent of the choice of f: Y — X by [5, Prop. 6.3.1]. 0

STEP 2. In this step, we give a natural quasi-log scheme structure on [W, (Kx + A)|w].
This step is essentially [7, Lem. 4.19].

In Step 1, we may further assume that the union of all strata of (V/,Ay/) mapped to
W NNle(X,A) is also a union of some irreducible components of V'. Let V be the union

of the irreducible components of V' mapped to W by f. We put Ay by (Ky +Ay)|y =
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K+ Ap. Then, by the proof of [7, Lems. 4.18 and 4.19],
(W, (K + A)lw, /5 (V,85) = W)

is a quasi-log scheme. By [7, Lem. 4.19], we obtain that Zy,_ __ = Ty _ holds and that a
subset C' C X is a gle stratum of [W’,(Kx + A)|w] if and only if C is a gl stratum of
(W, (Kx +A)|w]. Hence, W NNIlc(X,A) =W_ and

WA Ne(X,A)u | W' | =Ngklt(W, (Kx +A)|w)
wWgwt

hold set-theoretically, where W1 runs over log canonical centers of (X,A) which do not
contain W.

STEP 3. In this step, we give a natural quasi-log scheme structure on Z. This step is
nothing but [7, Th. 1.9].

In Step 2, we may further assume that the union of all strata of (‘7,A‘7) mapped to
Naklt(W, (Kx +A)|w) is a union of some irreducible components of V. Let V be the union
of the irreducible components of V which are dominant onto W. Then, by the proof of [7,
Th. 1.9], f: V — W factors through Z and

(Zwv"(Kx+A),f: (V,Ay) = Z)

becomes a quasi-log scheme, where Ay is defined by (Ky + Ay)|y = Kv + Ay. By
construction, we have ViIngult(Z,v* (Kx+A)) = INgklt(W, (K x+A)[w)- Hence,

Naklt(Z,v*(Kx +A)) = v~ Naklt(W, (K x +A)|w)
holds.

STEP 4. Then f: (V,Ay) — Z is a basic R-sle-trivial fibration. Hence, we can apply
Corollary 5.2 and Remark 5.3 to f: (V,Ay) — Z. We note that f: (V,Ay) — Z is a basic
Q-slc-trivial fibration when K x + A is Q-Cartier. In that case, Theorem 3.6 with Theorem
3.7 is sufficient.

STEP 5. By [7, Th. 7.1] and Steps 1-3 in its proof, we can construct a projective
birational morphism p: Z' — Z from a smooth quasi-projective variety Z’ satisfying (i)—(v).
We note that we can directly apply Step 3 in the proof of [7, Th. 7.1] to basic R-slc-trivial
fibrations by Corollary 5.2. We also note that B is a well-defined R-b-divisor on Z and is
independent of f: Y — X (see [11, Lem. 5.1] and [10, Th. 1.2]).

STEP 6. (see [11, Th. 5.4]). In this final step, we prove (iv). This step is essentially [11,
Th. 5.4]. We explain it here for the reader’s convenience.

Without loss of generality, we may assume that X is affine by taking a finite affine open
cover of X. Let gqi1: Xait — X be a good dlt blowup of (X,A) such that Kx,, +Ax,, =
o (Kx +A) (see [11, Lem. 3.5]). We may assume that there is an irreducible component
S of A):(ilt with gg:(S) = W. We put

>1 >1 1 1
D= A)?dzt o Supp A)?dzt = A§dlt B Supp A;(dlt'

Then —D is semi-ample over X and Supp D = Nlc(X g, Ax,,,) holds set-theoretically (see
[11, Lem. 3.5]). By taking the contraction morphism ¢: Xg; — Xj. associated with —D
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over X, we get a log canonical modification ¢;.: X;c — X with Kx, +Ax,, =g/.(Kx+A)
(see [11, Th. 1.3]).

Xai

gdx 9ic

X
We put D’ = ¢, D. Then —D’ is ample over X, and

ch

952" Nle(X, A) = Nle(X;e, Ax,,) = Supp D’
holds set-theoretically. We note that
Nle(Xa, Axy,) = ¢ Nle(Xie, Ax,,) = gz Nle(X,A)

holds set-theoretically. Let W be the strict transform of W on X le- Let U: Z — W be the
normalization. Then we can easily see that

SuppBZ! =*D' =57 (Nlc(ch,Ach) mW) = (gieo?) "t (Nle(X,A)NW)

holds set-theoretically. We note that B>! =0 over X \ Nlc(X,A) by construction. Hence,
we obtain vop(B7}) = WNNle(X,A) set-theoretically.

We finish the proof of Theorem 1.2.
Finally, we prove Theorem 1.1 and Corollary 1.4.

Proof of Theorem 1.1. Here, we use the same notation as in Theorem 1.2. We put Bz =
Bz and Mz = My in Theorem 1.2. We note that Mz is a finite Rs¢-linear combination
of potentially nef Cartier divisors on Z’ with p,Mz = Mz. Hence, the desired statement
follows from Theorem 1.2. U

Proof of Corollary 1.4. By the definition of B in Theorem 1.2 (see the proof of Theorem
1.2 and Definition 1.3), we can easily check that Bz is nothing but Shokurov’s different
(see [4, §14]) and v*(Kx +A) = Kz + Bz holds, where v: Z — W is the normalization of
W. In particular, we have Mz = 0. By part (A) in Theorem 1.1, we obtain that (X,A) is
log canonical in a neighborhood of W if and only if (Z,Byz) is log canonical in the usual
sense. It recovers Kawakita’s inversion of adjunction (see [15, Th.]). By part (B), we see that
(Z,Byz) is Kawamata log terminal if and only if (X, A) is log canonical in a neighborhood of
W and W is a minimal log canonical center of (X,A) (see [4, Th. 9.1] and [5, Th. 6.3.11]).
Note that (X,A) is purely log terminal in a neighborhood of W if and only if (X,A) is log
canonical in a neighborhood of W and W is a minimal log canonical center of (X,A). [J

We close this section with the following remark, which summarizes the construction of
the R-b-divisors B and M on Z.

REMARK 6.1. Let X be a normal variety, and let A be an effective R-divisor on X such
that Kx + A is R-Cartier. Let W be a log canonical center of (X,A), and let v: Z - W
be the normalization of W.

We take a log resolution f:Y — X of (X,A) which is a sufficiently high birational
model. We define Ay by Ky + Ay = f*(Kx +A), and let V be the union of the irreducible
components of AJ' which map onto W. Let Ay be an R-divisor on V defined by Ky + Ay =
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(Ky + Ay)|v, then we get the morphism f: (V,Ay) — Z, which has the structure of a
basic R-slc-trivial fibration. Then B and M are defined to be the discriminant R-b-divisor
and the moduli R-b-divisor as in Definition 3.5. By construction, we can easily check that
the construction in the proof of Theorem 1.2 and the one in Definition 1.3 define the
same R-b-divisor B on Z (see [11, Lem. 5.1] and [10, Th. 1.2]). Precisely speaking, when
dimW < dim X — 2, we consider the R-line bundle £ on X associated with Kx + A. We fix
an R-Cartier R-divisor D on Z whose associated R-line bundle is the pullback of £. Then
we put M = D — K — B, where D is the R-Cartier closure of D and K is the canonical
b-divisor of Z.

87. Adjunction for codimension 2 log canonical centers

In this final section, we first discuss basic slc-trivial fibrations under some extra
assumption and then prove adjunction for codimension 2 log canonical centers.

THEOREM 7.1. Let f: (X,B) =Y be a basic R-slc-trivial fibration. Assume that there
exists a stratum S of (X,B) such that the induced morphism S —'Y is generically finite
and surjective. Then there exists a proper birational morphism p: Y’ —Y from a smooth
quasi-projective variety Y' such that M = My with My~ ~r 0. In particular, M is b-semi-
ample.

Proof. By Theorem 5.6, we may assume that f: (X,B) — Y is a basic Q-slc-trivial
fibration. Let v: X¥ — X be the normalization. We define a Q-divisor B” on X" by Kxv +
BY =v*(Kx + B). Note that after the reduction we may find a log canonical center S of
(X",B") such that the induced morphism S — Y is generically finite and surjective. By
[6, Lem. 4.12], we may further assume that Y is a complete variety. By replacing Y with
a smooth higher birational model and f: (X,B) — Y with the induced basic Q-slc-trivial
fibration, we may assume that Y is a smooth projective variety, M = My, and My is
nef. The induced morphism S — Y is denoted by fg. We define a Q-divisor Bg on S by
Ks+Bs = (Kx»+B")|s.

From now on, we show that —My is Q-linearly equivalent to an effective Q-divisor. We
consider the divisor v* f*My ~q Kxv + B” —v* f*(Ky + By). By restricting it to S, we get
the relation fEMy ~q Ks+ Bs— f$(Ky +By). Let g: S — T be the Stein factorization of
fs. The finite morphism T"— Y is denoted by fr. We put By = g.Bg. Then the relation
Kg+ Bs = g* (K1 + Br) holds because Kg+ Bg is Q-linearly trivial over Y. We also have
the relation

frMy ~q Kr+ Br — f1(Ky +By).

To show that —My is Q-linearly equivalent to an effective Q-divisor, it is sufficient to prove
that — (KT +Br— f7(Ky + By)) is Q-linearly equivalent to an effective Q-divisor.

By the definition of the discriminant Q-b-divisor (see Definition 3.5), for every prime
divisor P on Y, we have coeff p(By) =1—bp, where bp is the log canonical threshold of
(X", B¥) with respect to v* f*P over the generic point of P. Since fr is finite, we may write
frP =3%"q, miQi, where Q; runs over prime divisors on T’ with fr(Q;) = P and m; is the
multiplicity of @); with respect to fr. By the ramification formula, over a neighborhood of
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the generic point of P, we may write
fr(Ky +By) = f7(Ky 4+ (1-bp)P)

=Kr—Y (mi—1)Qi+(1—bp) Y miQ;
Qi Qi
=Kr+ Z(l —m;ibp)Q;.
Qi
We define E:= ), (coeffq, (Br) — (1 —m;bp))Q;. Then, over a neighborhood of the generic
point of P, we have

fiMy ~g Kr+ By — f1(Ky +By) =Y (coeffq, (Br) — (1—m;bp))Q; = E.
Qi

On the other hand, by the definition of bp (see Definition 3.5) and the fact that S is a log
canonical center of (X¥, BY), the pair (S, Bs+bp f&P) is sub log canonical over the generic
point of P. Since g: S — T is birational and K¢+ Bg = g*(Kr + Br), the pair (T, Br +
bp f+P) is sub log canonical over the generic point of P. This shows coeffg, (Br)+m;bp <1
for all @; such that fr(Q;) = P. Thus, —F is effective. Hence, —My is Q-linearly equivalent
to an effective Q-divisor.

Finally, since My is nef, we see that My ~q 0. U

We prove the b-semi-ampleness of M for basic slc-trivial fibrations of relative dimension
one under some extra assumption.

THEOREM 7.2. Let f: (X,B) — Y be a basic R-sle-trivial fibration with
dimX = dimY + 1 such that the horizontal part B" of B is effective. Then the moduli
R-b-divisor M is b-semi-ample.

Proof. By Theorem 5.6, we may assume that f: (X,B) — Y is a basic Q-slc-trivial
fibration. By [6, Lem. 4.12], we may further assume that Y is a complete variety. When
X is reducible, by the definition of basic sle-trivial fibrations (see Definition 3.2), there
is a stratum S of X such that the morphism S — Y is generically finite and surjective
since dim X =dimY + 1. Thus, we can apply Theorem 7.1. By Theorem 7.1, the moduli Q-
b-divisor M is b-semi-ample when X is reducible. So we may assume that X is irreducible.
Let F be a general fiber of f Then B|r >0 by the assumption B" > 0. If (F, B|r) is not
Kawamata log terminal, then there is a log canonical center S” of (X, B), that is, S’ is a
stratum of (X, B), such that the morphism S” — Y is generically finite and surjective. As
in the reducible case, by applying Theorem 7.1, we see that the moduli Q-b-divisor M is
b-semi-ample. If (F,B|r) is Kawamata log terminal, then the morphism f: (X,B) - Y
satisfies [17, Assump. 7.11]. Therefore, by [17, Th. 8.1], the moduli Q-b-divisor M is b-
semi-ample. In this way, in any case, the moduli Q-b-divisor M is b-semi-ample. U

By combining Theorem 7.2 with the proof of Theorem 1.2, we obtain the following result,
which generalizes Kawamata’s theorem (see [16, Th. 1]).

COROLLARY 7.3 (Adjunction and inversion of adjunction in codimension 2). Under the
same notation as in Theorem 1.2, we further assume that dimW =dim X —2. Then M
is b-semi-ample. Equivalently, My is semi-ample. In particular, there exists an effective
R-divisor Az on Z such that:
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o V' (Kx+A)~p Kz +Az,

o (Z,Ayz) is log canonical if and only if (X,A) is log canonical near W, and

o (Z,Az) is Kawamata log terminal if and only if (X,A) is log canonical near W and W
is a minimal log canonical center of (X,A).

When Kx + A is Q-Cartier, we further make Az an effective Q-divisor on Z such that
vV (Kx +A) ~qg Kz + Ay in the above statement.

Proof. We use the same notation as in Theorem 1.2. Note that W is a codimension
2 log canonical center of (X,A) by assumption. Let f: Y — X be a projective birational
morphism from a smooth quasi-projective variety Y such that Ky + Ay = f*(Kx +A) and
that Supp Ay is a simple normal crossing divisor on Y. Without loss of generality, we may
assume that f~!(W) is a simple normal crossing divisor on Y such that f~Y(W)=>", E;
is the irreducible decomposition. We put

E= Z E;.

a(B;,X,A)=—1

We define Ag by Kp+ Ag = (Ky + Ay)|g. In this situation, we can check that Ag is
effective over the generic point of W. Indeed, if X is a surface, then we can check this fact
by using the minimal resolution. In the general case, by shrinking X and cutting X by
general hyperplanes, we can reduce the problem to the case where X is a surface.

Let Z be the normalization of W. By the same arguments as in Steps 1-3 in the proof
of Theorem 1.2, we can construct a basic R-slc-trivial fibration f: (V,Ay) — Z. Then
dimV =dimZ + 1 because dimV =dim X —1 and W is a codimension 2 log canonical
center of (X,A). Furthermore, by the discussion in the first paragraph, we see that the
horizontal part Al of Ay with respect to f: V — Z is effective. By the same arguments as
in Steps 4-6 in the proof of Theorem 1.2, we get a projective birational morphism p: Z' — Z
from a smooth quasi-projective variety Z’ satisfying parts (i)—(v) of Theorem 1.2. Moreover,
by Theorem 7.2, M is b-semi-ample, that is, Mz is semi-ample.

Let N ~g Mz be a general effective R-divisor such that N and Bz, have no common
components, Supp(N +B ) is a simple normal crossing divisor on Z’, and all the coefficients
of N are less than 1. We put Az = p,N +B. Then, it is easy to see that A, satisfies the
desired three conditions of Corollary 7.3. By the above construction, we can make Az an
effective Q-divisor such that Kz + Az ~q v*(Kx +A) when Kx + A is Q-Cartier. So we
are done. O
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