Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T04:09:31.316Z Has data issue: false hasContentIssue false

Grammatical performance in children with dyslexia: the contributions of individual differences in phonological memory and statistical learning

Published online by Cambridge University Press:  08 April 2021

Merel van Witteloostuijn*
Affiliation:
Department of Linguistics, Amsterdam Center for Language and Communication, University of Amsterdam, Amsterdam, the Netherlands
Paul Boersma
Affiliation:
Department of Linguistics, Amsterdam Center for Language and Communication, University of Amsterdam, Amsterdam, the Netherlands
Frank Wijnen
Affiliation:
Department of Linguistics, Utrecht Institute of Linguistics OTS, Utrecht University, Utrecht, the Netherlands
Judith Rispens
Affiliation:
Department of Linguistics, Amsterdam Center for Language and Communication, University of Amsterdam, Amsterdam, the Netherlands
*
*Corresponding author. Email: m.t.g.vanWitteloostuijn@gmail.com

Abstract

Several studies have signaled grammatical difficulties in individuals with developmental dyslexia. These difficulties may stem from a phonological deficit, but may alternatively be explained through a domain-general deficit in statistical learning. This study investigates grammar in children with and without dyslexia, and whether phonological memory and/or statistical learning ability contribute to individual differences in grammatical performance. We administered the CELF “word structure” and “recalling sentences” subtests and measures of phonological memory (digit span, nonword repetition) and statistical learning (serial reaction time, nonadjacent dependency learning) among 8- to 11-year-old children with and without dyslexia (N = 50 per group). Consistent with previous findings, our results show subtle difficulties in grammar, as children with dyslexia achieved lower scores on the CELF (word structure: p = .0027, recalling sentences: p = .053). While the two phonological memory measures were found to contribute to individual differences in grammatical performance, no evidence for a relationship with statistical learning was found. An error analysis revealed errors in irregular morphology (e.g., plural and past tense), suggesting problems with lexical retrieval. These findings are discussed in light of theoretical accounts of the underlying deficit in dyslexia.

Type
Original Article
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alloway, T. P., & Gathercole, S. E. (2005). The role of sentence recall in reading and language skills of children with learning difficulties. Learning and Individual Differences, 15(4), 271282.CrossRefGoogle Scholar
Alloway, T. P., Gathercole, S. E., Kirkwood, H., & Elliott, J. (2009). The cognitive and behavioral characteristics of children with low working memory. Child Development, 80(2), 606621.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5). American Psychiatric Publishing.Google Scholar
Arnon, I. (2019a). Do current statistical learning tasks capture stable individual differences in children? An investigation of task reliability across modality. Behavior Research Methods, 52(1), 6881.CrossRefGoogle Scholar
Arnon, I. (2019b). Statistical learning, implicit learning, and first language acquisition: A critical evaluation of two developmental predictions. Topics in Cognitive Science, 11, 504519.Google ScholarPubMed
Aro, T., Eklund, K., Nurmi, J. E., & Poikkeus, A. M. (2012). Early language and behavioral regulation skills as predictors of social outcomes. Journal of Speech, Language, and Hearing Research, 55, 395408.CrossRefGoogle ScholarPubMed
Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63, 129.CrossRefGoogle ScholarPubMed
Bannard, C., Lieven, E., & Tomasello, M. (2009). Modeling children’s early grammatical knowledge. Proceedings of the National Academy of Sciences, 106(41), 1728417289.CrossRefGoogle ScholarPubMed
Bar-Shalom, E. G., Crain, S., & Shankweiler, D. (1993). A comparison of comprehension and production abilities of good and poor readers. Applied Psycholinguistics, 14(2), 197227.CrossRefGoogle Scholar
Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). Lme4: Linear mixed-effects models using Eigen and S4. R package version 1.1–7.Google Scholar
Bexkens, A., van den Wildenberg, W. P., & Tijms, J. (2015). Rapid automatized naming in children with dyslexia: Is inhibitory control involved? Dyslexia, 21(3), 212234.CrossRefGoogle ScholarPubMed
Bishop, D. V. M., & Snowling, M. J. (2004). Developmental dyslexia and specific language impairment: Same or different? Psychological Bulletin, 130(6), 858886.CrossRefGoogle ScholarPubMed
Bishop, D. V. M., Snowling, M. J., Thompson, P. A., & Greenhalgh, T. (2017). CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development. Journal of Child Psychology & Psychiatry, 58, 10681080.CrossRefGoogle ScholarPubMed
Blom, E., & Boerma, T. (2019). Reciprocal relationships between lexical and syntactic skills of children with Developmental Language Disorder and the role of executive functions. Autism & Developmental Language Impairments, 4. doi: 10.1177/2396941519863984.CrossRefGoogle Scholar
Blom, E., Polišenská, D., & Weerman, F. (2008). Articles, adjectives and age of onset: The acquisition of Dutch grammatical gender. Second Language Research, 24(3), 297331.CrossRefGoogle Scholar
Blom, E., Vasić, N., & de Jong, J. (2014). Production and processing of subject–verb agreement in monolingual Dutch children with specific language impairment. Journal of Speech, Language, and Hearing Research, 57(3), 952965.CrossRefGoogle ScholarPubMed
Boersma, T. A. (2018) Variability in the acquisition of alomorphs: The Dutch diminutive and past tense. Doctoral dissertation, University of Amsterdam, The Netherlands.Google Scholar
Boets, B., de Beeck, H. P. O., Vandermosten, M., Scott, S. K., Gillebert, C. R., Mantini, D., Bulthé, J., Sunaert, S., Wouters, J., & Ghesquière, P. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342(6163), 12511254.CrossRefGoogle ScholarPubMed
Bowey, J. A. (2001). Nonword repetition and young children’s receptive vocabulary: A longitudinal study. Applied Psycholinguistics, 22(3), 441.CrossRefGoogle Scholar
Braams, T., & de Vos, T. (2015). Schoolvaardigheidstoets spelling. Boom uitgevers Amsterdam.Google Scholar
Brus, B., & Voeten, M. (1972) Eén Minuut Test. Vorm A en B. Schoolvorderingen voor het lezen, bestemd voor het tweede t/m het vijfde leerjaar van de lagere school. Berkhout Testmateriaal.Google Scholar
Cantiani, C., Lorusso, M. L., Perego, P., Molteni, M., & Guasti, M. T. (2013). Event-related potentials reveal anomalous morphosyntactic processing in developmental dyslexia. Applied Psycholinguistics, 34(6), 11351162.CrossRefGoogle Scholar
Carroll, J. M., & Myers, J. M. (2010). Speech and language difficulties in children with and without a family history of dyslexia. Scientific Studies of Reading, 14(3), 247265.CrossRefGoogle Scholar
Catts, H. W., Adlof, S. M., Hogan, T. P., & Weismer, S. E. (2005). Are specific language impairment and dyslexia distinct disorders? Journal of Speech, Language, and Hearing Research, 48, 13781396.CrossRefGoogle ScholarPubMed
Chen, A., Wijnen, F., Koster, C., & Schnack, H. (2017). Individualized early prediction of familial risk of dyslexia: A study of infant vocabulary development. Frontiers in Psychology, 8, 156.CrossRefGoogle ScholarPubMed
Clark, G. M., & Lum, J. A. (2017). Procedural memory and speed of grammatical processing: Comparison between typically developing children and language impaired children. Research in Developmental Disabilities, 71, 237247.CrossRefGoogle ScholarPubMed
de Jong, J. (1999). Specific language impairment in Dutch: Inflectional morphology and argument structure. Doctoral dissertation, University of Groningen, The Netherlands.Google Scholar
Dunn, L. M., & Dunn, L. M. (2005). Peabody picture vocabulary test-III-NL [Dutch version by L. Schlichting]. Harcourt Test Publishers.Google Scholar
Edwards, J., Beckman, M. E., & Munson, B. (2004). The interaction between vocabulary size and phonotactic probability effects on children’s production accuracy and fluency in nonword repetition. Journal of Speech, Language, and Hearing Research, 47, 421436.CrossRefGoogle ScholarPubMed
Evans, J. L., Saffran, J. R., & Robe-Torres, K. (2009). Statistical learning in children with specific language impairment. Journal of Speech, Language, and Hearing Research, 52, 321335.CrossRefGoogle ScholarPubMed
Facoetti, A., Paganoni, P., & Lorusso, M. L. (2000). The spatial distribution of visual attention in developmental dyslexia. Experimental Brain Research, 132(4), 531538.CrossRefGoogle ScholarPubMed
Fox, J., Weisberg, S., Adler, D., Bates, D., Baud-Bovy, G., Ellison, S., … Heiberger, R. (2012). Package ‘car’. R Foundation for Statistical Computing.Google Scholar
Frizelle, P., & Fletcher, P. (2014). Relative clause constructions in children with specific language impairment. International Journal of Language and Communication Disorders, 49(2), 255264.CrossRefGoogle ScholarPubMed
Gabay, Y., Thiessen, E. D., & Holt, L. L. (2015). Impaired statistical learning in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 58(3), 934945.CrossRefGoogle ScholarPubMed
Gathercole, S. E. (2006). Nonword repetition and word learning: The nature of the relationship. Applied Psycholinguistics, 27(4), 513543.CrossRefGoogle Scholar
Gómez, R. L. (2002). Variability and detection of invariant structure. Psychological Science, 13(5), 431436.CrossRefGoogle ScholarPubMed
Griffiths, Y. M., & Snowling, M. J. (2001). Auditory word identification and phonological skills in dyslexic and average readers. Applied Psycholinguistics, 22(3), 419439.CrossRefGoogle Scholar
Iao, L. S., Ng, L. Y., Wong, A., & Lee, O. T. (2017). Nonadjacent dependency learning in Cantonese-speaking children with and without a history of specific language impairment. Journal of Speech, Language, and Hearing Research, 60(3), 694700.CrossRefGoogle ScholarPubMed
Jefferies, E., Ralph, M. A. L., & Baddeley, A. D. (2004). Automatic and controlled processing in sentence recall: The role of long-term and working memory. Journal of Memory and Language, 51(4), 623643.CrossRefGoogle Scholar
Jiménez-Fernández, G., Vaquero, J. M., Jiménez, L., & Defior, S. (2011). Dyslexic children show deficits in implicit sequence learning, but not in explicit sequence learning or contextual cueing. Annals of Dyslexia, 61(1), 85110.CrossRefGoogle ScholarPubMed
Joanisse, M. F., Manis, F. R., Keating, P., & Seidenberg, M. S. (2000). Language deficits in dyslexic children: Speech perception, phonology, and morphology. Journal of Experimental Child Psychology, 77(1), 3060.CrossRefGoogle ScholarPubMed
Joanisse, M. F., & Seidenberg, M. S. (1998). Specific language impairment: A deficit in grammar or processing? Trends in Cognitive Sciences, 2(7), 240247.CrossRefGoogle ScholarPubMed
Joanisse, M. F., & Seidenberg, M. S. (1999). Impairments in verb morphology after brain injury: A connectionist model. Proceedings of the National Academy of Sciences, 96(13), 75927597.CrossRefGoogle ScholarPubMed
Kelly, S. W., Griffiths, S., & Frith, U. (2002). Evidence for implicit sequence learning in dyslexia. Dyslexia, 8(1), 4352.CrossRefGoogle ScholarPubMed
Kidd, E. (2012). Implicit statistical learning is directly associated with the acquisition of syntax. Developmental Psychology, 48(1), 171184.CrossRefGoogle ScholarPubMed
Kidd, E., & Arciuli, J. (2016). Individual differences in statistical learning predict children’s comprehension of syntax. Child Development, 87(1), 184193.CrossRefGoogle ScholarPubMed
Kidd, E., Brandt, S., Lieven, E., & Tomasello, M. (2007). Object relatives made easy: A crosslinguistic comparison of the constraints influencing young children’s processing of relative clauses. Language and Cognitive Processes, 22(6), 860897.CrossRefGoogle Scholar
Kidd, E., & Kirjavainen, M. (2011). Investigating the contribution of procedural and declarative memory to the acquisition of past tense morphology: Evidence from Finnish. Language and Cognitive Processes, 26(4-6), 794829.CrossRefGoogle Scholar
Klem, M., Melby-Lervåg, M., Hagtvet, B., Lyster, S. A. H., Gustafsson, J. E., & Hulme, C. (2015). Sentence repetition is a measure of children’s language skills rather than working memory limitations. Developmental Science, 18(1), 146154.CrossRefGoogle ScholarPubMed
Kort, W., Schittekatte, M., & Compaan, E. (2008) Clinical Evaluation of Language Fundamentals-4-NL (CELF-4-NL). Pearson.Google Scholar
Koster, C., Been, P. H., Krikhaar, E. M., Zwarts, F., Diepstra, H. D., & Van Leeuwen, T. H. (2005). Differences at 17 months: Productive language patterns in infants at familial risk for dyslexia and typically developing infants. Journal of Speech, Language and Hearing Research, 48(2), 426438.CrossRefGoogle ScholarPubMed
Lammertink, I., Boersma, P., Wijnen, F., & Rispens, J. (2017). Statistical learning in specific language impairment: A meta-analysis. Journal of Speech, Language, and Hearing Research, 60(12), 34743486.CrossRefGoogle ScholarPubMed
Lammertink, I., Boersma, P., Wijnen, F., & Rispens, J. (2020a). Statistical learning in the visuomotor domain and its relation to grammatical proficiency in children with and without developmental language disorder: A conceptual replication and meta-analysis. Language Learning and Development, 16(4), 426450.CrossRefGoogle Scholar
Lammertink, I., Boersma, P., Wijnen, F., & Rispens, J. (2020b). Children with developmental language disorder have an auditory verbal statistical learning deficit: Evidence from an online measure. Language Learning, 70(1), 137178.CrossRefGoogle Scholar
Lammertink, I., Van Witteloostuijn, M., Boersma, P., Wijnen, F., & Rispens, J. (2019). Auditory statistical learning in children: Novel insights from an online measure. Applied Psycholinguistics, 40(2), 279302.CrossRefGoogle Scholar
Law, J. M., Vandermosten, M., Ghesquière, P., & Wouters, J. (2017). Predicting future reading problems based on pre-reading auditory measures: A longitudinal study of children with a familial risk of dyslexia. Frontiers in Psychology, 8, 124.CrossRefGoogle ScholarPubMed
Le Clercq, C. M., van der Schroeff, M. P., Rispens, J. E., Ruytjens, L., Goedegebure, A., van Ingen, G., & Franken, M. C. (2017). Shortened nonword repetition task (NWR-S): A simple, quick, and less expensive outcome to identify children with combined specific language and reading impairment. Journal of Speech, Language, and Hearing Research, 60(8), 22412248.CrossRefGoogle ScholarPubMed
Leikin, M., & Zur Hagit, E. (2006). Morphological processing in adult dyslexia. Journal of Psycholinguistic Research, 35(6), 471490.CrossRefGoogle ScholarPubMed
López-Barroso, D., Cucurell, D., Rodríguez-Fornells, A., & de Diego-Balaguer, R. (2016). Attentional effects on rule extraction and consolidation from speech. Cognition, 152, 6169.CrossRefGoogle ScholarPubMed
Lum, J. A., Conti-Ramsden, G., Morgan, A. T., & Ullman, M. T. (2014). Procedural learning deficits in specific language impairment (SLI): A meta-analysis of serial reaction time task performance. Cortex, 51, 110.CrossRefGoogle ScholarPubMed
Lum, J. A., Ullman, M. T., & Conti-Ramsden, G. (2013). Procedural learning is impaired in dyslexia: Evidence from a meta-analysis of serial reaction time studies. Research in Developmental Disabilities, 34(10), 34603476.CrossRefGoogle ScholarPubMed
Lyytinen, H., Ahonen, T., Eklund, K., Guttorm, T. K., Laakso, M. L., Leinonen, S., Leppanen, P., Lyytinen, P., Poikkeus, A., Puolakanaho, A., Richardson, U., & Viholainen, H. (2001). Developmental pathways of children with and without familial risk for dyslexia during the first years of life. Developmental Neuropsychology, 20(2), 535554.CrossRefGoogle ScholarPubMed
MacDonald, M. C., & Christiansen, M. H. (2002). Reassessing working memory: Comment on Just and Carpenter (1992) and Waters and Caplan (1996). Psychological Review, 109(1), 3554.CrossRefGoogle Scholar
Mainela-Arnold, E., & Evans, J. L. (2005). Beyond capacity limitations: Determinants of word recall performance on verbal working memory span tasks in children with SLI. Journal of Speech, Language & Hearing Research, 48(4), 897909.CrossRefGoogle ScholarPubMed
Mann, V. A., Shankweiler, D., & Smith, S. T. (1984). The association between comprehension of spoken sentences and early reading ability: The role of phonetic representation. Journal of Child Language, 11(3), 627643.CrossRefGoogle ScholarPubMed
Marcus, G. F., Pinker, S., Ullman, M., Hollander, M., Rosen, T. J., Xu, F., & Clahsen, H. (1992). Overregularization in language acquisition. Monographs of the Society for Research in Child Development, 57(4), 1178.CrossRefGoogle ScholarPubMed
Marshall, C. (2020). Investigating the relationship between syntactic and short-term/working memory impairments in children with developmental disorders is not a straightforward endeavour. First Language, 40(4), 491499.CrossRefGoogle Scholar
McArthur, G. M., Hogben, J. H., Edwards, V. T., Heath, S. M., & Mengler, E. D. (2000). On the “specifics” of specific reading disability and specific language impairment. The Journal of Child Psychology and Psychiatry and Allied Disciplines, 41(7), 869874.CrossRefGoogle ScholarPubMed
McGregor, K. K. (2009). Semantic deficits associated with developmental language disorders. In Schwartz, R. G. (ed.), The handbook of child language disorders. Psychology Press.Google Scholar
Melby-Lervåg, M., Lyster, S. A., & Hulme, C. (2012). Phonological skills and their role in learning to read: A meta-analytic review. Psychological Bulletin, 138(2), 322352.CrossRefGoogle ScholarPubMed
Metsala, J. L., Stavrinos, D., & Walley, A. C. (2009). Children’s spoken word recognition and contributions to phonological awareness and nonword repetition: A 1-year follow-up. Applied Psycholinguistics, 30(1), 101121.CrossRefGoogle Scholar
Mintz, T. (2002). Category induction from distributional cues in an artificial language. Memory & Cognition, 30, 678686.CrossRefGoogle Scholar
Mintz, T. (2003). Frequent frames as a cue for grammatical categories in 327 child directed speech. Cognition, 90, 91117.CrossRefGoogle Scholar
Misyak, J. B., Christiansen, M. H., & Tomblin, J. B. (2010). On-line individual differences in statistical learning predict language processing. Frontiers in Psychology, 1, 31.CrossRefGoogle ScholarPubMed
Misyak, J. B., & Christiansen, M. H. (2012). Statistical learning and language: An individual differences study. Language Learning, 62(1), 302331.CrossRefGoogle Scholar
Munson, B., Kurtz, B. A., & Windsor, J. (2005). The influence of vocabulary size, phonotactic probability, and wordlikeness on nonword repetitions of children with and without specific language impairment. Journal of Speech, Language, and Hearing Research, 48, 10331047.CrossRefGoogle ScholarPubMed
Nash, H. M., Hulme, C., Gooch, D., & Snowling, M. J. (2013). Preschool language profiles of children at family risk of dyslexia: Continuities with specific language impairment. Journal of Child Psychology and Psychiatry, 54(9), 958968.CrossRefGoogle ScholarPubMed
Nicolson, R. I., & Fawcett, A. J. (2007). Procedural learning difficulties: Reuniting the developmental disorders? Trends in Neurosciences, 30(4), 135141.CrossRefGoogle ScholarPubMed
Nicolson, R. I., & Fawcett, A. J. (2011). Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex, 47(1), 117127.CrossRefGoogle ScholarPubMed
Orgassa, A., & Weerman, F. (2008). Dutch gender in specific language impairment and second language acquisition. Second Language Research, 24(3), 333364.CrossRefGoogle Scholar
Pennington, B. F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385413.CrossRefGoogle ScholarPubMed
Psychology Software Tools, Inc. (2012). E-Prime 2.0.Google Scholar
Qi, Z., Sanchez Araujo, Y., Georgan, W.C., Gabrieli, J.D., & Arciuli, J. (2019). Hearing matters more than seeing: A cross-modality study of statistical learning and reading ability. Scientific Studies of Reading, 23(1), 101115.CrossRefGoogle Scholar
R Development Core Team (2008). R: A language and environment for statistical computing. R Foundation for Statistical Computing.Google Scholar
Ramus, F. (2003). Developmental dyslexia: Specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13(2), 212218.CrossRefGoogle ScholarPubMed
Ramus, F., Marshall, C. R., Rosen, S., & van der Lely, H. K. (2013). Phonological deficits in specific language impairment and developmental dyslexia: Towards a multidimensional model. Brain, 136(2), 630645.CrossRefGoogle ScholarPubMed
Ramus, F., & Szenkovits, G. (2008). What phonological deficit? The Quarterly Journal of Experimental Psychology, 61(1), 129141.CrossRefGoogle ScholarPubMed
Raven, J. (2003). Raven progressive matrices. Springer.Google Scholar
Reggiani, D. (2010). Dyslexia and the acquisition of syntax: Passive and control. Doctoral dissertation, University of Verona, Italy.Google Scholar
Rice, M. L., & Wexler, K. (1996). Toward tense as a clinical marker of specific language impairment in English-speaking children. Journal of Speech, Language, and Hearing Research, 39(6), 12391257.CrossRefGoogle ScholarPubMed
Riches, N. (2020). Commentary on special issue: Syntax and verbal short term memory. First Language, 40(4), 500506.CrossRefGoogle Scholar
Rispens, J., Baker, A., & Duinmeijer, I. (2015). Word recognition and nonword repetition in children with language disorders: The effects of neighborhood density, lexical frequency, and phonotactic probability. Journal of Speech, Language, and Hearing Research, 58(1), 7892.CrossRefGoogle ScholarPubMed
Rispens, J., & Baker, A. (2012). Nonword repetition: The relative contributions of phonological short-term memory and phonological representations in children with language and reading impairment. Journal of Speech, Language, and Hearing Research, 55(3), 683694.CrossRefGoogle ScholarPubMed
Rispens, J., & Been, P. (2007). Subject-verb agreement and phonological processing in developmental dyslexia and specific language impairment (SLI): A closer look. International Journal of Language & Communication Disorders/Royal College of Speech & Language Therapists, 42(3), 293305.CrossRefGoogle ScholarPubMed
Rispens, J. E., Been, P. H., & Zwarts, F. (2006). Brain responses to subject-verb agreement violations in spoken language in developmental dyslexia: An ERP study. Dyslexia, 12(2), 134149.CrossRefGoogle Scholar
Rispens, J., de Bree, E., & Kerkhoff, A (2014). What’s in a suffix? The past tense in Dutch children with reading problems. In Hoeksema, J., Gilbers, D., & Hendriks, P. (Eds.), Black book: A festschrift in honor of Frans Zwarts (pp. 271281).Google Scholar
Rispens, J., Roeleven, S., & Koster, C. (2004). Sensitivity to subject–verb agreement in spoken language in children with developmental dyslexia. Journal of Neurolinguistics, 17(5), 333347.CrossRefGoogle Scholar
Robertson, E. K., & Joanisse, M. F. (2010). Spoken sentence comprehension in children with dyslexia and language impairment: The roles of syntax and working memory. Applied Psycholinguistics, 31(1), 141165.CrossRefGoogle Scholar
Rüsseler, J., Gerth, I., & Münte, T. F. (2006). Implicit learning is intact in adult developmental dyslexic readers: Evidence from the serial reaction time task and artificial grammar learning. Journal of Clinical and Experimental Neuropsychology, 28(5), 808827.CrossRefGoogle ScholarPubMed
Scarborough, H. S. (1990). Very early language deficits in dyslexic children. Child Development, 61(6), 17281743.CrossRefGoogle ScholarPubMed
Schittekatte, M., Groenvynck, H., Fontaine, J., & Dekker, P. (2007). TEAch: Test of Everyday Attention for Children. Pearson.Google Scholar
Schmalz, X., Altoè, G., & Mulatti, C. (2017). Statistical learning and dyslexia: A systematic review. Annals of Dyslexia, 67(2), 147162.CrossRefGoogle ScholarPubMed
Schmalz, X., Moll, K., Mulatti, C., & Schulte-Körne, G. (2019). Is statistical learning ability related to reading ability, and if so, why? Scientific Studies of Reading, 23(1), 6476.CrossRefGoogle Scholar
Schneider, W., Eschman, A., & Zuccolotto, A. (2012). E-Prime 2.0 reference guide manual. Psychology Software Tools.Google Scholar
Shankweiler, D., Crain, S., Katz, L., Fowler, A. E., Liberman, A. M., Brady, S. A., Thornton, R., Lundquist, E., Dreyer, L., Fletcher, J. M., Stuebing, K. K., Shaywitz, S. E., & Shaywitz, B. A. (1995). Cognitive profiles of reading-disabled children: Comparison of language skills in phonology, morphology, and syntax. Psychological Science, 6(3), 149156.CrossRefGoogle Scholar
Siegelman, N., & Frost, R. (2015). Statistical learning as an individual ability: Theoretical perspectives and empirical evidence. Journal of Memory and Language, 81, 105120.CrossRefGoogle ScholarPubMed
Sigurdardottir, H.M., Danielsdottir, H.B., Gudmundsdottir, M., Hjartarson, K.H., Thorarinsdottir, E.A., & Kristjánsson, Á. (2017). Problems with visual statistical learning in developmental dyslexia. Scientific Reports, 7(1), Article 606.CrossRefGoogle ScholarPubMed
Singh, S., Walk, A.M., & Conway, C.M. (2018). Atypical predictive processing during visual statistical learning in children with developmental dyslexia: An event-related potential study. Annals of Dyslexia, 68(2), 115.CrossRefGoogle Scholar
Snowling, M. J. (2001). From language to reading and dyslexia. Dyslexia, 7(1), 3746.CrossRefGoogle ScholarPubMed
Snowling, M. J., & Melby-Lervåg, M. (2016). Oral language deficits in familial dyslexia: A meta-analysis and review. Psychological Bulletin, 142(5), 498545.CrossRefGoogle ScholarPubMed
Steacy, L.M., Compton, D.L., Petscher, Y., Elliott, J.D., Smith, K., Rueckl, J.G., Sawi, O., Frost, S.J., & Pugh, K.R. (2019). Development and prediction of context-dependent vowel pronunciation in elementary readers. Scientific Studies of Reading, 23(1), 4963.CrossRefGoogle ScholarPubMed
Stein, J., & Walsh, V. (1997). To see but not to read; the magnocellular theory of dyslexia. Trends in Neurosciences, 20(4), 147152.CrossRefGoogle Scholar
Tallal, P. (2004). Improving language and literacy is a matter of time. Nature Reviews Neuroscience, 5(9), 721728.CrossRefGoogle ScholarPubMed
Ullman, M. T. (2001). The neural basis of lexicon and grammar in first and second language: The declarative/procedural model. Bilingualism: Language and Cognition, 4(2), 105122.CrossRefGoogle Scholar
Ullman, M.T., Earle, F.S., Walenski, M., & Janacsek, K. (2019). The neurocognition of developmental disorders of language. Annual Review of Psychology, 71(5), 389417.CrossRefGoogle ScholarPubMed
Ullman, M. T., & Pierpont, E. I. (2005). Specific language impairment is not specific to language: The procedural deficit hypothesis. Cortex, 41(3), 399433.CrossRefGoogle Scholar
van Alphen, P., De Bree, E., Gerrits, E., De Jong, J., Wilsenach, C., & Wijnen, F. (2004). Early language development in children with a genetic risk of dyslexia. Dyslexia, 10(4), 265288.CrossRefGoogle ScholarPubMed
Van den Bos, K. P., Spelberg, H., Scheepsma, A., & De Vries, J. (1994). De Klepel. Vorm A en B. Een test voor de leesvaardigheid van pseudowoorden. Verantwoording, handleiding, diagnostiek en behandeling. Berkhout.Google Scholar
Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45(1), 240.CrossRefGoogle ScholarPubMed
Vender, M., Mantione, F., Savazzi, S., Delfitto, D., & Melloni, C. (2017). Inflectional morphology and dyslexia: Italian children’s performance in a nonword pluralization task. Annals of Dyslexia, 67(3), 401426.CrossRefGoogle Scholar
Verhoeven, L., Steenge, J., & van Balkom, H. (2011). Verb morphology as clinical marker of specific language impairment: Evidence from first and second language learners. Research in Developmental Disabilities, 32(3), 11861193.CrossRefGoogle ScholarPubMed
Wagenmakers, E. J., Wetzels, R., Borsboom, D., van der Maas, H. L., & Kievit, R. A. (2012). An agenda for purely confirmatory research. Perspectives on Psychological Science, 7(6), 632638.CrossRefGoogle ScholarPubMed
Waltzman, D. E., & Cairns, H. S. (2000). Grammatical knowledge of third grade good and poor readers. Applied Psycholinguistics, 21(2), 263284.CrossRefGoogle Scholar
West, G., Vadillo, M. A., Shanks, D. R., & Hulme, C. (2017). The procedural learning deficit hypothesis of language learning disorders: We see some problems. Developmental Science, 21(2).Google ScholarPubMed
Wexler, K. (1994). Optional infinitives, head movement, and the economy of derivation. In Lightfoot, D., & Hornstein, N. (Eds.), Verb movement. Cambridge University Press.Google Scholar
Wijnen, F. (2013). Acquisition of linguistic categories: Cross-domain convergences. Birdsong, Speech, and Language: Exploring the Evolution of Mind and Brain, 157177.Google Scholar
van Witteloostuijn, M., Boersma, P., Wijnen, F., & Rispens, J. (2017). Visual artificial grammar learning in dyslexia: A meta-analysis. Research in Developmental Disabilities, 70, 126137.CrossRefGoogle ScholarPubMed
van Witteloostuijn, M., Boersma, P., Wijnen, F., & Rispens, J. (2019). Statistical learning abilities of children with dyslexia across three experimental paradigms. Plos one, 14(8), e0220041.CrossRefGoogle ScholarPubMed
van Witteloostuijn, M., Boersma, P., Wijnen, F., & Rispens, J. (2021). The contribution of individual differences in statistical learning to reading and spelling performance in children wit hand without dyslexia. Dyslexia, DOI: 10.1002/dys.1678.Google Scholar
Wolf, M., & Bowers, P. G. (1999). The double-deficit hypothesis for the developmental dyslexias. Journal of Educational Psychology, 91(3), 415438.CrossRefGoogle Scholar