Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-13T00:50:43.715Z Has data issue: false hasContentIssue false

Stopping power of a helium plasma under LTE or NLTE conditions

Published online by Cambridge University Press:  13 September 2018

Luis González-Gallego
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, E-13071 Ciudad Real, Spain
Manuel D. Barriga-Carrasco*
Affiliation:
E.T.S.I. Industriales, Universidad de Castilla-La Mancha, E-13071 Ciudad Real, Spain
Juan Miguel Gil
Affiliation:
Departamento de Física, Universidad de las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
Rafael Rodríguez
Affiliation:
Departamento de Física, Universidad de las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
Guadalupe Espinosa
Affiliation:
Departamento de Física, Universidad de las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
*
Author for correspondence: Manuel D. Barriga-Carrasco, E.T.S.I. Industriales, Universidad de Castilla-La Mancha, E-13071 Ciudad Real, Spain, E-mail: ManuelD.Barriga@uclm.es

Abstract

In this work, the stopping power of a partially ionized helium plasma due to its free and bound electrons is analyzed for an electron temperature and density in which local thermal equilibrium (LTE) or non-local thermal equilibrium (NLTE) regimes can be possible. In particular by means of collisional-radiative models, the average ionization of the plasma as well as the abundances of different helium species (HeI, HeII, and HeIII) are analyzed in both LTE and NLTE thermodynamic states. The influence of this ionization and of the different ion abundances on the stopping power of the helium plasma is shown to be quite significant. Finally, our theoretical model is compared with experimental results on slowing down of swift argon ions in helium plasma.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arista, NR and Brandt, W (1984) Dielectric response of quantum plasmas in thermal-equilibrium. Physical Review A 29(3), 14711480.Google Scholar
Barriga-Carrasco, MD (2010) Full conserving dielectric function for plasmas at any degeneracy. Laser and Particle Beams 28(2), 307311.Google Scholar
Barriga-Carrasco, MD (2013) PELO and PELOS Java Programs. Available at http://www.uclm.es/area/amf/manuel/programas.htm (Accessed 1 December 2012).Google Scholar
Barriga-Carrasco, MD and Casas, D (2013) Electronic stopping of protons in xenon plasmas due to free and bound electrons. Laser and Particle Beams 31(1), 105111.Google Scholar
Barriga-Carrasco, MD and Maynard, G (2005) A 3D trajectory numerical simulation of the transport of energetic light ion beams in plasma targets. Laser and Particle Beams 23(2), 211217.Google Scholar
Bell, RJ, Bish, DRB and Gill, PE (1972) Separate subshell contributions to stopping power of rare-gases. Journal of Physics Part B Atomic and Molecular Physics 5(3), 476482.Google Scholar
Bethe, H (1930) The theory of the passage of rapid neutron radiation through matter. Annalen Der Physik 5(3), 325400.Google Scholar
Casas, D, Andreev, AA, Schnuerer, M, Barriga-Carrasco, MD, Morales, R and Gonzalez-Gallego, L (2016) Stopping power of a heterogeneous warm dense matter. Laser and Particle Beams 34(2), 306314.Google Scholar
Casas, D, Barriga-Carrasco, MD and Rubio, J (2013) Evaluation of slowing down of proton and deuteron beams in CH2, LiH, and Al partially ionized plasmas. Physical Review E 88(3), 033102.Google Scholar
Dendy, RO (1995) Plasma Physics: An Introductory Course. Cambridge: Cambridge University Press, p. 476.Google Scholar
Deutsch, C (1986) Inertial confinement fusion driven by intense ion-beams. Annales De Physique 11(1), 1111.Google Scholar
Deutsch, C, Maynard, G, Chabot, M, Gardes, D, Della-Negra, S, Bimbot, R, Rivet, M-F, Fleurier, C, Couillaud, C, Hoffmann, DHH et al. (2010) Open Plasma Physics Journal 3, 125131.Google Scholar
Espinosa, G, Rodríguez, R, Gil, JM, Suzuki-Vidal, F, Lebedev, SV, Ciardi, A, Rubiano, JG and Martel, P (2017) Influence of atomic kinetics in the simulation of plasma microscopic properties and thermal instabilities for radiative bow shock experiments. Physical Review E 95(3), 033201.Google Scholar
Espinosa Vivas, G (2015) Determinación y parametrización de propiedades radiativas de plasmas para la simulación y análisis de experimentos de Astrofísica de Laboratorio. Ph.D. thesis, Universidad de Las Palmas de Gran Canaria.Google Scholar
Fischer, CF (1987) GENERAL Hartree-Fock program. Computer Physics Communications 43(3), 355365.Google Scholar
Frank, A, Blazević, A, Bagnoud, V, Basko, MM, Borner, M, Cayzac, W, Kraus, D, Hessling, T, Hoffmann, DHH, Ortner, A et al. (2013) Energy loss and charge transfer of argon in a laser-generated carbon plasma. Physical Review Letters 110(11), 115001.Google Scholar
Garbet, X, Deutsch, C and Maynard, G (1987) Mean excitation-energies for ions in gases and plasmas. Journal of Applied Physics 61(3), 907916.Google Scholar
Griem, HR (2005) Principles of plasma spectroscopy, vol. 2. Cambridge, UK: Cambridge University Press.Google Scholar
Haken, H, Brewer, WD and Wolf, HC (2006) The Physics of Atoms and Quanta: Introduction to Experiments and Theory. Advanced Texts in Physics. New York: Springer.Google Scholar
Hasegawa, J, Yokoya, N, Kobayashi, Y, Yoshida, M, Kojima, M, Sasaki, T, Fukuda, H, Ogawa, M, Oguri, Y and Murakami, T (2003) Stopping power of dense helium plasma for fast heavy ions. Laser and Particle Beams (1), 711.Google Scholar
Lindhard, J (1954) On the properties of a gas of charged particles. Matematisk-Fysiske Meddelelser Kongelige Danske Videnskabernes Selskab 28(8), 157.Google Scholar
Mayer, H (1947) Loas Alamos internal report LA-647, Loa Alamos national laboratory (unpublished).Google Scholar
Maynard, G and Deutsch, C (1985) Born random phase approximation for ion stopping in an arbitrarily degenerate electron fluid. Journal de Physique 46, 11131122.Google Scholar
McWhirter, R (1978) Data needs, priorities and accuracies for plasma spectroscopy. Physics Reports 2, 165.Google Scholar
Mintsev, V, Gryaznov, V, Kulish, M, Filimonov, A, Fortov, V, Sharkov, B, Golubev, A, Fertman, A, Turtikov, V, Vishnevskiy, A et al. (1999) Stopping power of proton beam in a weakly nonideal xenon plasma. Contributions to Plasma Physics 39(1–2), 4548.Google Scholar
Moore, CE (1949) US National Bureau of Standards Circular 467.Google Scholar
Ogawa, M, Neuner, U, Kobayashi, H, Nakajima, Y, Nishigori, K, Takayama, K, Iwase, O, Yoshida, M, Kojima, M, Hasegawa, J et al. (2000) Measurement of stopping power of 240 MeV argon ions in partially ionized helium discharge plasma. Laser and Particle Beams 18(4), 647653.Google Scholar
Saha, MN (1921) On a physical theory of stellar spectra. Proceedings of the Royal Society of London Series A-Containing Papers of a Mathematical and Physical Character 99(697), 135153.Google Scholar
Zylstra, A, Frenje, J, Grabowski, P, Li, C, Collins, G, Fitzsimmons, P, Glenzer, S, Graziani, F, Hansen, S, Hu, S et al. (2015) Measurement of charged-particle stopping in warm dense plasma. Physical Review Letters 114(21), 215002.Google Scholar