Internet Explorer 11 is being discontinued by Microsoft in August 2021.
If you have difficulties viewing the site on Internet Explorer 11 we
recommend using a different browser such as Microsoft Edge, Google
Chrome, Apple Safari or Mozilla Firefox.
While an understanding of electronic principles is vitally important for scientists and engineers working across many disciplines, the breadth of the subject can make it daunting. This textbook offers a concise and practical introduction to electronics, suitable for a one-semester undergraduate course as well as self-guided students. Beginning with the basics of general circuit laws and resistor circuits to ease students into the subject, the textbook then covers a wide range of topics, from passive circuits to semiconductor-based analog circuits and basic digital circuits. Exercises are provided at the end of each chapter, and answers to select questions are included at the end of the book. The complete solutions manual is available for instructors to download, together with eight laboratory exercises that parallel the text. Now in its second edition, the text has been updated and expanded with additional topic coverage and exercises.
While an understanding of electronic principles is vitally important for scientists and engineers working across many disciplines, the breadth of the subject can make it daunting. This textbook offers a concise and practical introduction to electronics, suitable for a one-semester undergraduate course as well as self-guided students. Beginning with the basics of general circuit laws and resistor circuits to ease students into the subject, the textbook then covers a wide range of topics, from passive circuits to semiconductor-based analog circuits and basic digital circuits. Exercises are provided at the end of each chapter, and answers to select questions are included at the end of the book. The complete solutions manual is available for instructors to download, together with eight laboratory exercises that parallel the text. Now in its second edition, the text has been updated and expanded with additional topic coverage and exercises.
Ideal for a one-semester course, this concise textbook covers basic electronics for undergraduate students in science and engineering. Beginning with the basics of general circuit laws and resistor circuits to ease students into the subject, the textbook then covers a wide range of topics, from passive circuits through to semiconductor-based analog circuits and basic digital circuits. Using a balance of thorough analysis and insight, readers are shown how to work with electronic circuits and apply the techniques they have learnt. The textbook's structure makes it useful as a self-study introduction to the subject. All mathematics is kept to a suitable level, and there are several exercises throughout the book. Password-protected solutions for instructors, together with eight laboratory exercises that parallel the text, are available online at www.cambridge.org/Eggleston.
Ideal for a one-semester course, this concise textbook covers basic electronics for undergraduate students in science and engineering. Beginning with the basics of general circuit laws and resistor circuits to ease students into the subject, the textbook then covers a wide range of topics, from passive circuits through to semiconductor-based analog circuits and basic digital circuits. Using a balance of thorough analysis and insight, readers are shown how to work with electronic circuits and apply the techniques they have learnt. The textbook's structure makes it useful as a self-study introduction to the subject. All mathematics is kept to a suitable level, and there are several exercises throughout the book. Password-protected solutions for instructors, together with eight laboratory exercises that parallel the text, are available online at www.cambridge.org/Eggleston.
Providing in-depth coverage and comprehensive discussion on essential concepts of electronics engineering, this textbook begins with detailed explanation of classification of semiconductors, transport phenomena in semiconductor and Junction diodes. It covers circuit modeling techniques for bipolar junction transistors, used in designing amplifiers. The textbook discusses design construction and operation principle for junction gate field-effect transistor, silicon controlled rectifier and operational amplifier. Two separate chapters on Introduction to Communication Systems and Digital Electronics covers topics including modulation techniques, logic circuits, De Morgan's theorem and digital circuits. Applications of oscillators, silicon controlled rectifier and operational amplifier are covered in detail. Pedagogical features including solved problems, multiple choice questions and unsolved exercises are interspersed throughout the textbook for better understating of concepts. This text is the ideal resource for first year undergraduate engineering students taking an introductory, single-semester course in fundamentals of electronics engineering/principles of electronics engineering.
Providing in-depth coverage and comprehensive discussion on essential concepts of electronics engineering, this textbook begins with detailed explanation of classification of semiconductors, transport phenomena in semiconductor and Junction diodes. It covers circuit modeling techniques for bipolar junction transistors, used in designing amplifiers. The textbook discusses design construction and operation principle for junction gate field-effect transistor, silicon controlled rectifier and operational amplifier. Two separate chapters on Introduction to Communication Systems and Digital Electronics covers topics including modulation techniques, logic circuits, De Morgan's theorem and digital circuits. Applications of oscillators, silicon controlled rectifier and operational amplifier are covered in detail. Pedagogical features including solved problems, multiple choice questions and unsolved exercises are interspersed throughout the textbook for better understating of concepts. This text is the ideal resource for first year undergraduate engineering students taking an introductory, single-semester course in fundamentals of electronics engineering/principles of electronics engineering.
Analog and digital electronics are an important part of most modern courses in physics. Closely mapped to the current UGC CBCS syllabus, this comprehensive textbook will be a vital resource for undergraduate students of physics and electronics. The content is structured to emphasize fundamental concepts and applications of various circuits and instruments. A wide range of topics like semiconductor physics, diodes, transistors, amplifiers, Boolean algebra, combinational and sequential logic circuits, and microprocessors are covered in lucid language and illustrated with many diagrams and examples for easy understanding. A diverse set of questions in each chapter, including multiple-choice, reasoning, numerical, and practice problems, will help students consolidate the knowledge gained. Finally, computer simulations and project ideas for projects will help readers apply the theoretical concepts and encourage experiential learning.
Analog and digital electronics are an important part of most modern courses in physics. Closely mapped to the current UGC CBCS syllabus, this comprehensive textbook will be a vital resource for undergraduate students of physics and electronics. The content is structured to emphasize fundamental concepts and applications of various circuits and instruments. A wide range of topics like semiconductor physics, diodes, transistors, amplifiers, Boolean algebra, combinational and sequential logic circuits, and microprocessors are covered in lucid language and illustrated with many diagrams and examples for easy understanding. A diverse set of questions in each chapter, including multiple-choice, reasoning, numerical, and practice problems, will help students consolidate the knowledge gained. Finally, computer simulations and project ideas for projects will help readers apply the theoretical concepts and encourage experiential learning.