Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-18T20:44:36.921Z Has data issue: false hasContentIssue false

21 - Theoretical Overview of Black Phosphorus

from Part III

Published online by Cambridge University Press:  22 June 2017

Phaedon Avouris
Affiliation:
IBM T. J. Watson Research Center, New York
Tony F. Heinz
Affiliation:
Stanford University, California
Tony Low
Affiliation:
University of Minnesota
Get access
Type
Chapter
Information
2D Materials
Properties and Devices
, pp. 381 - 412
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

21.7 References

Castellanos-Gomez, A., Black phosphorus: narrow gap, wide applications. J. Phys. Chem. Lett., 6 (2015), 42804291.CrossRefGoogle ScholarPubMed
Keyes, R., The electrical properties of black phosphorus. Phys. Rev., 92 (1953), 580584.CrossRefGoogle Scholar
Liu H, H., Du, Y., Deng, Y., and Peide, D. Y.. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev., 44 (2015), 27322743.Google Scholar
Xia, F., Wang, H., and Jia, Y., Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun., 5 (2014), 4458.Google Scholar
Koenig, S. P., Doganov, R. A., Schmidt, H., Neto, A. H. Castro, and Özyilmaz, B., Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett., 104 (2014), 103106.Google Scholar
Li, L., Yu, Y., Ye, G. J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X. H., and Zhang, Y., Black phosphorus field-effect transistors. Nat. Nanotechnol., 9 (2014), 372377Google Scholar
Castellanos-Gomez, A., Vicarelli, L., Prada, E., Island, J. O., Narasimha-Acharya, K. L., Blanter, S. I., Groenendijk, D. J., Buscema, M., Steele, G. A., Alvarez, J. V., Zandbergen, H. W., Palacios, J. J., and van der Zant, H. S. J., Isolation and characterization of few-layer black phosphorus. 2D Materials, 1(2) (2014), 025001.CrossRefGoogle Scholar
Liu, H., Neal, A. T., Zhu, Z., Luo, Z., Xu, X., Tomanek, D., and Ye, P. D., Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano, 8 (2014), 40334041.Google Scholar
Rudenko, A. N. and Katsnelson, M. I.. Quasiparticle band structure and tight-binding model for single-and bilayer black phosphorus. Phys. Rev. B, 89 (2014), 201408.Google Scholar
Qiao, J., Kong, X., Hu, Z.-X., Yang, F., and Ji, W., High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun., 5 (2014), 4475.Google Scholar
Low, T., Rodin, A. S., Carvalho, A., Jiang, Y., Wang, H., Xia, F., and Neto, A. H. Castro, Tunable optical properties of multilayer black phosphorus thin films. Phys. Rev. B, 90 (2014), 075434.Google Scholar
Buscema, M., Groenendijk, D. J., Blanter, S. I., Steele, G. A., van der Zant, H. S., and Castellanos-Gomez, A.. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett., 14 (2014), 33473352.Google Scholar
Low, T., Engel, M., Steiner, M., and Avouris, P.. Origin of photoresponse in black phosphorus phototransistors. Phys. Rev. B., 90 (2014), 081408.Google Scholar
Engel, M., Steiner, M., and Avouris, P., Black phosphorus photodetector for multispectral: high-resolution imaging. Nano Lett., 14 (2014), 6414.Google Scholar
Yuan, H., Liu, X., Afshinmanesh, F., Li, W., Xu, G., Sun, J., Lian, B., Curto, A. G., Ye, G., Hikita, Y., and Shen, Z.. Polarization-sensitive broadband photodetector using a black phosphorus vertical p–n junction. Nat. Nanotechnol., 10 (2015), 707713.Google Scholar
Hahn, T. and Paufler, P., International Tables for Crystallography, Vol. A. Space-Group Symmetry. Dordrecht: D. Reidel Publishing Co. (1984).Google Scholar
Sengupta, A., Audiffred, M., Heine, T., and Niehaus, T. A., Stacking dependence of carrier transport properties in multilayered black phosphorous. J. Phys.: Condens. Mat., 28 (2016), 075001.Google Scholar
Fei, R. and Yang, L., Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. Nano Lett., 14 (2014), 28842889.Google Scholar
Rodin, A. S., Carvalho, A., and Neto, A. H. Castro, Strain-induced gap modification in black phosphorus. Phys. Rev. Lett., 112 (2014), 176801.Google Scholar
Tran, V., Soklaski, R., Liang, Y., and Yang, L., Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89 (2014), 235319.Google Scholar
Çak1r, D., Sevik, C., and Peeters, F. M., Significant effect of stacking on the electronic and optical properties of few-layer black phosphorus. Phys. Rev. B, 92 (2015), 165406.Google Scholar
Rudenko, A. N., Yuan, S., and Katsnelson, M. I., Toward a realistic description of multilayer black phosphorus: From GW approximation to large-scale tight-binding simulations. Phys. Rev. B, 92 (2015), 085419.Google Scholar
Li, P. and Appelbaum, I., Electrons and holes in phosphorene. Phys. Rev. B, 90 (2014), 115439.Google Scholar
Pereira, J. M. Jr. and Katsnelson, M. I., Landau levels of single layer and bilayer phosphorene. Phys. Rev. B, 92 (2015), 075437.Google Scholar
Cai, Y., Zhang, G., and Zhang, Y.-W., Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep., 4 (2014), 6677.Google Scholar
Hu, Z.-X., Kong, X., Qiao, J., Normanda, B., and Ji, Wei, Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale, 8 (2016), 27402750.CrossRefGoogle ScholarPubMed
Dai, J. and Zeng, X. C., Bilayer phosphorene: effect of stacking order on bandgap and its potential applications in thin-film solar cells. J. Phys. Chem. Lett., 5 (2014), 12891293.Google Scholar
Kittel, C.. Introduction to Solid State Physics. Wiley (2005).Google Scholar
Giuliani, G. and Vignale, G., Quantum Theory of the Electron Liquid. Cambridge: Cambridge University Press (2005).Google Scholar
Low, T., Roldán, R., Wang, H., Xia, F., Avouris, P., Moreno, L. M., and Guinea, F., Plasmons and screening in monolayer and multilayer black phosphorus. Phys. Rev. Lett., 113 (2014), 106802.Google Scholar
Low, T. and Avouris, P., Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano, 8 (2014), 10861101.Google Scholar
Grigorenko, A. N., Polini, M., and Novoselov, K. S., Graphene plasmonics. Nature Photonics, 6 (2012), 749758.Google Scholar
Bludov, Y. V., Ferreira, A., Peres, N. M., and Vasilevskiy, M. I.. A primer on surface plasmon-polaritons in graphene. Int. J. Mod. Phys. B, 27 (2013), 1341001.Google Scholar
Koppens, F. H., Chang, D. E., and de Abajo, F. J. Garcia. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett., 11 (2011), 33703377.CrossRefGoogle ScholarPubMed
Mikhailov, S. A. and Ziegler, K.. New electromagnetic mode in graphene. Phys. Rev. Lett., 99 (2007), 016803.Google Scholar
Mishchenko, A., Cao, Y., Yu, G. L., Woods, C. R., Gorbachev, R. V., Novoselov, K. S., Geim, A. K., and Levitov, L. S.. Nonlocal response and anamorphosis: the case of few-layer black phosphorus. Nano Lett., 15 (2015), 69916995.Google Scholar
Lv, H. Y., Lu, W. J., Shao, D. F., and Sun, Y. P., Enhanced thermoelectric performance of phosphorene by strain-induced band convergence. Phys. Rev. B, 90 (2014), 085433.CrossRefGoogle Scholar
Manjanath, A., Samanta, A., Pandey, T., and Singh, A. K., Semiconductor to metal transition in bilayer phosphorene under normal compressive strain. Nanotechnology, 26 (2015), 075701.Google Scholar
Xiao, J., Long, M., Zhang, X., Ouyang, J., Xu, H., and Gao, Y., Theoretical predictions on the electronic structure and charge carrier mobility in 2D phosphorus sheets. Sci. Rep., 5 (2015), 09961.Google Scholar
Berkelbach, T. C., Hybertsen, M. S., and Reichman, D. R.. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B, 88 (2013), 045318.CrossRefGoogle Scholar
Chernikov, A., Berkelbach, T. C., Hill, H. M., Rigosi, A., Li, Y., Aslan, O. B., Reichman, D. R., Hybertsen, M. S., and Heinz, T. F.. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett., 113 (2014), 076802.Google Scholar
Tran, V., Fei, R., and Yang, L.. Quasiparticle energies, excitons, and optical spectra of few-layer black phosphorus. 2D Mater., 2 (2015), 044014.Google Scholar
Yang, J., Xu, R., Pei, J., Myint, Y. W., Wang, F., Wang, Z., Zhang, S., Yu, Z., and Lu, Y.. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Science and Applications, 4 (2015), e312.Google Scholar
Keldysh, L. V., Coulomb interaction in thin semiconductor and semimetal films. JETP Lett., 29 (1978), 658.Google Scholar
Cudazzo, P., Tokatly, I. V., and Rubio, A., Phys. Rev. B, 84 (2011), 085406.Google Scholar
Rodin, A. S., Carvalho, A., and Neto, A. H. Castro. Excitons in anisotropic two-dimensional semiconducting crystals. Phys. Rev. B, 90 (2014), 075429.Google Scholar
Chaves, A., Low, T., Avouris, P., Çakir, D., and Peeters, F. M., Anisotropic exciton Stark shift in black phosphorus. Phys. Rev. B, 91 (2015), 155311.Google Scholar
Giannozzi, P., de Gironcoli, S., Pavone, P., and Baroni, S., Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B, 43 (1991), 72317242.Google Scholar
Zhu, L., Zhang, G., and Li, B., Coexistence of size-dependent and size-independent thermal conductivities in phosphorene. Phys. Rev. B, 90 (2014), 214302.Google Scholar
Hu, Z.-X., Kong, X., Qiao, J., Normand, B., and Ji, W., Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. arXiv:1503.06735 [cond-mat.mtrl-sci] (2015).Google Scholar
Qin, G., Yan, Q.-B., Qin, Z., Yue, S.-Y., Hu, M., and Su, G., Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys, 17 (2015), 48544858.Google Scholar
Jain, A. and McGaughey, A. J. H., Strongly anisotropic in-plane thermal transport in single-layer black phosphorene. Sci. Rep., 5 (2015), 8501.Google Scholar
Fei, R. and Yang, L., Lattice vibrational modes and Raman scattering spectra of strained phosphorene. Appl. Phys. Lett., 105 (2014), 083120.Google Scholar
Ong, Z.-Y., Cai, Y., Zhang, G., and Zhang, Y.-W., Strong thermal transport anisotropy and strain modulation in single-layer phosphorene. J. Phys. Chem. C., 118 (2014), 2527225277.Google Scholar
Luo, Z., Maassen, J., Deng, Y., Du, Y., Garrelts, R. P., Lundstrom, M. S., Ye, P. D., and Xu, X., Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus. Nat. Commun., 6 (2015), 8572.Google Scholar
Jeong, C., Datta, S., and Lundstrom, M., Full dispersion versus Debye model evaluation of lattice thermal conductivity with a Landauer approach. J. Appl. Phys., 109 (2011), 073718.Google Scholar
Paul, A., Salamat, S., Jeong, C., Klimeck, G., and Lundstrom, M., An efficient algorithm to calculate intrinsic thermoelectric parameters based on Landauer approach. J. Comput. Electron., 11 (2012), 5666.CrossRefGoogle Scholar
Conrad, K., Maassen, J., and Lundstrom, M., LanTraP (2014), https://nanohub.org/resources/lantrap.Google Scholar
Jeong, C., Datta, S., and Lundstrom, M., Thermal conductivity of bulk and thin-film silicon: A Landauer approach. J. Appl. Phys., 111 (2012), 093708.Google Scholar
Lee, S., Yang, F., Suh, J., Yang, S., Lee, Y., Li, G., Choe, H. S., Suslu, A., Chen, Y., Ko, C., Park, J., Liu, K., Li, J., Hippalgaonkar, K., Urban, J. J., Tongay, S., and Wu, J., Anisotropic in-plane thermal conductivity of black phosphorus nanoribbons at temperatures higher than 100 K. Nat Commun., 6 (2015), 8573.Google Scholar
Jang, H., Wood, J. D., Ryder, C. R., Hersam, M. C., and Cahill, D. G., Anisotropic thermal conductivity of exfoliated black phosphorus. arXiv:1510.00051 [cond-mat.mtrl-sci](2015).CrossRefGoogle Scholar
He, J., Kanatzidis, M. G., and Dravid, V. P., High performance bulk thermoelectrics via a panoscopic approach. Materials Today, 16 (2013), 166176.Google Scholar
Biwas, K., He, J., Blum, I. D., Wu, C.-I., Hogan, T. P., Seidman, D. N., Dravid, V. P., and Kanatzidis, M. G.. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 489 (2012), 414418.Google Scholar
Jeong, C., Kim, R., Luisier, M., Datta, S., and Lundstrom, M., On Landauer versus Boltzmann and full band versus effective mass evaluation of thermoelectric transport coefficients. J. Appl. Phys., 107 (2010), 023707.Google Scholar
Maassen, J. and Lundstrom, M., A computational study of the thermoelectric performance of ultrathin Bi2Te3 films. Appl. Phys. Lett., 102 (2013), 093103.Google Scholar
Verma, D. and Dumitrică, T., Directional-dependent thickness and bending rigidity of phosphorene. Phys. Rev. B, 94 (2016), 121404.Google Scholar
Zhang, J., Liu, H. J., Cheng, L., Wei, J., Liang, J. H., Fan, D. D., Jiang, P. H., Sun, L., and Shi, J., High thermoelectric performance can be achieved in black phosphorus. arXiv:1508.06834 [cond-mat.mtrl-sci] (2015).Google Scholar
Zhang, J., Liu, H. J., Cheng, L., Wei, J., Liang, J. H., Fan, D. D., Shi, J., Tang, X. F., and Zhang, Q. J., Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep., 4 (2014), 6452.CrossRefGoogle ScholarPubMed
Fei, R., Faghaninia, A., Soklaski, R., Yan, J.-A., Lo, C., and Yang, L., Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. Nano Lett., 14 (2014), 63936399.Google Scholar
Qin, G., Yan, Q.-B., Qin, Z., Yue, S.-Y., Cui, H.-J., Zheng, Q.-R., and Su, G., Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance. Sci. Rep., 4 (2014), 6946.Google Scholar
Flores, E., Ares, J. R., Castellanos-Gomez, A., Barawi, M., Ferrer, I. J., and Sanchez, C., Thermoelectric power of bulk black-phosphorus. Appl. Phys. Lett., 106 (2015), 022102.Google Scholar
Hippalgaonkar, K., Wang, Y., Ye, Y., Zhu, H., Wang, Y., Moore, J., and Zhang, X., Record high thermoelectric powerfactor in single and few-layer MoS2. arXiv:1505.06779 [cond-mat.mtrl-sci] (2014).Google Scholar
Jo, I., Pettes, M. T., Ou, E., Wu, W., and Shi, L., Basal-plane thermal conductivity of few-layer molybdenum disulfide. Appl. Phys. Lett., 104 (2014), 201902.Google Scholar
Jones, R. M., Mechanics of Composite Materials. 2nd edn. Boca Raton, FL : CRC Press (1998).Google Scholar
Zhang, D.-B. and Dumitricã, T., Elasticity of ideal single-walled carbon nanotubes via symmetry adapted tight-binding objective modeling. Appl. Phys. Lett., 93 (2008), 031919.Google Scholar
Zhang, D.-B., Akatyeva, E., and Dumitricã, T., Bending ultrathin graphene at the margins of continuum mechanics. Phys. Rev. Lett., 106 (2011), 255503.Google Scholar
Wei, Q. and Peng, X., Superior mechanical flexibility of phosphorene and few-layer black phosphorus. Appl. Phys. Lett., 104 (2014), 251915.Google Scholar
Lee, C., Wei, X. D., Kysar, J. W., and Hone, J., Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321 (2008), 385388.Google Scholar
Castellanos-Gomez, A., Poot, M., Steele, G. A., van der Zant, H. S. J., Agrat, N., and Bollinger, G. R., Elastic properties of freely suspended MoS2 nanosheets. Adv. Mat., 24 (2012), 772775.Google Scholar
Jiang, J.-W. and Park, H. S., Negative Poisson’s ratio in single-layer black phosphorus. Nature Comm., 5 (2014), 47274731.Google Scholar
Yang, Y., Yu, H., York, D., Elstner, M., and Cui, Q., Description of phosphate hydrolysis reactions with the self-consistent-charge density-functional-tight-binding (SCC-DFTB) theory: 1. Parameterization. J. Chem. Theory Comput., 4 (2008), 20672084.Google Scholar
Kou, L., Ma, Y., Smith, S. C., and Chen, C., Anisotropic ripple deformation in phosphorene. J. Phys. Chem. Lett. 6 (2015), 15091513.Google Scholar
Sha, Z.-D., Pei, Q.-X., Ding, Z., Jiang, J.-W., and Zhang, Y. W., Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. J. Phys. D. 48 (2015), 395303.Google Scholar
Hopcroft, M. A., Nix, W. D., and Kenny, T. W., What is the Young’s modulus of silicon? J. Microelectromech. Syst. 19 (2010), 229238.Google Scholar
Wang, Z. and Feng, P. X.-L., Design of black phosphorus 2D nanomechanical resonators by exploiting the intrinsic mechanical anisotropy. 2D Mater. 2 (2015), 021001.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×