Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T12:59:24.712Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2014

Gabriel J. Lord
Affiliation:
Heriot-Watt University, Edinburgh
Catherine E. Powell
Affiliation:
University of Manchester
Tony Shardlow
Affiliation:
University of Bath
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

P., Abrahamsen (1997), A Review of Gaussian Random Fields and Correlation Functions, tech. rep. 917, Norwegian Computing Centre.Google Scholar
R., Adams and J., Fournier (2003), Sobolev Spaces, 2nd ed., Pure and Applied Mathematics vol. 140, Elsevier Science.Google Scholar
R. J., Adler (1981), The Geometry of Random Fields, Chichester: John Wiley & Sons, xi + 280 pp.Google Scholar
E. J., Allen, S. J., Novosel, and Z., Zhang (1998), “Finite element and difference approximation of some linear stochastic partial differential equations”, Stoch. Stoch. Rep. 64: 1-2, 117-142.Google Scholar
S., Allen and J. W., Cahn (1979), “A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening”, Acta Metallurgica, 27: 1085–1095.Google Scholar
S., Asmussen and P. W., Glynn (2007), Stochastic Simulation: Algorithms and Analysis, Stochastic Modelling and Applied Probability vol. 57, New York: Springer-Verlag, xiv + 476 pp.Google Scholar
I., Babuška, R., Tempone, and G. E., Zouraris (2004), “Galerkin finite element approximations of stochastic elliptic partial differential equations”, SIAM J. Numer. Anal. 42: 2, 800-825.Google Scholar
I., Babuška, F., Nobile, and R., Tempone (2007), “A stochastic collocation method for elliptic partial differential equations with random input data”, SIAM J. Numer. Anal. 45: 3, 1005-1034.Google Scholar
A., Bain and D., Crisan (2009), Fundamentals of Stochastic Filtering, Stochastic Modelling and Applied Probability vol. 60, New York: Springer, xiv + 390 pp.Google Scholar
C. T. H., Baker (1978), The Numerical Treatment of Integral Equations, Oxford: Oxford University Press.Google Scholar
G., Bal, J., Garnier, S., Motsch, and V., Perrier (2008), “Random integrals and correctors in homogenization”, Asymptot. Anal. 59: 1-2, 1-26.Google Scholar
L., Baňas, Z., Brzeźniak, and A., Prohl (2013), “Computational studies for the stochastic Landau-Lifshitz-Gilbert Equation”, SIAM J. Sci. Comput. 35: 1, B62-B81.Google Scholar
A., Barth and A., Lang (2012), “Multilevel Monte Carlo method with applications to stochastic partial differential equations”, Int. J. Comput. Math. 89: 18, 2479-2498.Google Scholar
A., Barth, C., Schwab, and N., Zollinger (2011), “Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients”, Numer. Math. 119: 1, 123-161.Google Scholar
A., Barth, A., Lang, and C., Schwab (2013), “Multilevel Monte Carlo method for parabolic stochastic partial differential equations”, BIT, 53: 1, 3-27.Google Scholar
V., Barthelmann, E., Novak, and K., Ritter (2000), “High dimensional polynomial interpolation on sparse grids”, Adv. Comput. Math. 12: 4, 273-288.Google Scholar
A., Bespalov, C. E., Powell, and D., Silvester (2012), “A priori error analysis of stochastic Galerkin mixed approximations of elliptic PDEs with random data”, SIAM J. on Numer. Anal. 50: 4, 2039-2063.Google Scholar
R., Bhattacharya and R. Ranga, Rao (1986), Normal Approximation and Asymptotic Expansions, Reprint of the 1976 original, Melbourne: Robert Krieger, xiv + 291 pp.Google Scholar
M., Bieri, R., Andreev, and C., Schwab (2010), “Sparse tensor discretization of elliptic SPDEs”, SIAAM J. Sci. Comput. 31:6, 4281-4304.Google Scholar
P., Billingsley (1995), Probability and Measure, 3rd ed., Wiley Series in Probability and Mathematical Statistics, New York: John Wiley & Sons, xiv + 593 pp.Google Scholar
D., Blömker (2007), Amplitude Equations for Stochastic Partial Differential Equations, vol. 3, Interdisciplinary Mathematical Sciences, Singapore: World Scientific.Google Scholar
V. I., Bogachev (2007), Measure Theory, vol. 1, New York: Springer-Verlag, xviii + 500 pp.Google Scholar
F., Bouchet and E., Simonnet (2009), “Random changes of flow topology in two-dimensional and geophysical turbulence”, Phys. Rev. Lett. 102: 9, 094504.Google Scholar
D., Braess (1997), Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge: Cambridge University Press.Google Scholar
P., Bratley and B. L., Fox (1988), “Algorithm 659: implementing Sobol's quasirandom sequence generator.”, ACM Trans. Math. Software, 14: 1, 88-100.Google Scholar
L., Breiman (1992), Probability, Classics in Applied Mathematics vol. 7, Corrected reprint of the 1968 original, Philadelphia: Society for Industrial and Applied Mathematics, xiv + 421 pp.Google Scholar
S. C., Brenner and L. R., Scott (2008), The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics vol. 15, New York: Springer-Verlag.Google Scholar
F., Brezzi and M., Fortin (1991), Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics vol. 15, New York: Springer-Verlag, x + 350 pp.Google Scholar
E. O., Brigham (1988), Fast Fourier Transform and Its Applications, Englewood Cliffs, NJ: Prentice Hall.Google Scholar
R. G., Brown and P. Y. C., Hwang (1992), Introduction to Random Signals and Applied Kalman Filtering, 2nd ed., New York: John Wiley & Sons.Google Scholar
Z., Brzeźniak, J. M. A. M., van Neerven, M. C., Veraar, and L., Weis (2008), “Itô's formula in UMD Banach spaces and regularity of solutions of the Zakai equation”, J. Differential Equations, 245: 1, 30-58.Google Scholar
Z., Brzeźniak and T., Zastawniak (1999), Basic Stochastic Processes, Springer Undergraduate Mathematics Series, London: Springer-Verlag, x + 225 pp.Google Scholar
E., Buckwar and T., Sickenberger (2011), “A comparative linear mean-square stability analysis of Maruyama- and Milstein-type methods”, Math. Comput. Simulat. 81: 6, 1110-1127.Google Scholar
E., Buckwar and R., Winkler (2006), “Multistep methods for SDEs and their application to problems with small noise”, SIAM J. Numer Anal. 44: 2, 779-803.Google Scholar
H.-J., Bungartz and M., Griebel (2004), “Sparse grids”, Acta Numer 13: 147-269.Google Scholar
K., Burrage, P., Burrage, and T., Mitsui (2000), “Numerical solutions of stochastic differential equations”, J. Comput. Appl. Math. 125: 1-2, 171-182.Google Scholar
R. E., Caflisch (1998), “Monte Carlo and quasi-Monte Carlo methods”, in: Acta Numerica vol. 7, pp. 1-49, Cambridge: Cambridge University Press.Google Scholar
R. H., Cameron and W. T., Martin (1947), “The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals”, Ann. Math. 48: 2, 385-392.Google Scholar
C., Canuto, M. Y., Hussaini, A., Quarteroni, and T. A., Zang (1988), Spectral Methods in Fluid Dynamics, Springer Series in Computational Physics, New York: Springer-Verlag, xiv + 557 pp.Google Scholar
F., Chatelin (1983), Spectral Approximation of Linear Operators, Computer Science and Applied Mathematics, New York: Academic Press, xix + 458 pp.Google Scholar
A. J., Chorin and O. H., Hald (2006), Stochastic Tools in Mathematics and Science, Surveys and Tutorials in the Applied Mathematical Sciences vol. 1, New York: Springer-Verlag, viii + 147 pp.Google Scholar
P.-L., Chow (2007), Stochastic Partial Differential Equations, Boca Raton, FL: Chapman & Hall CRC, x + 281 pp.Google Scholar
G., Christakos (2005), Random Field Models in Earth Sciences, Mineola, NY: Dover Publications, xxv + 512 pp.Google Scholar
P. G., Ciarlet (1978), The Finite Element Method for Elliptic Problems, Studies in Mathematics and its Applications vol. 4, Amsterdam: North-Holland, xix + 530 pp.Google Scholar
C. W., Clenshaw and A. R., Curtis (1960), “A method for numerical integration on an automatic computer”, Numer. Math. 2: 197-205.Google Scholar
K. A., Cliffe, M. B., Giles, R., Scheichl, and A. L., Teckentrup (2011), “Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients”, Comput. Vis. Sci. 14: 1, 3-15.Google Scholar
S., Cox and J., van Neerven (2010), “Convergence rates of the splitting scheme for parabolic linear stochastic Cauchy problems”, SIAM J. Numer Anal. 48: 2, 428-151.Google Scholar
H., Cramér and M. R., Leadbetter (2004), Stationary and Related Stochastic Processes, Reprint of the 1967 original, Mineola, NY: Dover Publications, xiv + 348 pp.Google Scholar
D., Crisan and B., Rozovskiĭ (2011), The Oxford Handbook of Nonlinear Filtering, Oxford: Oxford: Oxford University Press.Google Scholar
G., Da Prato, A., Jentzen, and M., Röckner (2010), A mild Ito formula for SPDEs, eprint: arXiv: 1009.3526.Google Scholar
G., Da Prato and J., Zabczyk (1992), Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications vol. 44, Cambridge: Cambridge University Press, xviii + 454 pp.Google Scholar
R. C., Dalang, D., Khoshnevisan, and F., Rassoul-Agha (2009), A Minicourse on Stochastic Partial Differential Equations, Lecture Notes in Mathematics vol. 1962, New York: Springer-Verlag.Google Scholar
A. M., Davie (2007), “Differential equations driven by rough paths: an approach via discrete approximation”, Appl. Math. Res. Express. 2: 1-40.Google Scholar
R. B., Davies and D. S., Harte (1987), “Tests for Hurst effect”, Biometrika, 74: 95–102.Google Scholar
P. J., Davis (1979), Circulant Matrices, New York: John Wiley & Sons, xv + 250 pp.Google Scholar
A., de Bouard and A., Debussche (1999), “A stochastic nonlinear Schrödinger equation with multiplicative noise”, Commun. Math. Phys. 205: 1, 161-181.Google Scholar
A., de Bouard and A., Debussche (2006), “Weak and strong order of convergence of a semidiscrete scheme for the stochastic nonlinear Schrodinger equation”, Appl. Math. Optim. 54: 3, 369-399.
M. K., Deb, I. M., Babuska, and J. T., Oden (2001), “Solution of stochastic partial differential equations using Galerkin finite element techniques”, Comput. Methods Appl. Mech. Eng. 190: 48, 6359-6372.Google Scholar
A., Debussche (2011), “Weak approximation of stochastic partial differential equations: the nonlinear case”, Math. Comp. 80: 273, 89-117.Google Scholar
A., Debussche and J., Printems (2009), “Weak order for the discretization of the stochastic heat equation”, Math. Comp. 78: 266, 845-863.Google Scholar
L. M., Delves and J., Walsh, eds. (1974), Numerical Solution of Integral Equations, Oxford: Oxford University Press.Google Scholar
S., Dereich (2011), “Multilevel Monte Carlo algorithms for Levy-driven SDEs with Gaussian correction”, Adv. in Appl. Probab. 21: 1, 283-311.Google Scholar
A., Deya, M., Jolis, and L., Quer-Sardanyons (2013), “The Stratonovich heat equation: a continuity result and weak approximations”, Electron. J. Probab. 18: 3, 1-34.Google Scholar
P., Diaconis (2009), “The Markov chain Monte Carlo revolution”, Bull. Am. Math. Soc. 46: 2, 179-205.Google Scholar
A. B., Dieker and M., Mandjes (2003), “On spectral simulation of fractional Brownian motion”, Probab. Engrg. Inform. Sci. 17: 417-434.Google Scholar
C. R., Dietrich (1995), “A simple and efficient space domain implementation of the turning bands method”, Water Resourc. Res. 31: 1, 147-156.Google Scholar
C. R., Dietrich and G. N., Newsam (1993), “A fast and exact method of multidimensional Gaussian stochastic simulations”, Water Resourc. Res. 29: 8, 2861-2869.Google Scholar
C. R., Dietrich and G. N., Newsam (1997), “Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix”, SIAM J. Sci. Comput. 18: 4, 1088-1107.Google Scholar
R. M., Dudley (1999), Uniform Central Limit Theorems, Cambridge Studies in Advanced Mathematics vol. 63, Cambridge: Cambridge University Press, xiv + 436 pp.Google Scholar
R. M., Dudley (2002), Real Analysis and Probability, Cambridge Studies in Advanced Mathematics vol. 74, Cambridge: Cambridge University Press, x + 555 pp.Google Scholar
H. C., Elman, O. G., Ernst, D. P., O'Leary, and M., Stewart (2005a), “Efficient iterative algorithms for the stochastic finite element method with application to acoustic scattering”, Comput. Methods Appl. Mech. Eng. 194: 9-11, 1037-1055.Google Scholar
H. C., Elman, D., Silvester, and A., Wathen (2005b), Finite Elements and Fast Iterative Solvers, Oxford: Oxford University Press, xiv + 400 pp.Google Scholar
H. C., Elman, A., Ramage, and D. J., Silvester (2007), “Algorithm 866: IFISS: A MATLAB toolbox for modelling incompressible flow”, ACM Trans. Math. Software, 33: 14, 1-19.Google Scholar
O. G., Ernst and E., Ullmann (2010), “Stochastic Galerkin matrices”, SIAM J. Matrix Anal. Appl. 31: 4, 1848-1872.Google Scholar
L. C., Evans (2010), Partial Differential Equations, 2nd ed., Graduate Studies in Mathematics vol. 19, Providence, RI: American Mathematical Society, xxii + 749 pp.Google Scholar
R., Eymard, T., Gallouët, and R., Herbin (2000), “Finite volume methods”, in: Handbook of numerical analysis, vol. VII, pp. 713-1020, Amsterdam: Amsterdam: North-Holland.Google Scholar
G. S., Fishman (1996), Monte Carlo: Concepts, Algorithms and Applications, Springer Series in Operations Research, New York: Springer-Verlag, xxvi + 698 pp.Google Scholar
B., Fornberg (1996), A Practical Guide to Pseudospectral Methods, Cambridge Monographs on Applied and Computational Mathematics, Cambridge: Cambridge University Press, x + 231 pp.Google Scholar
P., Frauenfelder, C., Schwab, and R. A., Todor (2005), “Finite elements for elliptic problems with stochastic coefficients”, Comput. Methods Appl. Mech. Eng. 194: 205-228.Google Scholar
U., Frisch (1995), Turbulence: The Legacy of A. N. Kolmogorov, Cambridge: Cambridge University Press, xiv + 296 pp.Google Scholar
B., Fristedt and L., Gray (1997), A Modern Approach to Probability Theory, Probability and its Applications, Basel: Birkhauser, xx + 756 pp.Google Scholar
P. K., Friz and N. B., Victoir (2010), Multidimensional Stochastic Processes as Rough Paths, Cambridge Studies in Advanced Mathematics vol. 120, Cambridge: Cambridge University Press, xiv + 656 pp.Google Scholar
H., Fujita and T., Suzuki (1991), “Evolution problems”, in: Handbook of Numerical Analysis, vol. II, pp. 789-928, Amsterdam: North-Holland.Google Scholar
J., Gaines and T., Lyons (1994), “Random generation of stochastic area integrals”, SIAM J. Appl. Math. 54: 4, 1132-1146.Google Scholar
A., Ganguly (2013), “Wong-Zakai type convergence in infinite dimensions”, Electron. J. Probab. 18: 31, 1-34.Google Scholar
J., García-Ojalvo and J. M., Sancho (1999), Noise in Spatially Extended Systems, Institute for Nonlinear Science, New York: Springer-Verlag, xiv + 307 pp.Google Scholar
C., Gardiner (2009), Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th ed., Springer Series in Synergetics, Springer-Verlag, xviii + 447 pp.Google Scholar
A. M., Garsia, E., Rodemich, and H., Rumsey Jr. (1971), “A real variable lemma and the continuity of paths of some Gaussian processes”, Indiana Univ. Math. J. 20: 6, 565-578.Google Scholar
W., Gautschi (2004), Orthogonal Polynomials: Computation and Approximation, Numerical Mathematics and Scientific Computation, New York: Oxford University Press, x + 301 pp.Google Scholar
M., Geissert, M., Kovács, and S., Larsson (2009), “Rate of weak convergence of the finite element method for the stochastic heat equation with additive noise”, BIT, 49: 2, 343-356.Google Scholar
R. G., Ghanem and P. D., Spanos (1991), Stochastic Finite Elements: A Spectral Approach, New York: Springer-Verlag, x + 214 pp.Google Scholar
Ĭ. Ī., Gīhman and A. V., Skorohod (1972), Stochastic Differential Equations, Translated from the Russian by K., Wickwire, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 72, New York: Springer-Verlag, pp. viii + 354.Google Scholar
M. B., Giles (2008a), “Improved multilevel Monte Carlo convergence using the Milstein scheme”, in: Monte Carlo and quasi-Monte Carlo methods, pp. 343-358, 2006, Berlin: Springer-Verlag.Google Scholar
M. B., Giles (2008b), “Multilevel Monte Carlo path simulation”, Oper. Res. 56: 3, 607-617.Google Scholar
M. B., Giles and B. J., Waterhouse (2009), “Multilevel quasi-Monte Carlo path simulation”, in: Advanced Financial Modelling, pp. 165-181,Google Scholar
H., Abrecher, W. J., Runggaldier, and W., Schachermayer (eds.), Radon Series Computational and Applied Mathematics vol. 8, Berlin: Walter de Gruyter.
M. B., Giles, D. J., Higham, and X., Mao (2009), “Analysing multi-level Monte Carlo for options with non-globally Lipschitz payoff”, Finance Stoch. 13: 3, 403-413.Google Scholar
C. J., Gittelson (2013), “An adaptive stochastic Galerkin method for random elliptic operators”, Math. Comp. 82: 283, 1515-1541.Google Scholar
T., Gneiting (1998), “Closed form solutions of the two-dimensional turning bands equation”, Math. Geol. 30: 4, 379-390.Google Scholar
T., Gneiting, H., Sevcíkova, D. B., Percival, M., Schlather, and Y., Jiang (2006), “Fast and exact simulation of large Gaussian lattice systems in ℝ2: exploring the limits”, J. Comput. Graph. Simul. 15: 3, 483-501.Google Scholar
E., Gobet (2000), “Weak approximation of killed diffusion using Euler schemes”, Stoch. Process. Appl. 87: 2, 167-197.Google Scholar
E., Gobet (2001), “Efficient schemes for the weak approximation of reflected diffusions”, Monte Carlo Methods Appl. 7: 1-2, 193-202.Google Scholar
G. H., Golub and C. F., van Loan (2013), Matrix Computations, 4th ed., Johns Hopkins Studies in the Mathematical Sciences, Baltimore, MD: Johns Hopkins University Press, xiv + 756 pp.Google Scholar
G. H., Golub and J. H., Welsch (1969), “Calculation of Gauss quadrature rules”, Math. Comp. 23: 106, A1-A10.Google Scholar
N. R., Goodman (1963), “Statistical analysis based on a certain multivariate complex Gaussian distribution (an introduction)”, Ann. Math. Statist. 34: 1, 152-177.Google Scholar
A. D., Gordon and C. E., Powell (2012), “On solving stochastic collocation systems with algebraic multigrid”, IMA J. Numer. Anal. 32: 3, 1051-1070.Google Scholar
D., Gottlieb and S. A., Orszag (1977), Numerical Analysis of Spectral Methods: Theory and Applications, CBMS-NSF Regional Conference Series in Applied Mathematics, No. 26, Philadelphia: Society for Industrial and Applied Mathematics, v + 172 pp.Google Scholar
C., Graham and D., Talay (2013), Stochastic Simulation and Monte Carlo Methods, vol. 68, Stochastic Modelling and Applied Probability, Heidelberg: Springer-Verlag, pp. xvi + 260.Google Scholar
I. G., Graham, F. Y., Kuo, D., Nuyens, R., Scheichl, and I. H., Sloan (2011), “Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications”, J. Comput. Phys. 230: 10, 3668-3694.Google Scholar
W., Grecksch and P. E., Kloeden (1996), “Time-discretised Galerkin approximations of parabolic stochastic PDEs”, Bull. Austral. Math. Soc. 54: 1, 79-85.Google Scholar
G. R., Grimmett and D. R., Stirzaker (2001), Probability and Random Processes, 3rd ed., Oxford: Oxford University Press, xii + 596 pp.Google Scholar
I., Gyongy (1998a), “A note on Euler's approximations”, Potential Anal. 8: 3, 205-216.Google Scholar
I., Gyongy (1998b), “Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I”, Potential Anal. 9: 1, 1-25.Google Scholar
I., Gyongy (1999), “Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II”, Potential Anal. 11: 1, 1-37.Google Scholar
I., Gyongy and N., Krylov (2003), “On the splitting-up method and stochastic partial differential equations”, Ann. Probab. 31: 2, 564-591.Google Scholar
I., Gyongy and A., Millet (2009), “Rate of convergence of space time approximations for stochastic evolution equations”, Potential Anal. 30: 1, 29-64.Google Scholar
W., Hackbusch (1992), Elliptic Differential Equations: Theory and Numerical Treatment, Springer Series in Computational Mathematics vol. 18, Translated from the author's revision of the 1986 German original by R., Fadiman and P. D. F., Ion, Berlin: Springer-Verlag, xiv + 311 pp.Google Scholar
E., Hairer and G., Wanner (1996), Solving Ordinary Differential Equations II, 2nd ed., Springer Series in Computational Mathematics vol. 14, Berlin: Springer-Verlag, xvi + 614 pp.Google Scholar
E., Hairer, S. P., Nørsett, and G., Wanner (1993), Solving Ordinary Differential Equations I, 2nd ed., Springer Series in Computational Mathematics vol. 8, Berlin: Springer-Verlag, xvi + 528 pp.Google Scholar
M., Hairer, A. M., Stuart, J., Voss, and P., Wiberg (2005), “Analysis of SPDEs arising in path sampling part I: the Gaussian case”, Commun. Math. Sci. 3: 4, 587-603.Google Scholar
M., Hairer, A. M., Stuart, and J., Voss (2007), “Analysis of SPDEs arising in path sampling part II: the nonlinear case”, Ann. Appl. Probab. 17: 5-6, 1657-1706.Google Scholar
M., Hairer (2009), “An Introduction to Stochastic PDEs”, University of Warwick Lecture Notes.Google Scholar
M., Hairer and J. C., Mattingly (2011), “A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs”, Electron. J. Probab. 16: 23.Google Scholar
J. M., Hammersley and D. C., Handscomb (1965), Monte Carlo Methods, Methuen's Monographs on Applied Probability and Statistics, London: Methuen, vii + 178 pp.Google Scholar
E., Hausenblas (2003a), “Approximation for semilinear stochastic evolution equations”, Potential Anal. 18: 2, 141-186.Google Scholar
E., Hausenblas (2003b), “Weak approximation for semilinear stochastic evolution equations”, in: Stochastic analysis and related topics VIII, pp. 111-128, Progress in Probability. vol. 53, Basel: Birkhauser.Google Scholar
E., Hausenblas (2007), “Wong-Zakai type approximation of SPDEs of Levy noise”, Acta Appl. Math. 98: 2, 99-134.Google Scholar
D., Henry (1981), Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics vol. 840, Berlin: Springer-Verlag, iv + 348 pp.Google Scholar
K., Hesse, I. H., Sloan, and R. S., Womersley (2010), “Numerical integration on the sphere”, in: Handbook of Geomathematics, pp. 1187-1219, W., Freeden, Z., Nashed, and T., Sonar (eds.), Berlin: Springer-Verlag.Google Scholar
D. J., Higham (2000), “Mean-square and asymptotic stability of the stochastic theta method”, SIAM J. Numer Anal 38: 3, 753-769.Google Scholar
D. J., Higham, X., Mao, and A. M., Stuart (2002), “Strong convergence of Euler-type methods for nonlinear stochastic differential equations”, SIAM J. Numer Anal. 40: 3, 1041-1063.Google Scholar
D. J., Higham, X., Mao, and A. M., Stuart (2003), “Exponential mean-square stability of numerical solutions to stochastic differential equations”, London Math. Soc. J. Comput. Math. 6: 297-313.Google Scholar
E., Hille and J. D., Tamarkin (1931), “On the characteristic values of linear integral equations”, Acta Numerica, 57: 1–76.Google Scholar
W., Hundsdorfer and J., Verwer (2003), Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer Series in Computational Mathematics vol. 33, Berlin: Springer-Verlag, x + 471 pp.Google Scholar
M., Hutzenthaler, A., Jentzen, and P. E., Kloeden (2010), “Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients”, Proc. R. Soc. London Ser. A, 467: 2130, 1563-1576.Google Scholar
A., Iserles (1996), A First Course in the Numerical Analysis of Differential Equations, Cambridge Texts in Applied Mathematics, Cambridge: Cambridge University Press, xviii + 378 pp.Google Scholar
A., Ivić (2003), The Riemann Zeta-Function, Reprint of the 1985 original, Mineola, NY: Dover Publications, xxii + 517 pp.Google Scholar
A., Jentzen, P. E., Kloeden, and A., Neuenkirch (2009a), “Pathwise approximation of stochastic differential equations on domains: higher order convergence rates without global Lipschitz coefficients”, Numer. Math. 112: 1, 41-64.Google Scholar
A., Jentzen, P. E., Kloeden, and A., Neuenkirch (2009b), “Pathwise convergence of numerical schemes for random and stochastic differential equations”, in: Foundations of computational mathematics, Hong Kong 2008, pp. 140-161, London Mathematical Society Lecture Note Series vol. 363, Cambridge: Cambridge University Press.Google Scholar
A., Jentzen and P. E., Kloeden (2009), “Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise”, Proc. R. Soc. London Ser. A, 465: 2102, 649-667.Google Scholar
A., Jentzen and P. E., Kloeden (2011), Taylor Approximations for Stochastic Partial Differential Equations, CBMS-NSF Regional Conference Series in Applied Mathematics vol. 83, SIAM, xiv + 220 pp.Google Scholar
A., Jentzen and M., Röckner (2010), A Milstein scheme for SPDEs, eprint: arXiv:1001.2751.Google Scholar
S., Joe and F. Y., Kuo (2003), “Remark on algorithm 659: implementing Sobol's quasirandom sequence generator”, ACM Trans. Math. Software, 29: 1, 49-57.Google Scholar
I., Karatzas and S. E., Shreve (1991), Brownian Motion and Stochastic Calculus, 2nd ed., Graduate Texts in Mathematics vol. 113, New York: Springer-Verlag, xxiv + 470 pp.Google Scholar
M. A., Katsoulakis, G. T., Kossioris, and O., Lakkis (2007), “Noise regularization and computations for the 1-dimensional stochastic Allen-Cahn problem”, Interfaces Free Bound. 9: 1, 1-30.Google Scholar
P. E., Kloeden and A., Neuenkirch (2007), “The pathwise convergence of approximation schemes for stochastic differential equations”, LMS J. Comput. Math. 10: 235-253.Google Scholar
P. E., Kloeden, E., Platen, and I. W., Wright (1992), “The approximation of multiple stochastic integrals”, Stochastic Anal. Appl. 10: 4, 431-441.Google Scholar
P. E., Kloeden, G. J., Lord, A., Neuenkirch, and T., Shardlow (2011), “The exponential integrator scheme for stochastic partial differential equations: pathwise error bounds”, J. Comput. Appl. Math. 235: 5, 1245-1260.Google Scholar
P. E., Kloeden and E., Platen (1992), Numerical Solution of Stochastic Differential Equations, Applications of Mathematics vol. 23, Berlin: Springer-Verlag, xxxvi + 632 pp.Google Scholar
T. W., Koerner (1989), Fourier Analysis, Cambridge: Cambridge University Press.Google Scholar
A. N., Kolmogorov (1940), “Wienersche Spiralen und einige andere interessante Kurven Im Hil-bertschen Raum”, C. R. (Doklady) Acad. URSS (N.S.) 26: 115-118.Google Scholar
H., König (1986), Eigenvalue Distribution of Compact Operators, Operator Theory: Advances and Applications vol. 16, Basel: Birkhauser, 262 pp.Google Scholar
G. T., Kossioris and G. E., Zouraris (2010), “Fully-discrete finite element approximations for a fourth-order linear stochastic parabolic equation with additive space-time white noise”, M2AN Math. Model. Numer. Anal. 44: 2, 289-322.Google Scholar
M., Kovács, S., Larsson, and F., Saedpanah (2010), “Finite element approximation of the linear stochastic wave equation with additive noise”, SIAM J. Numer Anal. 48: 2, 408-427.Google Scholar
M., Kovács, F., Lindgren, and S., Larsson (2011), “Spatial approximation of stochastic convolutions”, J. Comput. Appl. Math. 235: 12, 3554-3570.Google Scholar
S. M., Kozlov (1979), “The averaging of random operators”, Mat. Sb. (N.S.) 109(151): 2, 188-202.Google Scholar
R., Kruse and S., Larsson (2012), “Optimal regularity for semilinear stochastic partial differential equations with multiplicative noise”, Electron. J. Probab. 17: 65, 1-19.Google Scholar
J., Kuelbs and T., Kurtz (1974), “Berry-Esseen estimates in Hilbert space and an application to the law of the iterated logarithm”, Ann. Probability, 2: 387–407.Google Scholar
C., Laing and G. J., Lord, eds. (2010), Stochastic Methods in Neuroscience, Oxford: Oxford University Press, xxiv + 370 pp.Google Scholar
J. D., Lambert (1991), Numerical Methods for Ordinary Differential Systems, Chichester: John Wiley & Sons, x + 293 pp.Google Scholar
A., Lang, P.-L., Chow, and J., Potthoff (2010), “Almost sure convergence of a semidiscrete Milstein scheme for SPDEs of Zakai type”, Stochastics, 82: 3, 315-326.Google Scholar
A., Lang, P.-L., Chow, and J., Potthoff (2012), “Erratum: Almost sure convergence of a semi-discrete Milstein scheme for SPDEs of Zakai type”, Stochastics, 84: 4, 561-561.Google Scholar
P. D., Lax (2002), Functional Analysis, New York: John Wiley & Sons, xx + 580 pp.Google Scholar
O. P., Le Maitre and O. M., Knio (2010), Spectral Methods for Uncertainty Quantification, Scientific Computation, New York: Springer-Verlag, xvi + 536 pp.Google Scholar
F., Lindgren, H., Rue, and J., Lindström (2011), “An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach”, J. R. Stat. Soc. Ser. B, 73: 4, 423-498.Google Scholar
M., Loève (1977), Probability Theory I, 4th ed., Graduate Texts in Mathematics vol. 45, New York: Springer-Verlag, xvii + 425 pp.Google Scholar
M., Loève (1978), Probability Theory II, 4th ed., Graduate Texts in Mathematics vol. 46, New York: SpringerVerlag, xvi + 413 pp.Google Scholar
G. J., Lord and J., Rougemont (2004), “A numerical scheme for stochastic PDEs with Gevrey regularity”, IMA J. Numer Anal. 24: 4, 587-604.Google Scholar
G. J., Lord and T., Shardlow (2007), “Postprocessing for stochastic parabolic partial differential equations”, SIAM J. Numer Anal. 45: 2, 870-889.Google Scholar
G. J., Lord and A., Tambue (2013), “Stochastic exponential integrators for the finite element discretization of SPDEs for multiplicative and additive noise”, IMA J. Numer Anal. 33: 2, 515-543.Google Scholar
B. B., Mandelbrot and J. W., van Ness (1968), “Fractional Brownian motions, fractional noises, and applications”, SIAM Rev. 10: 422-437.Google Scholar
A., Mantoglou and J. L., Wilson (1982), “The turning bands method for simulation of random fields using line generation by a spectral method”, Water Resourc. Res. 18: 5, 1379-1394.Google Scholar
X., Mao (2008), Stochastic Differential Equations and Applications, 2nd ed., Chichester: Horwood, xviii + 422 pp.Google Scholar
G., Marsaglia and W. W., Tsang (2000), “The Ziggurat method for generating random variables”, J. Statist. Software, 8: 5, 1-7.Google Scholar
G., Matheron (1973), “The intrinsic random functions and their applications”, Adv. in Appl. Probab. 5: 3, 439-468.Google Scholar
M., Matsumoto and T., Nishimura (1998), “Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator”, ACM Trans. Model. and Comput. Simul. 8: 1, 3-30.Google Scholar
J. C., Mattingly, A. M., Stuart, and M. V., Tretyakov (2010), “Convergence of numerical time-averaging and stationary measures via Poisson equations”, SIAM J. Numer. Anal. 48: 2, 552-577.Google Scholar
G. N., Milstein and M. V., Tretyakov (1999), “Simulation of a space-time bounded diffusion”, Adv. in Appl. Probab. 9: 3, 732-779.Google Scholar
G. N., Milstein and M. V., Tretyakov (2004), Stochastic Numerics for Mathematical Physics, Berlin: Springer-Verlag, xx + 594 pp.Google Scholar
Y. S., Mishura (2008), Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lecture Notes in Mathematics vol. 1929, Berlin: Springer-Verlag, xviii + 393 pp.Google Scholar
C., Moler (1995), “Random thoughts: 10435 years is a very long time”, Cleve's Corner, Fall Edition.Google Scholar
C., Moler (2001), “Normal behavior: Ziggurat algorithm generates normally distributed random numbers”, Cleve's Corner, Spring Edition.Google Scholar
P., Mörters and Y., Peres (2010), Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge: Cambridge University Press, xii + 403 pp.Google Scholar
K. W., Morton and D. F., Mayers (2005), Numerical Solution of Partial Differential Equations, 2nd ed., Cambridge: Cambridge University Press, xiv + 278 pp.Google Scholar
T., Müller-Gronbach and K., Ritter (2007), “An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise”, BIT, 47: 2, 393-418.Google Scholar
T., Müller-Gronbach and K., Ritter (2008), “Minimal Errors for Strong and Weak Approximation of Stochastic Differential Equations”, in: Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 53-82, A. Keller, S. Heinrich, and H. Niederreiter (eds.), Berlin: Springer-Verlag.Google Scholar
E., Nelson (1967), Dynamical Theories of Brownian Motion, Princeton, NJ: Princeton University Press, 120 pp.Google Scholar
A., Neuenkirch (2008), “Optimal pointwise approximation of stochastic differential equations driven by fractional Brownian motion”, Stoch. Process. Appl. 118: 12, 2294-2333.Google Scholar
G. N., Newsam and C. R., Dietrich (1994), “Bounds on the size of nonnegative definite circulant embeddings of positive definite Toeplitz matrices”, IEEE Trans. Inform. Theory, 40: 4, 1218-1220.Google Scholar
H., Niederreiter (1992), Random Number Generation and Quasi-Monte Carlo Methods, CBMS-NSF Regional Conference Series in Applied Mathematics vol. 63, Philadelphia: Society for Industrial and Applied Mathematics, vi + 241 pp.Google Scholar
F., Nobile, R., Tempone, and C. G., Webster (2008a), “A sparse grid stochastic collocation method for partial differential equations with random input data”, SIAM J. Numer Anal. 46: 5, 2309-2345.Google Scholar
F., Nobile, R., Tempone, and C. G., Webster (2008b), “An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data”, SIAM J. Numer Anal. 46: 5, 2411-2442.Google Scholar
E., Novak and K., Ritter (1996), “High-dimensional integration of smooth functions over cubes”, Numer. Math. 75: 1, 79-97.Google Scholar
B., Øksendal (2003), Stochastic Differential Equations, 6th ed., Universitext, Berlin: Springer-Verlag, xxiv + 360 pp.Google Scholar
H. C., Öttinger (1996), Stochastic Processes in Polymeric Fluids, Berlin: Springer-Verlag, xxiv + 362 pp.Google Scholar
A., Pazy (1983), Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences vol. 44, New York: Springer-Verlag, viii + 279 pp.Google Scholar
P. Z., Peebles (1993), Probability, Random Variables, and Random Signal Principles, New York: McGraw-Hill.Google Scholar
M. F., Pellissetti and R. G., Ghanem (2000), “Iterative solution of systems of linear equations arising in the context of stochastic finite elements”, Advances in Engineering Software, 31: 607–616.Google Scholar
B., Picinbono (1996), “Second-order complex random vectors and normal distributions”, IEEE Trans. Signal Process, 44: 10, 2637-2640.Google Scholar
C. E., Powell and H. C., Elman (2009), “Block-diagonal preconditioning for spectral stochastic finite-element systems”, IMA J. Numer. Anal. 29: 2, 350-375.Google Scholar
C. E., Powell and D. J., Silvester (2007), PIFISS: Potential (Incompressible) Flow and Iteration Software Guide, tech. rep. 2007.14, MIMS: University of Manchester.Google Scholar
C., Prévôt and M., Röckner (2007), A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics vol. 1905, Berlin: Springer, vi + 144 pp.Google Scholar
P. E., Protter (2005), Stochastic Integration and Differential Equations, 2nd ed., Stochastic Modelling and Applied Probability vol. 21, Springer-Verlag, xiv + 419 pp.Google Scholar
A., Quarteroni and A., Valli (2008), Numerical Approximation of Partial Differential Equations, Springer Series in Computational Mathematics, Berlin: Springer.Google Scholar
L., Quer-Sardanyons and M., Sanz-Solé (2006), “Space semi-discretisations for a stochastic wave equation”, Potential Anal. 24: 4, 303-332.Google Scholar
J. B., Reade (1983), “Eigenvalues of positive definite kernels”, SIAM J. Math. Anal. 14: 1, 152-157.Google Scholar
M., Renardy and R. C., Rogers (2004), An Introduction to Partial Differential Equations, 2nd ed., Texts in Applied Mathematics vol. 13, New York: Springer-Verlag, xiv + 434 pp.Google Scholar
F., Riesz and B., Sz.-Nagy (1990), Functional Analysis, Translated from the second French edition by L. F., Boron, New York: Mineola, NY: Dover Publications, xii + 504 pp.Google Scholar
J. C., Robinson (2001), Infinite-Dimensional Dynamical Systems, Cambridge Texts in Applied Mathematics, Cambridge: Cambridge University Press, xviii + 461 pp.Google Scholar
L. C. G., Rogers and D., Williams (2000), Diffusions, Markov Processes, and Martingales, vol. 1, Reprint of the second (1994) edition, Cambridge: Cambridge University Press, xx + 386 pp.Google Scholar
S. M., Ross (1997), Simulation, 2nd ed., San Diego: Academic Press, xii + 282 pp.Google Scholar
A., Rößler (2010), “Runge-Kutta methods for the strong approximation of solutions of stochastic differential equations”, SIAM J. Numer Anal. 48: 3, 922-952.Google Scholar
B. L., Rozovskiĭ (1990), Stochastic Evolution Systems, Mathematics and its Applications (Soviet Series) vol. 35, Dordrecht: Kluwer, xviii + 315 pp.Google Scholar
W., Rudin (1987), Real and Complex Analysis, 3rd ed., New York: McGraw-Hill, xiv + 416 pp.Google Scholar
T., Ryden and M., Wiktorsson (2001), “On the simulation of iterated Itô integrals”, Stoch. Process. Appl. 91: 151-168.Google Scholar
M., Schlather (1999), Introduction to Positive Definite Functions and to Unconditional Simulation of Random Fields, tech. rep. ST-99-10, Lancaster University.Google Scholar
M., Schlather (2001), “Simulation and analysis of random fields”, R News, 1: 2, 18-20.Google Scholar
C., Schwab and R. A., Todor (2006), “Karhunen-Loève approximation of random fields by generalized fast multipole methods”, J. Comput. Phys. 217: 100-122.Google Scholar
C., Schwab and C. J., Gittelson (2011), “Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs”, Acta Numer. 20: 291-467.Google Scholar
R. J., Serfling (1980), Approximation Theorems of Mathematical Statistics, New York: John Wiley & Sons, xiv + 371 pp.Google Scholar
T., Shardlow (1999), “Numerical methods for stochastic parabolic PDEs”, Numer Funct. Anal. Optim. 20: 1-2, 121-145.Google Scholar
T., Shardlow and A. M., Stuart (2000), “A perturbation theory for ergodic properties of Markov chains”, SIAM J. Numer Anal. 37: 4, 1120-1137.Google Scholar
I. G., Shevtsova (2007), “Sharpening the upper bound for the absolute constant in the Berry–Esséen inequality”, Theory Probab. Appl. 51: 3, 549-553.Google Scholar
M., Shinozuka (1971), “Simulation of multivariate and multidimensional random processes”, J. Acoust. Soc. Am. 49: 1B, 357-368.Google Scholar
M., Shinozuka and C.-M., Jan (1972), “Digital simulation of random processes and its applications”, J. Sound Vibrat. 25: 1, 111-128.Google Scholar
S., Smolyak (1963), “Quadrature and interpolation formulas for tensor products of certain classes of functions”, Soviet Math. Dokl. 4: 240-243.Google Scholar
I. N., Sneddon (1972), The Use of Integral Transforms, New York: McGraw-Hill.Google Scholar
I. N., Sneddon (1995), Fourier Transforms, Reprint of the 1951 original, New York: Mineola, NY: Dover Publications, xii + 542 pp.Google Scholar
T., Sottinen (2003), “Fractional Brownian Motion in Finance and Queueing”, PhD thesis, University of Helsinki.Google Scholar
G., Strang and G. J., Fix (1973), An Analysis of the Finite Element Method, Series in Automatic Computation, Englewood Cliffs, NJ: Prentice Hall.Google Scholar
J. C., Strikwerda (2004), Finite Difference Schemes and Partial Differential Equations, 2nd ed., Philadelphia: Society for Industrial and Applied Mathematics, xii + 435 pp.Google Scholar
A. M., Stuart (2010), “Inverse problems: a Bayesian perspective”, Acta Numer. 19: 451-559.Google Scholar
A. M., Stuart and A. R., Humphries (1996), Dynamical Systems and Numerical Analysis, Cambridge Monographs on Applied and Computational Mathematics vol. 2, Cambridge: Cambridge University Press, xxii + 685 pp.Google Scholar
A. M., Stuart, J., Voss, and P., Wiberg (2004), “Fast conditional path sampling of SDEs and the Langevin MCMC method”, Commun. Math. Sci. 2: 4, 685-697.Google Scholar
E., Süli and D. F., Mayers (2003), An Introduction to Numerical Analysis, Cambridge: Cambridge University Press, x + 433 pp.Google Scholar
D., Talay (1996), “Probabilistic numerical methods for partial differential equations: elements of analysis”, in: Probabilistic Models for Nonlinear Partial Differential Equations, pp. 148-196, D. Talay and L. Tubaro (eds.), Lecture Notes in Math. vol. 1627, Berlin: Springer-Verlag.Google Scholar
D., Talay (2002), “Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme”, Markov Process. Relat. Fields, 8: 2, 163-198.Google Scholar
D., Talay and L., Tubaro (1990), “Expansion of the global error for numerical schemes solving stochastic differential equations”, Stochastic Anal. Appl. 8: 4, 483-509.Google Scholar
R., Temam (1988), Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences vol. 68, New York: Springer-Verlag, xvi + 500 pp.Google Scholar
G., Tessitore and J., Zabczyk (2006), “Wong-Zakai approximations of stochastic evolution equations”, J. Evol. Equ. 6: 4, 621-655.Google Scholar
V., Thomée (2006), Galerkin Finite Element Methods for Parabolic Problems, 2nd ed., Springer Series in Computational Mathematics vol. 25, Berlin: Springer-Verlag, xii + 370 pp.Google Scholar
L. N., Trefethen (2000), Spectral Methods inMATLAB, Software, Environments, and Tools vol. 10, Philadelphia: Society for Industrial and Applied Mathematics, xviii + 165 pp.Google Scholar
K., Twardowska (1996), “Wong-Zakai approximations for stochastic differential equations”, Acta Appl. Math. 43: 3, 317-359.Google Scholar
K., Twardowska and A., Nowak (2004), “On the relation between the Itô and Stratonovich integrals in Hilbert spaces”, Ann. Math. Sil. 18: 49-63.Google Scholar
N. G., van Kampen (1997), Stochastic Processes in Physics and Chemistry, 2nd ed., Amsterdam: North-Holland, xiv + 419 pp.Google Scholar
J., van Neerven, M., Veraar, and L., Weis (2012), “Stochastic maximal LP -regularity”, Ann. Probab. 40: 2, 788-812.Google Scholar
C. R., Vogel (2002), Computational Methods for Inverse Problems, Frontiers in Applied Mathematics vol. 23, Philadelphia: Society for Industrial and Applied Mathematics, xvi + 183 pp.Google Scholar
J., Voss (2012), “The effect of finite element discretization on the stationary distribution of SPDEs”, Commun. Math. Sci. 10: 4, 1143-1159.Google Scholar
J. B., Walsh (1981), “A stochastic model of neural response”, Adv. in Appl. Probab. 13: 2, 231-281.Google Scholar
J. B., Walsh (1984a), “An Introduction to Stochastic Partial Differential Equations”, in: École d'Été de Probabilités de Saint-Flour, pp. 265-139, A., Dold and B., Eckmann (eds.), Springer Lecture Notes in Mathematics vol. 1180, Springer-Verlag.Google Scholar
J. B., Walsh (1984b), “Regularity properties of a stochastic partial differential equation”, in: Seminar on stochastic processes, pp. 257-290, Progress in Probability and Statistics 1983, vol. 7, Boston: Birkhäuser.Google Scholar
G. N., Watson (1995), A Treatise on the Theory ofBessel Functions, Cambridge Mathematical Library, Reprint of the second (1944) edition, Cambridge: Cambridge University Press, viii + 804 pp.Google Scholar
H., Weyl (1912), “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen”, Math. Annal. 71: 441-479.Google Scholar
H., Widom (1963), “Asymptotic behavior of the eigenvalues of certain integral equations”, Trans. Amer. Math. Soc. 109: 278-295.Google Scholar
N., Wiener (1938), “The Homogeneous Chaos”, Am. J. Math. 60: 4, 897-936.Google Scholar
M., Wiktorsson (2001), “Joint characteristic function and simultaneous simulation of iterated Itô integrals for multiple independent Brownian motions”, Adv. in Appl. Probab. 11:2, 470-487.Google Scholar
D., Williams (1991), Probability with Martingales, Cambridge Mathematical Textbooks, Cambridge: Cambridge University Press, xvi + 251 pp.Google Scholar
E., Wong and M., Zakai (1965), “On the relation between ordinary and stochastic differential equations”, Internat. J. Eng. Sci. 3: 2, 213-229.Google Scholar
A. T. A., Wood and G., Chan (1994), “Simulation of Stationary Gaussian Processes in [0,1]d”, J. Comput. Graph. Simul. 3: 4, 409-432.Google Scholar
D., Xiu and J. S., Hesthaven (2005), “High-order collocation methods for differential equations with random inputs”, SIAM J. Sci. Comput. 27: 3, 1118-1139.Google Scholar
D., Xiu and G. E., Karniadakis (2002), “The Wiener-Askey polynomial chaos for stochastic differential equations”, SIAM J. Sci. Comput. 24: 2, 619-644.Google Scholar
A. M., Yaglom (1962), An Introduction to the Theory of Stationary Random Functions, Translated and edited by R. A., Silverman, Englewood Cliffs, NJ: Prentice Hall, xiii + 235 pp.Google Scholar
Y., Yan (2005), “Galerkin finite element methods for stochastic parabolic partial differential equations”, SIAM J. Numer Anal. 43: 4, 1363-1384.Google Scholar
K., Yosida (1995), Functional Analysis, Classics in Mathematics, Reprint of the sixth (1980) edition, Berlin: Springer-Verlag, xii + 501 pp.Google Scholar
V. V., Yurinskiĭ (1982), “On the accuracy of normal approximation of the probability of hitting a ball”, Teor. Veroyatnost. i Primenen. 27: 2, 270-278.Google Scholar
E., Zeidler (1995), Applied Functional Analysis, Applied Mathematical Sciences vol. 109, New York: Springer-Verlag, xvi + 404 pp.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Gabriel J. Lord, Heriot-Watt University, Edinburgh, Catherine E. Powell, University of Manchester, Tony Shardlow, University of Bath
  • Book: An Introduction to Computational Stochastic PDEs
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139017329.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Gabriel J. Lord, Heriot-Watt University, Edinburgh, Catherine E. Powell, University of Manchester, Tony Shardlow, University of Bath
  • Book: An Introduction to Computational Stochastic PDEs
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139017329.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Gabriel J. Lord, Heriot-Watt University, Edinburgh, Catherine E. Powell, University of Manchester, Tony Shardlow, University of Bath
  • Book: An Introduction to Computational Stochastic PDEs
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139017329.013
Available formats
×