Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-15T14:11:18.958Z Has data issue: false hasContentIssue false

11 - Lipid metabolism: relevance to developmental origins of health and disease

Published online by Cambridge University Press:  08 August 2009

Graham C. Burdge
Affiliation:
University of Southampton
Philip C. Calder
Affiliation:
University of Southampton
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

Lipids play numerous and diverse roles in the development of the fetus. Fatty acids are required for the synthesis of cell membranes, which are a prerequisite for tissue growth, for the synthesis of second messengers and for generation of energy reserves in adipose tissue. Cholesterol is also required for tissue growth, and for the synthesis of steroid hormones. This chapter discusses how the physiology of the mother adapts to meet the demands of the fetus for fatty acids and cholesterol, the functions of these lipids in the development of specific tissues and the consequences of deficits in lipid accretion for tissue function, with a specific focus on long-chain polyunsaturated fatty acids (PUFAs).

Lipids and fetal development

Fat accumulation and birthweight

In humans, fetal fat accretion into adipose tissues begins between 15 and 20 weeks gestation, but increases exponentially from about 30 g at 30 weeks gestation to 430 g at term (Southgate and Hay 1976). The early phase of adipogenesis is associated with deposition of subcutaneous fat, while visceral fat accumulation occurs during the mid second and third trimesters (Poissonnet et al. 1984). Such deposition may serve to provide insulation during early life, which is important in the absence of body hair (Pawlowski 1998), and it is notable that in nonhuman primates fat deposition begins after birth (Adolph and Heggeness 1971, Lewis et al. 1983). Prenatal accumulation of adipose tissue may also serve to generate a nutrient reserve to survive infancy (Kuzawa 1998, Correia et al. 2004).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adolph, E. F. and Heggeness, F. W. (1971). Age changes in body water and fat in fetal and infant mammals. Growth, 35, 55–63.Google ScholarPubMed
Ahmad, A., Moriguchi, T. and Salem, N. (2002). Decrease in neuron size in docosahexaenoic acid-deficient brain. Pediatr. Neurol., 26, 210–18.CrossRefGoogle ScholarPubMed
Allen, L. H., Lung'aho, M. S., Shaheen, M., Harrison, G. G., Neumann, C. and Kirksey, A. (1994). Maternal body mass index and pregnancy outcome in the Nutrition Collaborative Research Support Program. Eur. J. Clin. Nutr., 48, (Suppl. 3), S68–76.Google ScholarPubMed
Alvarez, J. J., Montelongo, A., Iglesiasm, A., Lasuncionm, M. A. and Herrera, E. (1996). Longitudinal study on lipoprotein profile, high density lipoprotein subclass, and postheparin lipases during gestation in women. J. Lipid Res., 37, 299–308.Google ScholarPubMed
Armitage, J. A., Pearce, A. D., Sinclair, A. J., Vingrys, A. J., Weisinger, R. S. and Weisinger, H. S. (2003). Increased blood pressure later in life may be associated with perinatal n-3 fatty acid deficiency. Lipids, 38, 459–64.CrossRefGoogle ScholarPubMed
Ash, S., Fisher, C. C., Truswell, A. S., Allen, J. R. and Irwig, L. (1989). Maternal weight gain, smoking and other factors in pregnancy as predictors of infant birth-weight in Sydney women. Aust. NZ J. Obstet. Gynaecol., 29, 212–19.CrossRefGoogle ScholarPubMed
Ashton, M. R., Postle, A. D., Hall, M. A., Smith, S. L., Kelly, F. J. and Normand, I. C. (1992). Phosphatidylcholine composition of endotracheal tube aspirates of neonates and subsequent respiratory disease. Arch. Dis. Child., 67, 378–82.CrossRefGoogle ScholarPubMed
Bakker, E. C., Ghys, A. J., Kester, A. D.et al. (2003). Long-chain polyunsaturated fatty acids at birth and cognitive function at 7 y of age. Eur. J. Clin. Nutr., 57, 89–95.CrossRefGoogle ScholarPubMed
Bellotti, M., Pennati, G., Gasperi, C., Bozzo, M., Battaglia, F. C. and Ferrazzi, E. (2004). Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am. J. Obstet. Gynecol., 190, 1347–58.CrossRefGoogle ScholarPubMed
Benassayag, C., Mignot, T. M., Haouriguim, M.et al. (1997). High polyunsaturated fatty acid, thromboxane A2, and alpha-fetoprotein concentrations at the human feto-maternal interface. J. Lipid Res., 38, 276–86.Google ScholarPubMed
Black, P. N. and Sharpe, S. (1997). Dietary fat and asthma: is there a connection?Eur. Respir. J., 10, 6–12.CrossRefGoogle Scholar
Bonet, B., Brunzell, J. D., Gown, A. M. and Knopp, R. H. (1992). Metabolism of very-low-density lipoprotein triglyceride by human placental cells: the role of lipoprotein lipase. Metabolism, 41, 596–603.CrossRefGoogle ScholarPubMed
Bowen, R. A. and Clandinin, M. T. (2002). Dietary low linolenic acid compared with docosahexaenoic acid alter synaptic plasma membrane phospholipid fatty acid composition and sodium-potassium ATPase kinetics in developing rats. J. Neurochem., 83, 764–74.CrossRefGoogle ScholarPubMed
Breckenridge, W. C., Gombos, G. and Morgan, I. G. (1972). The lipid composition of adult rat brain synaptosomal plasma membranes. Biochim. Biophys. Acta, 266, 695–707.CrossRefGoogle ScholarPubMed
Burdge, G. (2004). Alpha-linolenic acid metabolism in men and women: nutritional and biological implications. Curr. Opin. Clin. Nutr. Metab. Care, 7, 137–44.CrossRefGoogle ScholarPubMed
Burdge, G. C. and Postle, A. D. (1994). Hepatic phospholipid molecular species in the guinea pig: adaptations to pregnancy. Lipids, 29, 259–64.CrossRefGoogle Scholar
(1995). Phospholipid molecular species composition of developing fetal guinea pig brain. Lipids, 30, 719–24.CrossRef
Burdge, G. C. and Wootton, S. A. (2002). Conversion of alpha-linolenic acid to eicosapentaenoic, docosapentaenoic and docosahexaenoic acids in young women. Br. J. Nutr., 88, 411–20.CrossRefGoogle ScholarPubMed
Burdge, G. C., Kelly, F. J. and Postle, A. D. (1993). Synthesis of phosphatidylcholine in guinea-pig fetal lung involves acyl remodelling and differential turnover of individual molecular species. Biochim. Biophys. Acta, 1166, 251–7.CrossRefGoogle ScholarPubMed
Burdge, G. C., Hunt, A. N. and Postle, A. D. (1994). Mechanisms of hepatic phosphatidylcholine synthesis in adult rat: effects of pregnancy. Biochem. J., 303, 941–7.CrossRefGoogle ScholarPubMed
Burdge, G. C., Dunn, R. L., Wootton, S. A. and Jackson, A. A. (2002). Effect of reduced dietary protein intake on hepatic and plasma essential fatty acid concentrations in the adult female rat: effect of pregnancy and consequences for accumulation of arachidonic and docosahexaenoic acids in fetal liver and brain. Br. J. Nutr., 88, 379–87.CrossRefGoogle ScholarPubMed
Burdge, G. C., Delange, E., Dubois, L.et al. (2003). Effect of reduced maternal protein intake in pregnancy in the rat on the fatty acid composition of brain, liver, plasma, heart and lung phospholipids of the offspring after weaning. Br. J. Nutr., 90, 345–52.CrossRefGoogle Scholar
Calder, P. C. (2001). N-3 polyunsaturated fatty acids, inflammation and immunity: pouring oil on troubled waters or another fishy tale?Nutr. Res., 21, 309–41.CrossRefGoogle Scholar
Calder, P. C. (2003). N-3 polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids, 38, 343–52.CrossRefGoogle ScholarPubMed
Calder, P. C. and Yaqoob, P. (2000). The level of protein and type of fat in the diet of pregnant rats both affect lymphocyte function in the offspring. Nutr. Res., 20, 995–1005.CrossRefGoogle Scholar
Campbell, F. M., Gordon, M. J. and Dutta-Roy, A. K. (1998). Placental membrane fatty acid-binding protein preferentially binds arachidonic and docosahexaenoic acids. Life Sci., 63, 235–40.CrossRefGoogle ScholarPubMed
Carlson, S. E., Werkman, S. H., Peeples, J. M. and Wilson, W. M. (1994). Long-chain fatty acids and early visual and cognitive development of preterm infants. Eur. J. Clin. Nutr., 48, (Suppl. 2), S27–30.Google ScholarPubMed
Catalan, J., Moriguchi, T., Slotnick, B., Murthy, M., Greiner, R. S. and Salem, N. (2002). Cognitive deficits in docosahexaenoic acid-deficient rats. Behav. Neurosci., 116, 1022–31.CrossRefGoogle ScholarPubMed
Catalano, P. M., Thomas, A. J., Huston, L. P. and Fung, C. M. (1998). Effect of maternal metabolism on fetal growth and body composition. Diabetes Care, 21, (Suppl. 2), B85–90.Google ScholarPubMed
Clandinin, M. T., Chappell, J. E., Heim, T., Swyer, P. R. and Chance, G. W. (1981). Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum. Dev., 5, 355–66.CrossRefGoogle ScholarPubMed
Connor, W. E. and Neuringer, M. (1988). The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina. Prog. Clin. Biol. Res., 282, 275–94.Google ScholarPubMed
Connor, W. E., Neuringer, M. and Lin, D. S. (1990). Dietary effects on brain fatty acid composition: the reversibility of n-3 fatty acid deficiency and turnover of docosahexaenoic acid in the brain, erythrocytes, and plasma of rhesus monkeys. J. Lipid Res., 31, 237–47.Google ScholarPubMed
Conquer, J. A., Tierney, M. C., Zecevic, J., Bettger, W. J. and Fisher, R. H. (2000). Fatty acid analysis of blood plasma of patients with Alzheimer's disease, other types of dementia, and cognitive impairment. Lipids, 35, 1305–12.CrossRefGoogle ScholarPubMed
Correia, H. R., Balseiro, S. C., Correia, E. R., Mota, P. G. and Areia, M. L. (2004). Why are human newborns so fat? Relationship between fatness and brain size at birth. Am. J. Hum. Biol., 16, 24–30.CrossRefGoogle ScholarPubMed
Cummings, S. W., Hatley, W., Simpson, E. R. and Ohashi, M. (1982). The binding of high and low density lipoproteins to human placental membrane fractions. J. Clin. Endocrinol. Metab., 54, 903–8.CrossRefGoogle ScholarPubMed
Darmady, J. M. and Postle, A. D. (1982). Lipid metabolism in pregnancy. Br. J. Obstet. Gynaecol., 89, 211–15.CrossRefGoogle ScholarPubMed
Tomas, M. E., Mercuri, O. and Serres, C. (1983). Effect of cross-fostering rats at birth on the normal supply of essential fatty acids during protein deficiency. J. Nutr., 113, 314–19.CrossRefGoogle ScholarPubMed
Urquiza, A. M., Liu, S., Sjoberg, M.et al. (2000). Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science, 290, 2140–4.CrossRefGoogle ScholarPubMed
Dempsey, J. C., Williams, M. A., Leisenring, W. M., Shy, K. and Luthy, D. A. (2004). Maternal birth weight in relation to plasma lipid concentrations in early pregnancy. Am. J. Obstet. Gynecol., 190, 1359–68.CrossRefGoogle ScholarPubMed
Dietschy, J. M, Turley, S. D. and Spady, D. K. (1993). Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including humans. Jo. Lipid Res., 34, 1637–59.Google ScholarPubMed
Dougherty, C. R. and Jones, A. D. (1982). The determinants of birth weight. Am. J. Obstet. Gynecol., 144, 190–200.CrossRefGoogle ScholarPubMed
Duchen, K., Yu, G. and Bjorksten, B. (1998). Atopic sensitization during the first year of life in relation to long chain polyunsaturated fatty acid levels in human milk. Pediatr. Res., 44, 478–84.CrossRefGoogle Scholar
Dudley, D. J., Chen, C. L., Mitschell, M. D., Daynes, R. A. and Araneo, B. A. (1993).Adaptive immune responses during murine pregnancy: pregnancy-induced regulation of lymphokine production by activated T lymphocytes. Am. J. Obstet. Gynecol., 168, 1155–63.CrossRefGoogle ScholarPubMed
Dunlop, M. and Court, J. M. (1978). Lipogenesis in developing human adipose tissue. Early Hum. Dev., 2, 123–30.CrossRefGoogle ScholarPubMed
Dunstan, J. A., Mori, T. A., Barden, A.et al. (2003a). Maternal fish oil supplementation in pregnancy reduces interleukin-13 levels in cord blood of infants at high risk of atopy. Clin. Exp. Allergy, 33, 442–8.CrossRefGoogle Scholar
Dunstan, J. A., Mori, T. A., Barden, A.et al. (2003b). Fish oil supplementation in pregnancy modifies neonatal allergen-specific immune responses and clinical outcomes in infants at high risk of atopy: a randomized, controlled trial. J. Allergy Clin. Immunol., 112, 1178–84.CrossRefGoogle Scholar
Farquharson, J., Cockburn, F., Patrick, W. A., Jamieson, E. C. and Logan, R. W. (1992). Infant cerebral cortex phospholipid fatty-acid composition and diet. Lancet, 340, 810–13.CrossRefGoogle ScholarPubMed
Farquharson, J., Cockburn, F., Patrick, W. A., Jamieson, E. C. and Logan, R. W. (1993). Effect of diet on infant subcutaneous tissue triglyceride fatty acids. Arch. Dis. Child., 69, 589–93.CrossRefGoogle ScholarPubMed
Fergusson, D. M., Crane, J., Beasley, R. and Horwood, L. J. (1997). Perinatal factors and atopic diseases in childhood. Clin. Exp. Allergy, 27, 1394–401.CrossRefGoogle ScholarPubMed
Field, C. J., Thomson, C. A., Aerde, J. E.et al. (2000). Lower proportion of CD45R0+ cells and deficient interleukin-10 production by formula-fed infants, compared with human-fed, is corrected with supplementation of long-chain polyunsaturated fatty acids. J. Pediatr. Gastroenterol. Nutr., 31, 291–9.CrossRefGoogle ScholarPubMed
Fielding, B. A. and Frayn, K. N. (2003). Lipid metabolism. Curr. Opin. Lipidol., 14, 389–91.CrossRefGoogle ScholarPubMed
Fraser, R. (1999) Insulin resistance in pregnancy. Med. Biochem., 1, 155–66.Google Scholar
Gale, C. R., Walton, S. and Martyn, C. N. (2003). Foetal and postnatal head growth and risk of cognitive decline in old age. Brain, 126, 2273–8CrossRefGoogle ScholarPubMed
Godfrey, K. M. and Barker, D. J. P. (2001). Fetal programming and adult health. Public Health Nutr., 4, 611–24.CrossRefGoogle ScholarPubMed
Godfrey, K. M., Barker, D. J. P. and Osmond, C. (1994). Disproportionate fetal growth and raised IgE concentration in adult life. Clin. Exp. Allergy, 24, 641–8.CrossRefGoogle ScholarPubMed
Grigor, M. R., Allan, J. E., Carrington, J. M.et al. (1987). Effect of dietary protein and food restriction on milk production and composition, maternal tissues and enzymes in lactating rats. J. Nutr., 117, 1247–58.CrossRefGoogle ScholarPubMed
Grimes, R. W., Pepe, G. J. and Albrecht, E. D. (1996). Regulation of human placental trophoblast low-density lipoprotein uptake in vitro by estrogen. J. Clin. Endocrinol. Metab., 81, 2675–9.Google ScholarPubMed
Hack, M., Breslau, N., Aram, D., Weissman, B., Klein, N. and Borawski-Clark, E. (1992). The effect of very low birth weight and social risk on neurocognitive abilities at school age. J. Dev. Behav. Pediatr., 13, 412–20.CrossRefGoogle ScholarPubMed
Hadders-Algra, M., Huisjes, H. J. and Touwen, B. C. (1988). Preterm or small-for-gestational-age infants: neurological and behavioural development at the age of 6 years. Eur. J. Pediatr., 147, 460–7.CrossRefGoogle ScholarPubMed
Haggarty, P. (2002). Placental regulation of fatty acid delivery and its effect on fetal growth: a review. Placenta. 23, (Suppl. A), S28–38.CrossRefGoogle ScholarPubMed
Hill, J. A., Polgar, K. and Anderson, D. J. (1995). T-helper 1-type immunity to trophoblast in women with recurrent spontaneous abortion. JAMA, 273, 1933–6.CrossRefGoogle ScholarPubMed
Hodge, L., Peat, J. K. and Salome, C. (1994). Increased consumption of polyunsaturated oils may be a cause of increased prevalence of childhood asthma. Aust. NZ J. Med., 24, 727.CrossRefGoogle ScholarPubMed
Horrobin, D. F. and Bennett, C. N. (1999). Depression and bipolar disorder: relationships to impaired fatty acid and phospholipid metabolism and to diabetes, cardiovascular disease, immunological abnormalities, cancer, ageing and osteoporosis. Possible candidate genes. Prostaglandins Leukot. Essent. Fatty Acids, 60, 217–34.CrossRefGoogle ScholarPubMed
Ikemoto, A., Nitta, A., Furukawa, S.et al. (2000). Dietary n-3 fatty acid deficiency decreases nerve growth factor content in rat hippocampus. Neurosci. Lett., 285, 99–102.CrossRefGoogle ScholarPubMed
Innis, S. M. (2003). Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. J. Pediatr., 143 (Suppl. 4), S1–8.CrossRefGoogle Scholar
Jeffcott, L. B. and Field, J. R. (1985). Current concepts of hyperlipaemia in horses and ponies. Vet. Rec., 116, 461–6.CrossRefGoogle ScholarPubMed
Jones, A., Miles, E., Warner, J., Colwell, B., Bryant, T. and Warner, J. (1996). Fetal peripheral blood mononuclear cell proliferative responses to mitogenic and allergenic stimuli during gestation. Pediatr. Allergy Immunol., 7, 109–16.CrossRefGoogle ScholarPubMed
Jones, C. A., Vance, G. H. S., Power, L. L., Pender, S. L. F., MacDonald, T. T. and Warner, J. O. (2001). Costimulatory molecules in the developing human gastrointestinal tract: a pathway for fetal allergen priming. J. Allergy Clin. Immunol., 108, 235–41.CrossRefGoogle ScholarPubMed
Kaminsky, S., Souza, D' S. W., Massey, R. F., Smart, J. L. and Sibley, C. P. (1991). Effects of maternal undernutrition and uterine artery ligation on placental lipase activities in the rat. Biol. Neonate, 60, 201–6.CrossRefGoogle ScholarPubMed
Kankaanpaa, P., Sutas, Y., Salminen, S., Lichtenstein, A. and Isolauri, E. (1999). Dietary fatty acids and allergy. Ann. Med., 31, 282–7.CrossRefGoogle ScholarPubMed
Kew, S., Banerjee, T., Minihane, A. M., Finnegan, Y. E., Williams, C. M. and Calder, P. C. (2003). Relation between the fatty acid composition of peripheral blood mononuclear cells and measures of immune cell function in healthy, free-living subjects aged 25–72 y. Am. J. Clin. Nutr., 77, 1278–86.CrossRefGoogle ScholarPubMed
Kim, H. Y., Akbar, M., Lau, A. and Edsall, L. (2000). Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3): role of phosphatidylserine in antiapoptotic effect. J. Biol. Chem., 275, 35215–23.CrossRefGoogle ScholarPubMed
Kimpton, W. G., Washington, E. A. and Cahill, R. N. P. (1994). The development of the immune system in the fetus. In: Textbook of Fetal Physiology (ed. Thorburn, G. D. and Harding, R. R). Oxford: Oxford University Press, pp. 245–55.Google Scholar
Knopp, R. H. (1997). Hormone-mediated changes in nutrient metabolism in pregnancy: a physiological basis for normal fetal development. Ann. NY Acad. Sci., 817, 251–71.CrossRefGoogle ScholarPubMed
Kuhn, D. C. and Crawford, M. (1986). Placental essential fatty acid transport and prostaglandin synthesis. Prog. Lipid Res., 25, 345–53.CrossRefGoogle ScholarPubMed
Kuzawa, C. W. (1998). Adipose tissue in human infancy and childhood: an evolutionary perspective. Am. J. Phys. Anthropol., 27, (Suppl.), 177–209.3.0.CO;2-B>CrossRefGoogle Scholar
Langhoff-Roos, J., Lindmark, G. and Gebre-Medhin, M. (1987). Maternal fat stores and fat accretion during pregnancy in relation to infant birthweight. Br. J. Obstet. Gynaecol., 94, 1170–7.CrossRefGoogle ScholarPubMed
Langley, S. C. and Jackson, A. A. (1994). Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin. Sci., 86, 217–22.CrossRefGoogle ScholarPubMed
Langley-Evans, S. C., Gardner, D. S. and Jackson, A. A. (1996). Maternal protein restriction influences the programming of the rat hypothalamic–pituitary–adrenal axis. J. Nutr., 126, 1578–85.CrossRefGoogle ScholarPubMed
Lanting, C. I., Fidler, V., Huisman, M., Touwen, B. C. and Boersma, E. R. (1994). Neurological differences between 9-year-old children fed breast-milk or formula-milk as babies. Lancet, 344, 1319–22.CrossRefGoogle ScholarPubMed
Larque, E., Garcia-Ruiz, P. A., Perez-Llamas, F., Zamora, S. and Gil, A. (2003a). Dietary trans fatty acids alter the compositions of microsomes and mitochondria and the activities of microsome delta6-fatty acid desaturase and glucose-6-phosphatase in livers of pregnant rats. J. Nutr., 133, 2526–31.CrossRefGoogle Scholar
Larque, E., Demmelmair, H., Berger, B., Hasbargen, U. and Koletzko, B. (2003b). In vivo investigation of the placental transfer of [13C]-labeled fatty acids in humans. J. Lipid Res., 44, 49–55.CrossRefGoogle Scholar
Leaf, A. A., Leighfield, M. J., Costeloe, K. L. and Crawford, M. A. (1992). Long chain polyunsaturated fatty acids and fetal growth. Early Hum. Dev., 30, 183–91.CrossRefGoogle ScholarPubMed
Leat, W. M., Curtis, R., Millichamp, N. J. and Cox, R. W. (1986). Retinal function in rats and guinea-pigs reared on diets low in essential fatty acids and supplemented with linoleic or linolenic acids. Ann. Nutr. Metab., 30, 166–74.CrossRefGoogle ScholarPubMed
Lewis, D. S., Bertrand, H. A., Masoro, E. J., McGill, H. C., Carey, K. D. and McMahan, C. A. (1983). Preweaning nutrition and fat development in baboons. J. Nutr., 113, 2253–9.CrossRefGoogle ScholarPubMed
Lin, H., Mosmann, T. R., Guilbert, L., Tuntipopipat, S. and Wegmann, T. G. (1993). Synthesis of T helper 2-type cytokines at the maternal–fetal interface. J. Immunol., 151, 4562–73.Google Scholar
Litman, B. J., Niu, S. L., Polozova, A. and Mitchell, D. C. (2001). The role of docosahexaenoic acid containing phospholipids in modulating G protein-coupled signaling pathways: visual transduction. J. Mol. Neurosci., 16, 237–42CrossRefGoogle Scholar
Lucas, A., Morley, R., Cole, T. J., Lister, G. and Leeson-Payne, C. (1992). Breast milk and subsequent intelligence quotient in children born preterm. Lancet, 339, 261–4.CrossRefGoogle ScholarPubMed
Martin-Hidalgo, A., Holm, C., Belfrage, P., Schotz, M. C. and Herrera, E. (1994). Lipoprotein lipase and hormone-sensitive lipase activity and mRNA in rat adipose tissue during pregnancy. Am. J. Physiol., 266, E930–5.Google ScholarPubMed
Martinez, M. and Mougan, I. (1998). Fatty acid composition of human brain phospholipids during normal development. J. Neurochem., 71, 2528–33.CrossRefGoogle ScholarPubMed
Martinez, F., Stern, D., Wright, A., Holberg, C., Taussig, L. and Halonen, M. (1995). Association of interleukin-2 and interferon-γ production by blood mononuclear cells in infancy with parental allergy skin tests and with subsequent development of atopy. J. Allergy Clin. Immunol., 96, 652–660.CrossRefGoogle ScholarPubMed
Martyn, C. N., Gale, C. R., Sayer, A. A. and Fall, C. (1996). Growth in utero and cognitive function in adult life: follow up study of people born between 1920 and 1943. BMJ, 312, 1393–6.CrossRefGoogle ScholarPubMed
Miles, E. A., Aston, L. and Calder, P. C. (2003). In vitro effects of eicosanoids derived from different 20-carbon fatty acids on T helper type 1 and T helper type 2 cytokine production in human whole-blood cultures. Clin. Exp. Allergy, 33, 624–32.CrossRefGoogle Scholar
Mitchell, D. C., Niu, S. L. and Litman, B. J. (2003). Enhancement of G protein-coupled signaling by DHA phospholipids. Lipids, 38, 437–43.CrossRefGoogle Scholar
Murphy, F. J. and Reen, D. J. (1996). Diminished production of prostaglandin E2 by monocytes of newborns is due to altered fatty acid membrane content and reduced cyclooxygenase activity. J. Immunol., 157, 3116–21.Google ScholarPubMed
Nabekura, J., Noguchi, K., Witt, M. R., Nielsen, M. and Akaike, N. (1998). Functional modulation of human recombinant gamma-aminobutyric acid type A receptor by docosahexaenoic acid. J. Biol. Chem., 273, 11056–61.CrossRefGoogle ScholarPubMed
Naoum, H. G., Chazal, R. C., Eaton, B. M. and Contractor, S. F. (1987). Characterization and specificity of lipoprotein binding to term human placental membranes. Biochim. Biophys. Acta, 902, 193–9.CrossRefGoogle ScholarPubMed
Napoli, C., Glass, C. K., Witztum, J. L., Deutsch, R., Armiento, D' F. P. and Palinski, W. (1999). Influence of maternal hypercholesterolaemia during pregnancy on progression of early atherosclerotic lesions in childhood: Fate of Early Lesions in Children (FELIC) study. Lancet, 354, 1234–41.CrossRefGoogle ScholarPubMed
Neufeld, L. M., Haas, J. D., Grajeda, R. and Martorell, R. (2004). Changes in maternal weight from the first to second trimester of pregnancy are associated with fetal growth and infant length at birth. Am. J. Clin. Nutr., 79, 646–52.CrossRefGoogle ScholarPubMed
Neuringer, M. (2000). Infant vision and retinal function in studies of dietary long-chain polyunsaturated fatty acids: methods, results, and implications. Am. J. Clin. Nutr., 71, (Suppl.1), 256–67S.CrossRefGoogle ScholarPubMed
Neuringer, M., Connor, W. E., Petten, C. and Barstad, L. (1984). Dietary omega-3 fatty acid deficiency and visual loss in infant rhesus monkeys. J. Clini. Investig., 73, 272–6.CrossRefGoogle ScholarPubMed
Ng, K. F. and Innis, S. M. (2003). Behavioral responses are altered in piglets with decreased frontal cortex docosahexaenoic acid. J. Nutr., 133, 3222–7.CrossRefGoogle ScholarPubMed
Niu, S. L., Mitchell, D. C. and Litman, B. J. (2001). Optimization of receptor-G protein coupling by bilayer lipid composition II: formation of metarhodopsin II-transducin complex. J. Biol. Chem., 276, 42807–11.CrossRefGoogle ScholarPubMed
Noble, R. C., Steele, W. and Moore, J. H. (1971). The plasma lipids of the ewe during pregnancy and lactation. Res. Vet. Sci., 12, 47–53.Google ScholarPubMed
Ohshima, Y., Yasutomi, M., Omata, N.et al. (2002). Dysregulation of IL-13 production by cord blood CD4+ T cells is associated with the subsequent development of atopic disease in infants. Pediatr. Res., 51, 195–200.CrossRefGoogle ScholarPubMed
Otto, S. J., Houwelingen, A. C., Antal, M.et al. (1997). Maternal and neonatal essential fatty acid status in phospholipids: an international comparative study. Eur. J. Clin. Nutr., 51, 232–42.CrossRefGoogle ScholarPubMed
Ozanne, S. E., Martensz, N. D., Petry, C. J., Loizou, C. L. and Hales, C. N. (1998). Maternal low protein diet in rats programmes fatty acid desaturase activities in the offspring. Diabetologia, 41, 1337–42.CrossRefGoogle ScholarPubMed
Palinski, W. and Napoli, C. (2002). The fetal origins of atherosclerosis: maternal hypercholesterolemia, and cholesterol-lowering or antioxidant treatment during pregnancy influence in utero programming and postnatal susceptibility to atherogenesis. FASEB J., 16, 1348–60.CrossRefGoogle ScholarPubMed
Patel, M. S., Johnson, C. A., Rajan, R. and Owen, O. E. (1975). The metabolism of ketone bodies in developing human brain: development of ketone-body-utilizing enzymes and ketone bodies as precursors for lipid synthesis. J. Neurochem., 25, 905–8.CrossRefGoogle Scholar
Pawlowski, B. (1998). Why are human newborns so big and fat?Hum. Evol., 13, 65–72.CrossRefGoogle Scholar
Pipe, N. G., Smith, T., Halliday, D., Edmonds, C. J., Williams, C. and Coltart, T. M. (1979). Changes in fat, fat-free mass and body water in human normal pregnancy. Br. J. Obstet. Gynaecol., 86, 929–40.CrossRefGoogle ScholarPubMed
Poisson, J. P., Dupuy, R. P., Sarda, P.et al. (1993). Evidence that liver microsomes of human neonates desaturate essential fatty acids. Biochim. Biophy. Acta, 1167, 109–13.CrossRefGoogle ScholarPubMed
Poissonnet, C. M., Burdi, A. R. and Garn, S. M. (1984). The chronology of adipose tissue appearance and distribution in the human fetus. Early Hum. Dev., 10, 1–11.CrossRefGoogle ScholarPubMed
Postle, A. D., Al, M. D., Burdge, G. C. and Hornstra, G. (1995). The composition of individual molecular species of plasma phosphatidylcholine in human pregnancy. Early Hum. Dev., 43, 47–58.CrossRefGoogle ScholarPubMed
Prentice, A. M. and Goldberg, G. R. (2000). Energy adaptations in human pregnancy: limits and long-term consequences. Am. J. Clin. Nutr., 71, (Suppl. 5), 1226–32S.CrossRefGoogle ScholarPubMed
Prentice, A. M., Cole, T. J., Moore, S. E. and Collinson, A. C. (1999). Programming the adult immune system. In Fetal Programming: Influences on Development and Disease in Later Life (ed. O'Brien, P. M. S., Wheeler, T. and Barker, D. J. P.). London: Royal College of Gynaecology Press, pp. 399–413.Google Scholar
Prescott, S. L. and Calder, P. C. (2004). N-3 polyunsaturated fatty acids and allergic disease. Curr. Opin. Clin. Nutr. Metab. Care, 7, 123–9.CrossRefGoogle ScholarPubMed
Price, K. C. and Coe, C. L. (2000). Maternal constraint on fetal growth patterns in the rhesus monkey (Macaca mulatta): the intergenerational link between mothers and daughters. Hum. Reprod., 15, 452–7.CrossRefGoogle ScholarPubMed
Raghupathy, R. (1997). Th1-type immunity is incompatible with successful pregnancy. Immunol. Today, 18, 478–82.CrossRefGoogle ScholarPubMed
Raghupathy, R. (2001). Pregnancy: success and failure within the Th1/Th2/Th3 paradigm. Semin. Immunol., 13, 219–27.CrossRefGoogle ScholarPubMed
Rayon, J. I., Carver, J. D., Wyble, L. E.et al. (1997). The fatty acid composition of maternal diet affects lung prostaglandin E2 levels and survival from group B streptococcal sepsis in neonatal rat pups. J. Nutr., 127, 1989–92.CrossRefGoogle Scholar
Reinhard, G., Noll, A., Schlebusch, H., Mallmann, P. and Ruecker, A. V. (1998). Shifts in the TH1/TH2 balance during human pregnancy correlate with apoptotic changes. Biochem. Biophys. Res. Comm., 245, 933–8.CrossRefGoogle ScholarPubMed
Reisbick, S., Neuringer, M., Hasnain, R. and Connor, W. E. (1990). Polydipsia in rhesus monkeys deficient in omega-3 fatty acids. Physiol. Behav., 47, 315–23.CrossRefGoogle ScholarPubMed
Reisbick, S., Neuringer, M., Hasnain, R. and Connor, W. E. (1994). Home cage behaviour of rhesus monkeys with long-term deficiency of omega-3 fatty acids. Physiol. Behav., 55, 231–9.CrossRefGoogle ScholarPubMed
Rojas, C. V., Greiner, R. S., Fuenzalida, L. C., Martinez, J. I., Salem, N. and Uauy, R. (2002). Long-term n-3 FA deficiency modifies peroxisome proliferator-activated receptor beta mRNA abundance in rat ocular tissues. Lipids, 37, 367–74.CrossRefGoogle ScholarPubMed
Romagnani, S. (2000). The role of lymphocytes in allergic disease. J. Allergy Clin. Immunol., 105, 399–408.CrossRefGoogle ScholarPubMed
Rothwell, J. E. and Elphick, M. C. (1982). Lipoprotein lipase activity in human and guinea-pig placenta. J. Dev. Physiol., 4, 153–9.Google ScholarPubMed
Roux, C., Wolf, C., Mulliezm, N.et al. (2000). Role of cholesterol in embryonic development. Am. J. Clin. Nutr., 71 (Suppl. 5), 1270–9S.CrossRefGoogle ScholarPubMed
Ryan, A. S., Montalto, M. B., Groh-Wargo, S.et al. (1999). Effect of DHA-containing formula on growth of preterm infants to 59 weeks postmenstrual age. Am. J. Hum. Biol., 11, 457–67.3.0.CO;2-B>CrossRefGoogle ScholarPubMed
Salem, N. and Niebylski, C. D. (1995). The nervous system has an absolute molecular species requirement for proper function. Mol. Membr. Biol., 12, 131–4.CrossRefGoogle ScholarPubMed
Salem, N., Wegher, B., Mena, P. and Uauy, R. (1996). Arachidonic and docosahexaenoic acids are biosynthesized from their 18-carbon precursors in human infants. Proc. Natl. Acad. Sci. USA, 93, 49–54.CrossRefGoogle ScholarPubMed
Samborski, R. W., Ridgway, N. D. and Vance, D. E. (1990). Evidence that only newly made phosphatidylethanolamine is methylated to phosphatidylcholine and that phosphatidylethanolamine is not significantly deacylated-reacylated in rat hepatocytes. J. Biol. Chem., 265, 18322–9.Google Scholar
Sanders, T. A., Mistry, M. and Naismith, D. J. (1984). The influence of a maternal diet rich in linoleic acid on brain and retinal docosahexaenoic acid in the rat. Br. J. Nutr., 51, 57–66.CrossRefGoogle Scholar
Sattar, N., Greer, I. A., Louden, J.et al. (1997). Lipoprotein subfraction changes in normal pregnancy: threshold effect of plasma triglyceride on appearance of small, dense low density lipoprotein. J. Clin. Endocrinol. Metab., 82, 2483–91.Google ScholarPubMed
Schwartz, S. M. and Kemnitz, J. W. (1992). Age- and gender-related changes in body size, adiposity, and endocrine and metabolic parameters in free-ranging rhesus macaques. Am. J. Phys. Anthropol., 89, 109–21.CrossRefGoogle ScholarPubMed
Shafrir, E. and Barash, V. (1987). Placental function in maternal–fetal fat transport in diabetes. Biol. Neonate, 51, 102–12.CrossRefGoogle ScholarPubMed
Shambaugh, G. E. (1985). Ketone body metabolism in the mother and fetus. Fed. Proc., 44, 2347–51.Google ScholarPubMed
Sherman, R. C., Burdge, G. C., Ali, Z., Singh, K. L., Wootton, S. A. and Jackson, A. A. (2001). Effect of pregnancy on plasma lipid concentration in Trinidadian women: result of a pilot study. West Indian Med. J., 50, 282–7.Google ScholarPubMed
Silliman, K , Shore, V. and Forte, T. M. (1994). Hypertriglyceridemia during late pregnancy is associated with the formation of small dense low-density lipoproteins and the presence of large buoyant high-density lipoproteins, Metabolism, 43, 1035–41.CrossRefGoogle ScholarPubMed
Sinclair, A. J. and Crawford, M. A. (1972). The accumulation of arachidonate and docosahexaenoate in the developing rat brain. J. Neurochem., 19, 1753–8.CrossRefGoogle ScholarPubMed
Smart, J. M. and Kemp, A. S. (2001). Ontogeny of T-helper 1 and T-helper 2 cytokine production in childhood. Pediatr. Allergy Immunol., 12, 181–7.CrossRefGoogle ScholarPubMed
Smith, R. W. and Welch, V. A. (1976). Effect of pregnancy and lactation on triglycerides of very-low-density lipoproteins of rat plasma. J. Dairy Sci., 59, 876–9.CrossRefGoogle ScholarPubMed
Southgate, D. A. T. and Hay, E. N. (1975). Chemical and biochemical development of the fetus. In The Biology of Fetal Growth (ed. Roberts, D. F. and Thomson, A. M.). Symposia of the Society for the Study of Human Biology, vol. 15, pp. 195–209.Google Scholar
Sparks, J. W. (1984). Human intrauterine growth and nutrient accretion. Semin. Perinatol., 8, 74–93.Google ScholarPubMed
Sparks, J. W., Girard, J. R. and Battaglia, F. C. (1980). An estimate of the caloric requirements of the human fetus. Biol. Neonate, 38, 113–19.CrossRefGoogle ScholarPubMed
Stubbs, C. D. and Smith, A. D. (1984). The modification of mammalian membrane polyunsaturated fatty acid composition to membrane fluidity and function. Biochim. Biophys. Acta, 779, 89–137.CrossRefGoogle ScholarPubMed
Szerekes-Bartho, J. and Wegmann, T. G. (1996). A progesterone-dependent immunomodulatory protein alters the Th1/Th2 balance. J. Reprod. Immunol., 31, 81–95.CrossRefGoogle Scholar
Taggart, N. R., Holliday, R. M., Billewicz, W. Z., Hytten, F. E. and Thomson, A. M. (1967). Changes in skinfolds during pregnancy, Br. J. Nutr., 21, 439–51.CrossRefGoogle ScholarPubMed
Tang, M. L. K., Kemp, A. S., Thorburn, J. and Hill, D. (1994). Reduced interferon gamma secretion in neonates and subsequent atopy. Lancet, 344, 983–5.CrossRefGoogle ScholarPubMed
Thorsdottir, I. and Birgisdottir, B. E. (1998). Different weight gain in women of normal weight before pregnancy: postpartum weight and birth weight. Obstet. Gynecol., 92, 377–83.Google ScholarPubMed
Tint, G. S., Irons, M., Elias, E. R.et al. (1994). Defective cholesterol biosynthesis associated with the Smith–Lemli–Opitz syndrome. N. Engl. J. Med., 330, 107–13.CrossRefGoogle ScholarPubMed
Vaidyanathan, V. V., Rao, K. V. and Sastry, P. S. (1994). Regulation of diacylglycerol kinase in rat brain membranes by docosahexaenoic acid. Neurosci. Lett., 179, 171–4.CrossRefGoogle ScholarPubMed
Vazquez-Anon, M., Bertics, S., Luck, M., Grummer, R. R. and Pinheiro, J. (1994). Peripartum liver triglyceride and plasma metabolites in dairy cows. J. Dairy Sci., 77, 1521–8.CrossRefGoogle ScholarPubMed
Villar, J., Cogswell, M., Kestler, E., Castillo, P., Menendez, R. and Repke, J. T. (1992). Effect of fat and fat-free mass deposition during pregnancy on birth weight. Am. J. Obstet. Gynecol., 167, 1344–52.CrossRefGoogle ScholarPubMed
Wasfi, I., Weinstein, I. and Heimberg, M. (1980). Increased formation of triglyceride from oleate in perfused livers from pregnant rats. Endocrinology, 107, 584–90.CrossRefGoogle ScholarPubMed
Wegmann, T. G., Lin, H., Guilbert, L. and Mosmann, T. R. (1993). Bidirectional cytokine interactions in the maternal–fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol. Today, 14, 353–6.CrossRefGoogle ScholarPubMed
Weisinger, H. S., Armitage, J. A., Sinclair, A. J., Vingrys, A. J., Burns, P. L. and Weisinger, R. S. (2001). Perinatal omega-3 fatty acid deficiency affects blood pressure later in life. Nat. Med., 7, 258–9.CrossRefGoogle ScholarPubMed
Whitelaw, A. and Parkin, J. (1988). Development of immunity. Br. Med. Bull., 44, 1037–51.CrossRefGoogle Scholar
Williams, C. and Coltart, T. M. (1978). Adipose tissue metabolism in pregnancy: the lipolytic effect of human placental lactogen. Br. J. Obstet. Gynaecol., 85, 43–6.CrossRefGoogle ScholarPubMed
Williams, P. F., Simons, L. A. and Turtle, J. R. (1976). Plasma lipoproteins in pregnancy. Horm. Res., 7, 83–90.CrossRefGoogle ScholarPubMed
Winkler, K., Wetzka, B., Hoffmann, M. M.et al. (2000). Low density lipoprotein (LDL) subfractions during pregnancy: accumulation of buoyant LDL with advancing gestation. J. Clin. Endocrinol. Metab., 85, 4543–50.CrossRefGoogle ScholarPubMed
Wittmaack, F. M., Gafvels, M. E., Bronnerm, M.et al. (1995). Localization and regulation of the human very low density lipoprotein/apolipoprotein-E receptor: trophoblast expression predicts a role for the receptor in placental lipid transport. Endocrinology, 136, 340–8.CrossRefGoogle ScholarPubMed
Woollett, L. A. (1993). The origins and roles of cholesterol and fatty acids in the fetus. Curr. Opin. Lipidol., 12, 305–12.CrossRefGoogle Scholar
Woollett, L. A. (1996). Origin of cholesterol in the fetal golden Syrian hamster: contribution of de novo sterol synthesis and maternal-derived lipoprotein cholesterol. J. Lipid Res., 37, 1246–57.Google ScholarPubMed
Wyne, K. L. and Woollett, L. A. (1998). Transport of maternal LDL and HDL to the fetal membranes and placenta of the golden Syrian hamster is mediated by receptor-dependent and receptor-independent processes. J. Lipid Res., 39, 518–30.Google ScholarPubMed
Yu, G., Kjellman, N. I. and Bjorksten, B. (1996). Phospholipid fatty acids in cord blood: family history and development of allergy. Acta Paediatr., 85, 679–83.CrossRefGoogle ScholarPubMed
Yu, G., Duchen, K. and Bjorksten, B. (1998). Fatty acid composition in colostrum and mature milk from non-atopic and atopic mothers during the first 6 months of lactation. Acta Paediatr., 87, 729–36.CrossRefGoogle ScholarPubMed
Zeijdner, E. E., Houwelingen, A. C., Kester, A. D. and Hornstra, G. (1997). Essential fatty acid status in plasma phospholipids of mother and neonate after multiple pregnancy. Prostaglandins Leukot. Essent. Fatty Acids,. 56, 395–401.CrossRefGoogle ScholarPubMed
Zimmer, L., Delpal, S., Guilloteau, D., Aioun, J., Durand, G. and Chalon, S. (2000). Chronic n-3 polyunsaturated fatty acid deficiency alters dopamine vesicle density in the rat frontal cortex. Neurosci. Lett., 284, 25–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×