Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-15T14:26:46.874Z Has data issue: false hasContentIssue false

26 - Developmental origins of asthma and related allergic disorders

Published online by Cambridge University Press:  08 August 2009

J. O. Warner
Affiliation:
University of Southampton
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

Asthma is a chronic disorder affecting the conducting airways, in which genetic and environmental factors interact to produce both inflammation and structural changes in the airway wall (Tattersfield et al. 2002). The consequence of these pathological changes is variable airflow limitation which is manifested by recurrent cough and wheeze. Recent asthma guidelines have emphasised the importance of treating the underlying inflammatory response as well as relieving the symptoms of asthma, but beyond the use of inhaled corticosteroids (ICS) and beta-2 adrenoceptor agonists, which were introduced 30–40 years ago, there has been very little new to add to the therapeutic algorithm (British Thoracic Society 2003). While utilisation of these two pharmacotherapies is highly effective in controlling symptoms and improving quality of life, there is no evidence that these therapies either alter the natural history of the disease or ever effect a cure (Martinez 2003). With the possible exception of immunotherapy no treatment has been shown to modify the natural course of the disease and no cure has been identified (Durham et al. 1999).

Most asthma has its origins in early life, and the best predictors of continuation into adulthood are an early age of onset, sensitisation to house dust mites (in environments where this is the major allergen), reduced lung function, and increased bronchial hyper-responsiveness (BHR) in early life (Sears et al. 2003). Even employment of ICS at a very early stage in the disease evolution does not influence outcomes (Covar et al. 2004).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaby, P., Shaheen, S. O., Heyes, C. B.et al. (2000). Early BCG vaccination and reduction in atopy in Guinea-Bissau. Clin. Exp. Allergy, 30, 644–50.CrossRefGoogle ScholarPubMed
Alm, J. S., Schwartz, J., Lilja, G.et al. (1999). Atopy in children of families with an anthroposophic lifestyle. Lancet, 353, 1485–8.CrossRefGoogle ScholarPubMed
Anderson, H. R. (1989). Increase in hospital admissions for childhood asthma: trends in referral, severity and re-admissions from 1970–1985 in a health region of the United Kingdom. Thorax, 44, 614–19.CrossRefGoogle Scholar
Annus, T., Mongomery, S. M., Riikjärv, M. A. and Björksten, B. (2004). Atopic disorders among Estonian school children in relation to tuberculin reactivity and the age of the BCG vaccination. Allergy, 59, 1068–73.CrossRefGoogle ScholarPubMed
Austin, J. B., Kaur, B., Anderson, R. H.et al. (1999). Hay fever, eczema and wheeze: a national UK survey (International Study of Asthma and Allergies in Childhood, ISAAC). Arch. Dis. Child., 81, 225–30.CrossRefGoogle Scholar
Baldini, M.Lohman, I. C., Halonen, M.et al. (1999). A polymorphism on the 5'-flanking region of the CD-14 gene is associated with circulating soluble CD-14 levels and with total serum immunoglobulin-E. Am. J. Respir. Cell. Mol. Biol., 20, 976–83.CrossRefGoogle Scholar
Ball, T. M., Castro-Rodriguez, J. A., Griffiths, K. A.et al. (2000). Siblings, day care and the risk of asthma and wheeze during childhood. N. Engl. J. Med., 343, 538–43.CrossRefGoogle ScholarPubMed
Berg, R. D. (1996). The indigenous gastrointestinal microflora. Trends Microbiol., 4, 430–5.CrossRefGoogle ScholarPubMed
Björksten, B., Naaber, P., Sepp, E. and Mikelsaar, M. (1999). The intestinal microflora in allergic Estonian and Swedish two-year-old children. Clin. Exp. Allergy. 29, 342–6.CrossRefGoogle Scholar
Blobe, G. C., Schiemann, W. P. and Lodish, H. F. (2000). Role of transforming growth factor beta in human disease. N. Engl. J. Med., 342, 1350–8.CrossRefGoogle ScholarPubMed
Bottcher, M F., Hmani-Aifa, M., Lindstrom, A.et al. (2004). A TLR4 polymorphism is associated with asthma and reduced lipo-poly-saccharide-induced IL20 (p70) responses in Swedish children. J. Allergy Clin. Immunol., 114, 561–7.CrossRefGoogle Scholar
British Thoracic Society. (2003). Scottish Intercollegiate Guidelines Network. British guideline on the management of asthma. Thorax, 58 (suppl.), ⅰ1–94.
Burr, M. L., Butland, B. K., King, S. and Vaughan-Williams, E. (1989). Changes in asthma prevalence: two surveys 15 years apart. Arch. Dis. Child., 64, 1452–6.CrossRefGoogle ScholarPubMed
Butland, B. K., Strachan, D. P. and Anderson, H. R. (1999). Fresh fruit intake and asthma symptoms in young British adults: confounding or effect modification by smoking. Eur. Respir. J., 13, 744–50.CrossRefGoogle ScholarPubMed
Calder, P. C. (2003). Polyunsaturated fatty acids and cytokine profiles: a clue to the changing prevalence of atopy. Clin. Exp. Allergy., 33, 412–15.CrossRefGoogle ScholarPubMed
Casas, R. and Björksten, B. (2001). Detection of Fel d 1-immunoglobulin immune complexes of cord blood and sera from allergic and non-allergic mothers. Pediatr. Allergy Immunol., 12, 59–64.CrossRefGoogle ScholarPubMed
Chailley-Heu, B., Chelly, N., Lelievre-Pegorier, M.et al. (1999). Mild vitamin A deficiency delays fetal lung maturation in the rat. Am. J. Respir. Cell. Mol. Biol., 21, 89–96.CrossRefGoogle ScholarPubMed
Chavanas, S., Bodener, C., Rochat, A.et al. (2000). Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat. Genet., 25, 141–2.Google ScholarPubMed
Clerici, M., Sison, A. V., Berzofsky, J. A.et al. (1993). Cellular immune factors associated with mother to infant transmission of HIV. AIDS, 7, 1427–33.CrossRefGoogle ScholarPubMed
Covar, R. A., Spahn, J. D., Murphy, J. R.et al. (2004). Progression of asthma measured by lung function in the childhood asthma management program. Am. J. Respir. Crit. Care Med. 170, 234–41.CrossRefGoogle ScholarPubMed
Cullinan, P., MacNeill, S. J., Harris, J. M.et al. (2004). Early allergen exposure, skin prick responses, and atopic wheeze at age 5 in English children: a cohort study. Thorax, 59, 855–61CrossRefGoogle ScholarPubMed
Cundall, M., Sun, Y., Miranda, C.et al. (2003). Neutrophil-derived matrix metallo-proteinase-9 is increased in severe asthma and poorly inhibited by glucocorticoids. J. Allergy Clin. Immunol., 112, 1064–71.CrossRefGoogle Scholar
Custovic, A. and Simpson, A. (2004). Environmental allergen exposure, sensitisation and asthma: from whole populations to individuals with risk. Thorax, 59, 825–7.CrossRefGoogle ScholarPubMed
Daffos, F., Forestier, F., Graneot-Keros, L.et al. (1984). Prenatal diagnosis of congenital rubella. Lancet, 2, 1–3.CrossRefGoogle ScholarPubMed
Alauro, D' F., Lee, R. V., Pao-in, K. and Khairallah, M. (1985). Intestinal parasites and pregnancy. Obstet. Gynecol., 66, 639–43Google Scholar
Amato, D' M., Vitiani, L. R., Petrelli, G.et al. (1998). Association of persistent bronchial hyperresponsiveness with beta2-adrenoceptor (ADRB2) haplotypes: a population study. Am. J. Respir. Crit. Care. Med. 158, 1968–73.CrossRefGoogle Scholar
Davies, D. E., Wicks, J., Powell, R. M.et al. (2003). Airway remodeling in asthma: new insights. J. Allergy Clin. Immunol., 111, 215–25.Google ScholarPubMed
Des Roches, A., Paradis, L., Menardo, J. L.et al. (1997). Immunotherapy with a standardized Dermatophagoides pteronyssinus extract. VI. Specific immunotherapy prevents the onset of new sensitizations in children. J. Allergy Clin. Immunol. 99, 450–3.CrossRefGoogle ScholarPubMed
Devereux, G., Barker, R. N. and Seaton, A. (2002). Antenatal determinants of neonatal immune responses to allergens. Clin. Exp. Allergy, 32, 43–50.CrossRefGoogle ScholarPubMed
Dezateux, C., Stocks, J., Dundas, I.et al. (1999). Impaired airway function and wheezing in infancy: the influence of maternal smoking and a genetic pre-disposition to asthma. Am. J. Respir. Crit. Care Med., 159, 403–10.CrossRefGoogle Scholar
Duffy, D. L., Martin, N. G., Battistutta, D.et al. (1990). Genetics of asthma and hay fever in Australian twins. Am. Rev. Respir. Dis., 142, 1351–8.CrossRefGoogle ScholarPubMed
Dunstan, J. A., Mori, T. A., Barden, A. et al. (2003a). Maternal fish oil supplementation in pregnancy reduces interleukin-13 levels in cord blood of infants at high risk of atopy. Clin. Exp. Allergy, 33, 442–8.CrossRefGoogle Scholar
Dunstan, J. A., Mori, T. A., Barden, A. et al. (2003b). Fish oil supplementation in pregnancy modifies neonatal allergen-specific immune responses and clinical outcomes in infants at high risk of atopy: a randomized, controlled trial. J. Allergy Clin. Immunol., 112, 1178–84.CrossRefGoogle Scholar
Dunstan, J. A., Roper, J., Mitoulas, L.et al. (2004). The effect of supplementation with fish oil during pregnancy on breast milk immunoglobulin A, soluble CD14 cytokine levels and fatty acid composition. Clin. Exp. Allergy, 34, 1237–42.CrossRefGoogle ScholarPubMed
Durham, S. R., Walker, S. M., Varga, E. M.et al. (1999). Long term clinical efficacy of grass pollen immunotherapy. N. Engl. J. Med., 341, 468–75.CrossRefGoogle ScholarPubMed
Farooqi, I. S. and Hopkin, J. M. (1998). Early childhood infection and atopic disorder. Thorax, 53, 927–32.CrossRefGoogle ScholarPubMed
Feldman, D., Glorieux, F. and Wesley Pike, J. eds. (1997). Vitamin D. London: Academic Press.Google ScholarPubMed
Fergusson, D. M., Horwood, L. J. and Shannon, F. T., (1990). Early solid feeding and recurrent childhood eczema: a 10 year longitudinal study. Pediatrics, 86, 541–6.Google ScholarPubMed
Fickenscher, H., Hör, S., Küpers, H.et al. (2002). The interleukin-10 family of cytokines. Trends Immunol., 23, 89–96.CrossRefGoogle ScholarPubMed
Fogarty, A. and Britton, J. (2000). The role of diet in the aetiology of asthma. Clin. Exp. Allergy, 30, 615–27.CrossRefGoogle Scholar
Folkerts, G., Walzl, G. and Openshaw, P. J. M., (2000). Do childhood infections ‘teach’ the immune system not to be allergic?Immunol. Today, 21, 118–20.CrossRefGoogle Scholar
Gao, P. S., Mao, X. Q., Baldini, M.et al. (1999). Serum in total IgE levels and CD-14 on chromosome 5q31. Clin. Genet., 56, 164–5.Google Scholar
Gatherer, D., Ten Dijke, P., Baird, D. T. and Akhurst, R. J. (1990). Expression of TGF-beta isoforms during the first trimester human embryogenesis. Development, 110, 445–60.Google ScholarPubMed
Gern, J. E., Reardon, C. L., Hoffjan, S.et al. (2004). Effects of dog ownership and genotype on immune development and atopy in infancy. J. Allergy Clin. Immunol., 113, 307–14.CrossRefGoogle ScholarPubMed
Gibson, G. R. and Roberfroid, M. B., (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 125, 1401–12.Google ScholarPubMed
Gill, T. J., Repetti, C. F., Metaly, L. A.et al. (1983). Transplacental immunisation of the human fetus to tetanus by immunisation of the mother. J. Clin. Invest., 72, 987–96.CrossRefGoogle Scholar
Gitlin, D., Kumate, J., Morales, C.et al. (1972). The turnover of amniotic fluid protein in the human conceptus. Am. J. Obstet. Gynecol., 113, 632–45.CrossRefGoogle ScholarPubMed
Glovsky, M. M., Ghekiere, L. and Rejzek, E. (1991). Effect of maternal immunotherapy on immediate skin test reactivity, specific Rye-1 IgG and IgE antibody and total IgE of the children. Ann. Allergy, 67, 21–4.Google Scholar
Godfrey, K. M., Barker, D. J. P. and Osmond, C., (1994). Disproportionate fetal growth and raised IgE concentration in adult life. Clin. Exp. Allergy, 24, 641–8.CrossRefGoogle ScholarPubMed
Goetghebuer, T., Isles, K., Moore, C.et al. (2004). Genetic predisposition to wheeze following respiratory syncitial virus bronchiolitis. Clin. Exp. Allergy, 34, 801–3.CrossRefGoogle Scholar
Gregory, A., Doull, I., Pearce, N.et al. (1999). The relationship between anthropometric measurements at birth: asthma and atopy in childhood. Clin. Exp. Allergy, 29, 330–3.CrossRefGoogle ScholarPubMed
Grüber, C., Illi, S., Lau, S.et al. (2003). Transient suppression of atopy in early childhood is associated with high vaccination coverage. Pediatrics, 111, 282–8.CrossRefGoogle ScholarPubMed
Hardman, M. J., Moore, L., Byrne, C. and Ferguson, M. W. (1999). Barrier formation in the human fetus is patterned. J. Invest. Dermatol., 113, 1106–13.CrossRefGoogle ScholarPubMed
Hayward, A. R. (1998). Ontogeny of the immune system. In The Cambridge Encyclopedia of Growth and Development (ed. Ulijaszek, S. J., Johnston, F. E. and Preece, M. A.). Cambridge: Cambridge University Press, pp. 166–9.Google Scholar
Hess, J. and Jongste, J. C. (2004). Epidemiological aspects of paediatric asthma. Clin. Exp. Allergy, 34, 680–5.CrossRefGoogle ScholarPubMed
Holgate, S. T. (1998). Asthma and allergy: disorders of civilization?Q. J. Med., 91, 171–84.CrossRefGoogle ScholarPubMed
Holgate, S.T., Puddicombe, S. M., Mullings, R. E.et al. (2004). New insights into asthma pathogenesis. Allergy. Clin. Immunol. Int., 16, 196–201.CrossRefGoogle Scholar
Holloway, J. W. and Holgate, S. T. (2004). Genetics. (Prevention of allergy and allergic asthma, ed. Johansson, S. G. O. and Haahtela, T.. World Allergy Organization Project Report and Guidelines.) Chem. Immunol. Allergy, 84, 1–35.CrossRefGoogle Scholar
Holloway, J. A, Warner, J. O., Vance, G. H. S.et al. (2000). Detection of house-dust-mite allergen in amniotic fluid and umbilical-cord blood. Lancet, 356, 1900–2.CrossRefGoogle ScholarPubMed
Holt, P., Naspitz, C. and Warner, J. O. (2004). Early immunological influences. (Prevention of allergy and allergic asthma, ed. Johansson, S. G. O. and Haahtela, T.. World Allergy Organization Project Report and Guidelines.) Chem. Immunol. Allergy, 84, 102–27.CrossRefGoogle Scholar
Holt, P. G., Keeffe, O' P., Holt, B. J.et al. (1995). T-cell ‘priming’ against environmental allergens in human neonates: sequential deletion of food antigen specificities during infancy with concomitant expansion of responses to ubiquitous inhalant allergens. Pediatr. Allergy Immunol., 6, 85–90.CrossRefGoogle Scholar
Jenmalm, M. C. and Björksten, B., (2000). Cord blood levels of immunoglobulin G subclass antibodies to food and inhalant allergens in relation to maternal atopy and the development of atopic disease during the first 8 years of life. Clin. Exp. Allergy, 30, 34–40.CrossRefGoogle ScholarPubMed
Jones, A. C., Miles, E A., Warner, J. O.et al. (1996). Fetal peripheral blood mononuclear cell proliferative responses to mytogenic and allergenic stimuli during gestation. Pediatr. Allergy and Immunol., 7, 109–16.CrossRefGoogle Scholar
Jones, C. A., Kilburn, S., Warner, J. A. and Warner, J. O. (1998a). Intrauterine environment and fetal allergic sensitisation. Clin. Exp. Allergy, 28, 655–9.CrossRefGoogle Scholar
Jones, C. A., Warner, J. A. and Warner, J. O. (1998b). Fetal swallowing of IgE. Lancet, 351, 1859.CrossRefGoogle Scholar
Jones, C. A., Holloway, J. A. and Warner, J. O. (2000). Does atopic disease start in foetal life?Allergy, 55, 2–10.CrossRefGoogle ScholarPubMed
Jones, C. A., Vance, G. H. S., Power, L. L.et al. (2001). Costimulatory molecules in the developing human gastrointestinal tract: a pathway for fetal allergen priming. J. Allergy Clin. Immunol., 108, 235–41.CrossRefGoogle ScholarPubMed
Jones, C. A.Holloway, J. A. and Warner, J. O. (2002a). Phenotype of fetal monocytes and B lymphocytes during the third trimester of pregnancy. J. Reprod. Immunol., 56, 45–60.CrossRefGoogle Scholar
Jones, C. A., Holloway, J. A., Popplewell, E. J.et al. (2002b). Reduced soluble CD14 levels in amniotic fluid and breast milk are associated with subsequent development of atopy, eczema, or both. J. Allergy Clin. Immunol., 109, 858–66.CrossRefGoogle Scholar
Jongepier, H., Boezen, H. M., Dijkstra, A.et al. (2004). Polymorphisms of the ADAM33 gene are associated with accelerated lung function decline in asthma. Clin. Exp. Allergy, 34, 757–60.CrossRefGoogle ScholarPubMed
Kabesch, M., Hoefler, C., Car, D.et al. (2004). Glutathione-S transferase deficiency and passive smoking increase childhood asthma. Thorax, 59, 569–73.CrossRefGoogle ScholarPubMed
Kalliomaki, M., Salminen, S. and Arvilommi, H. (2001). Probiotics in primary prevention of atopic disease: a randomised placebo controlled trial. Lancet, 357, 1076–9.CrossRefGoogle ScholarPubMed
Karjalainen, E. M., Laitinen, A., Sue-Chu, M.et al. (2000). Evidence of airway inflammation and remodeling in ski athletes with and without bronchial hyper-responsiveness to methacholine. Am. J. Respir. Crit. Care Med., 161, 2086–91.CrossRefGoogle Scholar
Karmaus, W., Arshad, H. and Mattes, J. (2001). Does the sibling effect have its origin in utero? Investigating birth order, cord blood immunoglobulin E concentration and allergic sensitization at age 4 years. Am. J. Epidemiol., 154, 909–15.CrossRefGoogle ScholarPubMed
Kaur, B., Anderson, H. R., Austin, J.et al. (1998). Prevalence of asthma symptoms, diagnosis, and treatment in 12–14 year old children across Great Britain. (international study of asthma and allergies in childhood, ISAAC UK). BMJ, 316, 118–24.CrossRefGoogle Scholar
Kline, J. N., Waldschmidt, T. J., Businga, T. R.et al. (1998). Modulation of airway inflammation by CpG: oligodeoxynucleotides in a murine model of asthma. J. Immunol., 160, 2555–9.Google Scholar
Komatsu, N., Takata, M., Otsuki, N.et al. (2002). Elevated stratum corneum hydrolytic activity in Netherton syndrome suggests an inhibitory regulation of desquamation by SPINK5-derived peptides. J. Invest. Dermatol., 118, 436–43.CrossRefGoogle ScholarPubMed
Kondo, N., Kobayashi, Y., Shinoda, S.et al. (1992). Cord blood lymphocyte responses to food antigens for the prediction of allergic disease. Arch. Dis. Child., 67, 1003–7.CrossRefGoogle Scholar
Kruse, S., Kuehr, J., Moseler, M.et al. (2003). Polymorphisms in the IL18 gene are associated with specific sensitisation to common allergens and allergic rhinitis. J. Allergy Clin. Immunol. 111, 117–22.CrossRefGoogle Scholar
Kull, I., Almqvist, C., Lilja, G.et al. (2004). Breast feeding reduces the risk of asthma during the first four years of life. J. Allergy Clin. Immunol., 114, 755–60.CrossRefGoogle Scholar
Laing, I. A., Goldblatt, J., Eber, E.et al. (1998). A polymorphism of the CC16 gene is associated with an increased risk of asthma. J. Med. Genet., 35, 463–7.CrossRefGoogle Scholar
Legg, J. P., Hussain, I. R., Warner, J. A.et al. (2003). Type 1 and type 2 cytokine imbalance in acute respiratory syncitial virus bronchioles. Am. J. Respir. Crit. Care. Med., 168, 633–8.CrossRefGoogle Scholar
Liu, X., Beaty, T. H., Deindl, P.et al. (2003). Associations between total IgE levels and six potentially functional variants within the genes IL-4, IL-13 and IL-4RA in German children: the German Multicentre Atopy Study. J. Allergy Clin. Immunol., 112, 382–8.CrossRefGoogle Scholar
Lowe, L. A., Simpson, A., Woodcock, A.et al. (2005). Wheeze phenotypes and lung function in preschool children. Am. J. Respir. Crit. Care Med., 171, 231–7.CrossRefGoogle ScholarPubMed
Lucas, J. S., Inskip, H. M., Godfrey, K. M.et al. (2004). Small size at birth and greater postnatal weight gain: relationships to diminished infant lung function. Am. J. Respir. Crit. Care. Med., 170, 534–40.CrossRefGoogle ScholarPubMed
Malhotra, I., Ouma, J., Wamachi, A.et al. (1997). In utero exposure to helminth and microbial antigens generates cytokine responses similar to that observed in adults. J. Clin. Invest., 99, 1759–66.CrossRefGoogle Scholar
Marguet, C., Jouen-Boedes, F., Dean, T. P. and Warner, J. O. (1999). Bronchoalveolar cell profiles in children with asthma, infantile wheeze, chronic cough or cystic fibrosis. Am. J. Respir. Crit. Care Med., 159, 1533–40.CrossRefGoogle ScholarPubMed
Martinez, F. D. (2003). Towards asthma prevention: does all that really matters happen before we learn to read?N. Engl. J. Med., 349, 1473–5.CrossRefGoogle Scholar
Maurer, D., Ebner, C., Reininger, B.et al. (1995). The high affinity IgE receptor (Fc epsilon R1) mediates IgE-dependent allergen presentation. J. Immunol., 154, 6285–90.Google Scholar
McKeever, T. M., Lewis, S. A., Smith, C. and Hubbard, R. (2002). The importance of prenatal exposures and the development of allergic disease. Am. J. Respir. Crit. Care. Med., 166, 827–32.CrossRefGoogle ScholarPubMed
Möller, C., Dreborg, S., Ferdousi, H. A.et al. (2002). Pollen immunotherapy reduces the development of asthma in children with seasonal rhino-conjunctivitis (the PAT Study). J. Allergy Clin. Immunol., 109, 251–6.CrossRefGoogle Scholar
Morgan, J., Williams, P., Norris, F.et al. (2004). Eczema and early solid feeding in pre-term infants. Arch. Dis. Child., 89, 309–14.CrossRefGoogle Scholar
Naot, Y., Desmonts, G. and Remington, J. S. (1981). IgM enzyme linked immunosorbent assay test for the diagnosis of congenital toxoplasma infection. J. Pediatr., 98, 32–6.CrossRefGoogle Scholar
Newson, R. B., Shaheen, S. O., Henderson, J.et al. (2004). Umbilical cord and maternal blood red cell fatty acids and early childhood wheezing and eczema. J. Allergy Clin. Immunol., 114, 531–7.CrossRefGoogle ScholarPubMed
Ninan, T., Russell, G., Devenney, A.et al. (2000). Changes in the prevalence of respiratory symptoms and atopy in Aberdeen school children. Europ. Respir. J., 16 (Suppl. 31), 342s.Google Scholar
Noakes, P. S., Holt, P. G. and Prescott, S. L. (2003). Maternal smoking in pregnancy alters neonatal cytokine responses. Allergy, 58, 1053–8.CrossRefGoogle ScholarPubMed
Oberle, D., Mutius, E. and Kries, R., (2003). Childhood asthma and continuous exposure to cats since the first year of life with cats allowed in the child's bedroom. Allergy, 58, 1033–6.CrossRefGoogle ScholarPubMed
Oryszczyn, M. P., Annesi-Maesano, I., Campagno, D.et al. (1999). Head circumference at birth and maternal factors related to cord blood total IgE. Clin. Exp. Allergy, 29, 334–41.CrossRefGoogle ScholarPubMed
Palmer, L. J., Rye, P. J., Gibson, N. A.et al. (2001). Airway responsiveness in early infancy predicts asthma, lung function, and respiratory symptoms by school age. Am. J. Respir. Crit. Care. Med., 163, 37–42.CrossRefGoogle ScholarPubMed
Peat, J. K., Allen, J. and Oddy, W. (1999). Beyond breast-feeding. J. Allergy Clin. Immunol. 104, 526–9.CrossRefGoogle ScholarPubMed
Peat, J. K., Mihrshahi, S., Kemp, A. S.et al. (2004). Three-year outcomes of dietary fatty-acid modification and house dust mite reduction in the childhood asthma prevention study. J. Allergy Clin. Immunol., 114, 807–13.CrossRefGoogle ScholarPubMed
Piccinni, M. P., Beloni, L., Giannarini, L.et al. (1996). Abnormal production of T-helper 2 cytokines, interleukin 4 and interleukin 5 by T-cells from newborns with atopic parents. Eur. J. Immunol., 26, 2293–8.CrossRefGoogle ScholarPubMed
Piccinni, M. P., Beloni, L., Livi, C.et al. (1998). Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T-cells in unexplained recurrent abortions. Nat. Med., 4, 1020–4.CrossRefGoogle ScholarPubMed
Pohunek, P., Warner, J. O., Turzikova, J.Kudrmann, J. and Roche, W. R. (2005). Markers of eosinophilic inflammation and tissue re-modelling in children before clinically diagnosed bronchial asthma. Pediatr. Allergy Immunol., 16, 43–51.CrossRefGoogle ScholarPubMed
Prescott, S. L., Macaubas, C., Holt, B. T.et al. (1998). Transplacental priming of the human immune system to environmental allergens: universal skewing of initial T cell responses towards Th2 cytokine profile. J. Immunol., 160, 4730–7.Google Scholar
Prescott, S. L., Macaubas, C., Smallacombe, T.et al. (1999). Development of allergen-specific T-cell memory in atopic and normal children. Lancet, 353, 196–200.CrossRefGoogle ScholarPubMed
Radon, K., Windsletter, D. and Eckart, J. (2004). Farming exposure in childhood, exposure to markers of infection and the development of atopy in rural subjects. Clin. Exp. Allergy, 34, 1178–83.CrossRefGoogle ScholarPubMed
Raghupathy, R. (1997). Th1 type immunity is incompatible with successful pregnancy. Immunol. Today, 18, 478–82.CrossRefGoogle ScholarPubMed
Resh, A., Schlipkotter, U., Crispin, A . et al. (2004). Atopic disease and its determinants: a focus on the potential role of childhood infection. Clin. Exp. Allergy, 34, 1184–91.CrossRefGoogle Scholar
Romagnani, S. (1991). Human Th1 and Th2 sub-sets: doubt no more. Immunol. Today, 12, 256–7.CrossRefGoogle Scholar
Romagnani, S. (2004). Immunologic influences on allergy and TH1/TH2 balance. J. Allergy Clin. Immunol., 113, 395–400.CrossRefGoogle ScholarPubMed
Romieu, I., Sienra-Monge, J. J., Ramirez-Aguilar, M.et al. (2004). Genetic polymorphism of GSTM 1 and antioxidant supplementation influence lung function in relation to ozone exposure in asthmatic children in Mexico City. Thorax, 59, 8–10.Google Scholar
Ross, S., Abdalla, M., Godden, D. J.et al. (1995). Outcome of wheeze in childhood: the influence of atopy. Eur. Respir. J., 8, 2081–7.CrossRefGoogle ScholarPubMed
Rothoeft, T., Gronschorek, A., Bartz, H.et al. (2003). Antigen dose, type of antigen presenting cell and time of differentiation contribute to the T-alpha-1/T-alpha-2 polarization of naive T-cells. Immunology, 110, 1–10.CrossRefGoogle Scholar
Ruiz, R. G. G., Kemeny, D. M. and Price, J. F. (1992). Higher risk of infantile atopic dermatitis from maternal atopy rather than paternal atopy. Clin. Exp. Allergy, 22, 762–66.CrossRefGoogle ScholarPubMed
Schachter, L. M., Peat, J. K. and Salome, C. M. (2003). Asthma and atopy in overweight children. Thorax. 58, 1031–5.CrossRefGoogle ScholarPubMed
Schittny, J. C., Miserocchi, G. and Sparrow, M. P. (2000). Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants. Am. J. Respir. Cell. Mol. Biol., 23, 11–18.CrossRefGoogle ScholarPubMed
Schoetzau, A., Filipiak-Pittroff, B., Franke, K.et al. (2002). Effect of exclusive breast-feeding and early solid food avoidance on the incidence of atopic dermatitis in high-risk infants at 1 year of age. Pediatr. Allergy Immunol., 13, 234–42.CrossRefGoogle ScholarPubMed
Sears, M. R., Greene, J. M., Willan, A. R.et al. (2003). Longitudinal, population based, cohort study of childhood asthma followed to adulthood. N. Engl. J. Med., 349, 1414–22.CrossRefGoogle Scholar
Sengler, C., Haider, A., Sommerfield, C.et al. (2003). Evaluation of the CD-14 C-159 T polymorphism in the German multicenter allergy study cohort. Clin. Exp. Allergy, 33, 166–9.CrossRefGoogle Scholar
Shaheen, S. O., Aaby, P., Hall, A. J.et al. (1996). Measles and atopy in Guinea-Bissau. Lancet, 347, 1792–6.CrossRefGoogle ScholarPubMed
Shaheen, S. O., Newson, R. B., Henderson, A. J.et al. (2004). Umbilical cord trace elements and minerals and risk of early childhood wheezing and eczema. Eur. Respir. J., 24, 292–7.CrossRefGoogle ScholarPubMed
Shirakawa, T., Enomoto, T., Shimazu, S. and Hopkin, J. M. (1997). Inverse association between tuberculin responses and atopic disorder. Science, 275, 77–9.CrossRefGoogle ScholarPubMed
Sigurs, N., Bjarnason, R., Sigurbergsson, F. and Kjellman, B. (2000). Respiratory syncitial virus bronchiolitis in infancy is an important risk factor for asthma and allergy at age 7. Am. J. Respir. Crit. Care Med., 161, 1501–7.CrossRefGoogle Scholar
Silverman, E. S., Baron, R. M., Palmer, L. J.et al. (2002). Constitutive and cytokine-induced expression of the ETS transcription factor ESE-3 in the lung. Am. J. Respir. Cell. Mol. Biol., 27, 697–704.CrossRefGoogle ScholarPubMed
Stenius-Aarniala, B., Poussa, T., Kvarnström, J.et al. (2000). Immediate and long term effects of weight reduction in obese people with asthma: randomised controlled study. BMJ, 320, 827–32.CrossRefGoogle ScholarPubMed
Stewart, G. A. and Thompson, P. J. (1996). The biochemistry of common aeroallergens. Clin. Exp. Allergy, 26, 1020–44.CrossRefGoogle ScholarPubMed
Strachan, D. P. (1989). Hay fever, hygiene and household size. BMJ, 299, 1259–60.CrossRefGoogle ScholarPubMed
Strachan, D. P. (2000). Family size, infection and atopy: the first decade of the ‘hygiene hypothesis’. Thorax, 55 (Suppl.1), S2–10.CrossRefGoogle Scholar
Strachan, D. P. and Cook, D. G. (1998). Parental smoking and childhood asthma: longitudinal and case–control studies. Thorax, 53, 204–12.CrossRefGoogle ScholarPubMed
Tang, M. L. K., Kemp, A. S., Thorburn, J. and Hill, D. J. (1992). Reduced interferon-gamma secretion in neonates and subsequent atopy. Lancet, 344, 983–5.CrossRefGoogle Scholar
Tantisira, K. G., Litonjua, A. A., Weiss, S. T.et al. (2003). Association of body mass with pulmonary function in the Childhood Asthma Management Programme (CAMP). Thorax, 58, 1036–41.CrossRefGoogle Scholar
Tattersfield, A. E., Knox, A. J., Britton, J. R.et al. (2002). Asthma. Lancet, 360, 1313–22.CrossRefGoogle ScholarPubMed
Thornton, C. A., Holloway, J. A., Popplewell, E. J.et al. (2003). Fetal exposure to intact immunoglobulin E occurs via the gastrointestinal tract. Clin. Exp. Allergy, 33, 306–11.CrossRefGoogle ScholarPubMed
Turner, S. W., Palmer, L. J., Rye, P. J.et al. (2004). The relationship between infant airway function, childhood airway responsiveness, and asthma. Am. J. Respir. Crit. Care Med., 169, 921–7.CrossRefGoogle ScholarPubMed
Asperen, P. P. and Mukhi, A. (1994). Role of atopy in the natural history of wheeze and bronchial hyper-responsiveness in children. Pediatr. Allergy. Immunol., 5, 178–83.CrossRefGoogle Scholar
Vance, G. H. S., Grimshaw, K. E. C., Briggs, R.et al. (2004). Serum ovalbumin-specific immunoglobulin G responses during pregnancy reflect maternal intake of dietary egg and relate to the development of allergy in early infancy. Clin. Exp. Allergy, 34, 1855–61.CrossRefGoogle ScholarPubMed
Duren-Schmidt, K., Pichler, J., Ebner, C.et al. (1997). Prenatal contact with inhalant allergens. Pediatr. Res., 41, 128–31.CrossRefGoogle ScholarPubMed
Eerdewegh, P., Little, R. D., Dupuis, J.et al. (2002). Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature, 418, 426–30.CrossRefGoogle ScholarPubMed
Gool, C. J. A. W., Thijs, C., Dagnelie, P. C.et al. (2004). Determinants of neonatal IgE level: parity, maternal age, birth season and perinatal essential fatty acid status in infants of atopic mothers. Allergy, 59, 961–8.CrossRefGoogle ScholarPubMed
Berg, A., Koletzko, S., Grübl, A.et al. (2003). The effect of hydrolyzed cow's milk formula for allergy prevention in the first year of life: the German Infant Nutritional Intervention Study, a randomized double-blind trial. J. Allergy Clin. Immunol., 111, 533–40.CrossRefGoogle Scholar
Ehrenstein, O. S., Mutius, P., Illi, S.et al. (2000). Reduced risk of hay fever and asthma among children of farmers. Clin. Exp. Allergy, 30, 187–93.CrossRefGoogle Scholar
Walley, A J., Chavanas, S., Moffatt, M. F.et al. (2001). Gene polymorphism in netherton and common atopic disease. Nat. Genet., 29, 175–8.CrossRefGoogle ScholarPubMed
Warner, J. A., Miles, E. A., Jones, A. C.et al. (1994). Is deficiency of interferon gamma production by allergen triggered cord blood cells predictor of atopic eczema?Clin. Exp. Allergy, 24, 423–30.CrossRefGoogle ScholarPubMed
Warner, J. A., Jones, C. A., Jones, A. C.et al. (1997) Immune responses during pregnancy and the development of allergic disease. Pediatr. Allergy Immunol., 8 (Suppl. 10), 5–10.Google ScholarPubMed
Watts, A. M., Stanley, J. R., Shearer, M. H.et al. (1999). Fetal immunization of baboons induces a fetal specific antibody response. Nat. Med., 5, 427–30.CrossRefGoogle ScholarPubMed
Wegmann, T. G., Lin, H., Guilbert, L. and Mosmann, T. R. (1993). Bi-directional cytokine interactions in the maternal–fetal relationship: is successful pregnancy a Th2 phenomenon. Imunol. Today, 14, 353–6.CrossRefGoogle Scholar
Whitsett, J. A. and Wert, S. E. (1998). Molecular determinants of lung development. In Kendig's Disorders of the Respiratory Tract in Children, 6th Edn. (ed. Chernick, V. and Boat, T. F.) Philadelphia, PA: Saunders, pp. 1–19.Google Scholar
Wijga, A H., Smit, H. A., Kerkhof, M.et al. (2003). Association of consumption of products containing milk fat with reduced asthma risk in pre-school children: the PIAMA birth cohort study. Thorax, 58, 567–72.CrossRefGoogle ScholarPubMed
Williams, L. K., Peterson, E. L., Ownby, D. R. and Johnson, C. C. (2004). The relationship between early fever and allergic sensitisation at 6–7 years. J. Allergy Clin. Immunol., 113, 291–6.CrossRefGoogle Scholar
Williams, T. J., Jones, C. A., Miles, E. A.et al. (2000). Fetal and neonatal IL-13 production during pregnancy and at birth and subsequent development of atopic symptoms. J. Allergy Clin. Immunol., 105, 951–9.CrossRefGoogle ScholarPubMed
Wjst, M. (2004). The triple T allergy hypothesis. Clin. Dev. Immunol., 11, 175–80.CrossRefGoogle Scholar
Wright, A. L., Holberg, C. J., Taussig, L. M. and Martinez, F. D. (2001). Factors influencing the relation of infant feeding to asthma and recurrent wheeze in childhood. Thorax 56, 192–7.CrossRefGoogle ScholarPubMed
Yaqoob, P. (2003). Fatty acids as gatekeepers of immune cell regulation. Trends. Immunol., 24, 639–45.CrossRefGoogle ScholarPubMed
Yoshinaka, T., Nishii, K., Yamada, K . et al. (2002). Identification and characterization of novel mouse and human ADAM33s with potential metalloprotease activity. Gene, 282, 227–36.CrossRefGoogle ScholarPubMed
Zamel, N., Clean, P. A., Sandell, P. R.et al. (1996). Asthma on Tristan da Cunha: looking for the genetic link. The University of Toronto Genetics of Asthma Research Group. Am. J. Respir., 153, 1902–6.Google Scholar
Zutavern, A., Mutius, E., Harris, J.et al. (2004). The introduction of solids in relation to asthma and eczema. Arch. Dis. Child., 89, 303–8.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×