Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T00:00:59.706Z Has data issue: false hasContentIssue false

25 - The developmental environment: effects on lung structure and function

Published online by Cambridge University Press:  08 August 2009

Richard Harding
Affiliation:
Monash University
Megan L. Cock
Affiliation:
Monash University
Gert S. Maritz
Affiliation:
University of the Western Cape
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

Epidemiological studies have provided strong evidence that a suboptimal intrauterine environment can have long-term effects on postnatal lung function and respiratory symptoms or illness. Prenatal factors that have been causally related to long-term changes in respiratory function and health include impaired fetal nutrition and growth (Harding et al. 2004), maternal tobacco smoking and nicotine exposure (Joad 2004, Maritz 2004) and preterm birth (Albertine and Pysher 2004). Evidence is accruing that a number of common respiratory illnesses of childhood and adulthood may have their origins in fetal life, or that predisposing conditions may be laid down at the time (Shaheen and Barker 1994). Similarly, it is now recognised that alterations to the early postnatal environment can lead to persistent alterations in lung structure and function later in life.

Lung development and maturation are characterised by several distinct phases, namely the embryonic phase followed by the pseudoglandular, canalicular, saccular and alveolar phases. These are followed by the phase of equilibrated lung growth, the final stage of lung maturation (Kauffman et al. 1974). During each phase, specific structural changes occur which eventually result in a lung that can effectively fulfil its role as a gas exchanger, with an ability to resist infection and damage by inhaled toxic agents. Interference with the developmental programme of the lung during any of these phases may render the lung less effective as a gas exchanger or may render it more susceptible to disease.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albertine, K. H. and Pysher, T. J. (2004). Pulmonary consequences of preterm birth. In The Lung: Development, Aging and the Environment (ed. Harding, R., Pinkerton, K. E. and Plopper, C. G.). London: Academic Press, pp. 237–51.Google Scholar
Albertine, K. H., Jones, G. P., Starcher, B. C.et al. (1999). Chronic lung injury in preterm lambs: disordered respiratory tract development. Am. J. Respir. Crit. Care Med., 159, 945–58.CrossRefGoogle ScholarPubMed
Albuquerque, C., Boland, R., Cock, M. L., Hooper, S. B. and Harding, R. (1998). Lung fluid composition in the chronically hypoxemic ovine fetus. Am. J. Obstet. Gynecol., 178, S37.Google Scholar
Bader, D., Ramos, A. D., Lew, C. D., Platzker, A. C., Stabile, M. W. and Keens, T. G. (1987). Childhood sequelae of infant lung disease: exercise and pulmonary function abnormalities after bronchopulmonary dysplasia. J. Pediatr., 110, 693–9.CrossRefGoogle ScholarPubMed
Bai, A., Eidelman, D. H., Hogg, J. C.et al. (1994). Proposed nomenclature for quantifying subdivisions of the bronchial wall. J. Appl. Physiol., 7, 1011–14.CrossRefGoogle Scholar
Bardy, A. H., Seppala, T., Lillsunde, P.et al. (1993). Objectively measured tobacco exposure during pregnancy: neonatal effects and relation to maternal smoking. Br. J. Obstet. Gynaecol., 100, 721–6.CrossRefGoogle ScholarPubMed
Barker, D. J. P., Godfrey, K. M., Fall, C., Osmond, C., Winter, P. D. and Shaheen, S. O. (1991). Relation of birth weight and childhood respiratory infection to adult lung function and death from chronic obstructive airways disease. BMJ, 303, 671–5.CrossRefGoogle ScholarPubMed
Bellanti, J. A., Zeligs, B. J. and Kulszycki, L. L. (1997). Nutrition and development of pulmonary defense mechanisms. Pediatr. Pulmonol. Suppl., 16, 170–1.CrossRefGoogle ScholarPubMed
Benowitz, N. L., Chan, K., Denaro, C. P. and Jacob, P. III. (1991). Stable isotope method for studying transdermal drug absorption: the nicotine patch. Clin. Pharmacol. Ther., 50, 286–93.CrossRefGoogle ScholarPubMed
Bland, R. D., Albertine, K. H., Carlton, D. P.et al. (2000). Chronic lung injury in preterm lambs: abnormalities of the pulmonary circulation and lung fluid balance. Pediatr. Res., 48, 64–74.CrossRefGoogle ScholarPubMed
Coalson, J. J. (1997). Experimental models of bronchopulmonary dysplasia. Biol. Neonate, 71, 35–8.CrossRefGoogle ScholarPubMed
Coalson, J. J., Winter, V. and Lemos, R. A. (1995). Decreased alveolarization in baboon survivors with bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med., 152, 640–6.CrossRefGoogle ScholarPubMed
Cock, M. L., Albuquerque, C. A., Joyce, B. J., Hooper, S. B. and Harding, R. (2001a). Effects of intrauterine growth restriction on lung liquid dynamics and lung development in fetal sheep. Am. J. Obstet. Gynecol., 184, 209–16.CrossRefGoogle Scholar
Cock, M. L., Camm, E. J., Louey, S., Joyce, B. J. and Harding, R. (2001b). Postnatal outcomes in term and preterm lambs following fetal growth restriction. Clin. Exp. Pharmacol. Physiol., 28, 931–7.CrossRefGoogle Scholar
Cock, M. L., Hanna, M., Sozo, F.et al. (2005). Pulmonary function and structure following mild preterm birth in lambs. Pediatr. Pulmonol., 40, 336–48.CrossRefGoogle ScholarPubMed
Collins, M. H., Moessinger, A. C., Kleinerman, J.et al. (1985). Fetal lung hypoplasia associated with maternal smoking: a morphometric analysis. Pediatr. Res., 19, 408–12.CrossRefGoogle ScholarPubMed
Cunningham, J., Dockery, D. W. and Speizer, F. E. (1994). Maternal smoking during pregnancy as a predictor of lung function in children. Am. J. Epidemiol., 139, 1139–52.CrossRefGoogle ScholarPubMed
Das, R. M. (1984). The effects of intermittent starvation on lung development in suckling rats. Am. J. Pathol., 117, 326–32.Google ScholarPubMed
Duncan, J. R., Cock, M. L., Harding, R. and Rees, S. M. (2000). Relation between damage to the placenta and fetal brain following late-gestational placental embolisation and fetal growth restriction in fetal sheep. Am. J. Obstet. Gynecol., 183, 1013–22.CrossRefGoogle Scholar
Elliot, J., Carroll, N., Bosco, M., McCrohan, M. and Robinson, P. (2001). Increased airways responsiveness and decreased alveolar attachment points following in utero smoke exposure in the guinea pig. Am. J. Respir. Crit. Care Med., 163, 140–4.CrossRefGoogle ScholarPubMed
Fauroux, B. (2003). Smoking, fetal pulmonary development and lung disease in children. J. Gynecol. Obstet. Biol. Reprod. (Paris), 32, S17–22.Google ScholarPubMed
Flecknoe, S. J., Wallace, M. J., Cock, M. L., Harding, R. and Hooper, S. B. (2003). Changes in alveolar epithelial cell proportions during fetal and postnatal development in sheep. Am. J. Physiol. Lung Cell. Mol. Physiol., 285, L664–70.CrossRefGoogle Scholar
Gagnon, R., Langridge, J., Inchley, K., Murotsuki, J. and Possmayer, F. (1999). Changes in surfactant-associated protein mRNA profile in growth-restricted fetal sheep. Am. J. Physiol., 276, L459–65.Google ScholarPubMed
Gilbert, W. M. and Danielsen, B. (2003). Pregnancy outcomes associated with intrauterine growth restriction. Am. J. Obstet. Gynecol., 188, 1596–9.CrossRefGoogle ScholarPubMed
Green, F. H. Y. and Pinkerton, K. E. (2004). Environmental determinants of lung ageing. In The Lung: Development, Aging and the Environment (ed. Harding, R., Pinkerton, K. E. and Plopper, C. G.). London: Academic Press, pp. 377–95.Google Scholar
Greenberg, R. A., Haley, N. J., Etzel, R. A. and Loda, F. A. (1984). Measuring the exposure of infants to tobacco smoke: nicotine and cotinine in urine and saliva. N. Engl. J. Med., 310, 1075–78.CrossRefGoogle ScholarPubMed
Hanrahan, J. P., Tager, I. B., Segal, M. R.et al. (1992). The effect of maternal smoking during pregnancy on early infant lung function. Am. Rev. Respir. Dis., 145, 1129–35.CrossRefGoogle ScholarPubMed
Harding, J. E. and Johnston, B. M. (1995). Nutrition and fetal growth. Reprod. Fertil. Dev., 7, 539–47.CrossRefGoogle ScholarPubMed
Harding, R. (1997). Fetal pulmonary development: the role of respiratory movements. Equine Vet. J., 24 (suppl.), 32–9.Google Scholar
Harding, R. and Hooper, S. B. (1996). Regulation of lung expansion and lung growth before birth. J. Appl. Physiol., 81, 209–24.CrossRefGoogle ScholarPubMed
Harding, R., Cock, M. L. and Albuquerque, C. A. (2004). Role of nutrition in lung development before and after birth. In The Lung: Development, Aging and the Environment (ed. Harding, R., Pinkerton, K. E. and Plopper, C.). London: Academic Press, pp. 253–66.Google Scholar
Hards, J. M., Reid, W. D., Pardy, R. L. and Pare, P. D. (1990). Respiratory muscle fiber morphometry: correlation with pulmonary function and nutrition. Chest, 97, 1037–44.CrossRefGoogle ScholarPubMed
Hislop, A. A. and Haworth, S. G. (1990). Pulmonary vascular damage and the development of cor pulmonale following hyaline membrane disease. Pediatr. Pulmonol., 9, 152–61.CrossRefGoogle ScholarPubMed
Hjalmarson, O. and Sandberg, K. (2002). Abnormal lung function in healthy preterm infants. Am. J. Respir. Crit. Care Med., 165, 83–7.CrossRefGoogle ScholarPubMed
Hofhuis, W., Jongste, J. C. and Merkus, P. J. (2003) Adverse health effects of prenatal and postnatal tobacco smoke exposure on children. Arch. Dis. Child., 88, 1086–90.CrossRefGoogle Scholar
Hooper, S. B., Bocking, A. D., White, S., Challis, J. R. G. and Han, V. K. (1991). DNA synthesis is reduced in selected fetal tissues during prolonged hypoxemia. Am. J. Physiol., 261, R508–14.Google ScholarPubMed
Jauniaux, E., Gulbis, B., Acharya, G., Thiry, P. and Rodeck, C. (1999). Maternal tobacco exposure and cotinine in fetal fluids in the first half of pregnancy. Obstet. Gynecol., 93, 25–9.Google ScholarPubMed
Joad, J. (2004). Tobacco smoke and lung development. In The Lung: Development, Ageing and the Environment (ed. Harding, R., Pinkerton, K. E. and Plopper, C.. London: Academic Press, pp. 292–5.Google Scholar
Joad, J. P., Bric, J. M., Peake, J. L. and Pinkerton, K. E. (1999). Perinatal exposure to aged and diluted sidestream cigarette smoke produces airway hyperresponsiveness in older rats. Toxicol. Appl. Pharmacol., 155, 253–60.CrossRefGoogle ScholarPubMed
Joyce, B. J., Louey, S., Davey, M. G., Cock, M. L., Hooper, S. B. and Harding, R. (2001). Compromised respiratory function in postnatal lambs after placental insufficiency and intrauterine growth restriction. Pediatr. Res., 50, 641–9.CrossRefGoogle ScholarPubMed
Kalenga, M., Tschanz, S. A. and Burri, P. H. (1995). Protein deficiency and the growing rat lung. II. Morphometric analysis and morphology. Pediatr. Res., 37, 789–95.CrossRefGoogle ScholarPubMed
Kauffman, S. L., Burri, P. H. and Weibel, E. R. (1974). The postnatal growth of the rat lung. II. Autoradiography. Anat. Rec., 180, 63–76.CrossRefGoogle ScholarPubMed
Koos, B. J., Maeda, T. and Jan, C. (2001). Adenosine A(1) and A(2A) receptors modulate sleep state and breathing in fetal sheep. J. Appl. Physiol., 91, 343–50.CrossRefGoogle Scholar
Lackman, F., Capewell, V., Richardson, B., Silva, O. and Gagnon, R. (2001). The risks of spontaneous preterm delivery and perinatal mortality in relation to size at birth according to fetal versus neonatal growth standards. Am. J. Obstet. Gynecol., 184, 946–53.CrossRefGoogle ScholarPubMed
Lechner, A. J. (1985). Perinatal age determines the severity of retarded lung development induced by starvation. Am. Rev. Respir. Dis., 131, 638–43.Google ScholarPubMed
Lewis, M. I. and Belman, M. J. (1988). Nutrition and the respiratory muscles. Clin. Chest Med., 9, 337–48.Google ScholarPubMed
Linhartova, A. (1983). Fenestration of the pulmonary septa as a sign of early destruction in emphysema. Ceskoslovenska Patologie, 19, 211–21.Google ScholarPubMed
Lopuhaä, C. E., Roseboom, T. J., Osmond, C.et al. (2000). Atopy, lung function, and obstructive airways disease after prenatal exposure to famine. Thorax, 55, 555–61.CrossRefGoogle Scholar
Luck, W. and Nau, H. (1984). Exposure of the fetus, neonate, and nursed infant to nicotine and cotinine from maternal smoking. N. Engl. J. Med., 311, 672.Google ScholarPubMed
Luck, W., Nau, H., Hansen, R. and Steldinger, R. (1985). Extent of nicotine and cotinine transfer to the human fetus, placenta and amniotic fluid of smoking mothers. Dev. Pharmacol. Ther., 8, 384–95.CrossRefGoogle ScholarPubMed
Maloney, J. E., Bowes, G., Brodecky, V., Dennett, X., Wilkinson, M. and Walker, A. (1982). Function of the future respiratory system in the growth retarded fetal sheep. J. Dev. Physiol., 4, 279–97.Google ScholarPubMed
Margraf, L. R., Tomasherski, J. F. Jr., Bruce, M. C. and Dahms, B. B. (1991). Morphometric analysis of the lung in bronchopulmonary dysplasia. Am. Rev. Respir. Dis., 143, 391–400.CrossRefGoogle ScholarPubMed
Maritz, G. S. (2002). Maternal nicotine exposure during gestation and lactation of rats induce microscopic emphysema in the offspring. Exp. Lung Res., 28, 391–403.CrossRefGoogle ScholarPubMed
Maritz, G. S. (2004). Nicotine exposure during early development: effects on the lung. In The Lung: Development, Ageing and the Environment (ed. Harding, R., Pinkerton, K. E. and Plopper, C.). London: Academic Press, pp. 301–9.Google Scholar
Maritz, G. S. and Dolley, L. (1996). The influence of maternal nicotine exposure on the status of the connective tissue framework of the developing rat lung. Pathophysiology, 3, 212–20.CrossRefGoogle Scholar
Maritz, G. S. and Windvogel, S. (2003). Chronic maternal nicotine exposure during gestation and lactation and the development of the lung parenchyma in the offspring: response to nicotine withdrawal. Pathophysiology, 10, 69–75.CrossRefGoogle ScholarPubMed
Maritz, G. S., Cock, M. L., Louey, S., Joyce, B. J., Albuquerque, C. A. and Harding, R. (2001). Effects of fetal growth restriction on lung development before and after birth: a morphometric analysis. Pediatr. Pulmonol., 32, 201–10.CrossRefGoogle ScholarPubMed
Maritz, G. S., Cock, M. L., Louey, S., Suzuki, K. and Harding, R. (2004). Fetal growth restriction has long-term effects on postnatal lung structure in sheep. Pediatr. Res., 55, 287–95.CrossRefGoogle Scholar
Massaro, G. D., McCoy, L. and Massaro, D. (1988). Postnatal undernutrition slows development of bronchiolar epithelium in rats. Am. J. Physiol., 255, R521–6.Google ScholarPubMed
Matecki, S., Py, G., Lambert, K.et al. (2002). Effect of prolonged undernutrition on rat diaphragm mitochondrial respiration. Am. J. Respir. Cell Mol. Biol., 26, 239–45.CrossRefGoogle ScholarPubMed
McMartin, K. I., Platt, M. S., Hackman, R.et al. (2002). Lung tissue concentrations of nicotine in sudden infant death syndrome (SIDS). J. Pediatr., 140, 205–9.CrossRefGoogle Scholar
Meyer, D. H., Cross, C. E., Ibrahim, A. B. and Mustafa, M. G. (1971). Nicotine effects on alveolar macrophage respiration and adenosine triphosphatase activity. Arch. Environ. Health, 22, 362–5.CrossRefGoogle ScholarPubMed
Minior, V. K. and Divon, M. Y. (1998). Fetal growth restriction at term: myth or reality?Obstet. Gynecol., 92, 57–60.CrossRefGoogle ScholarPubMed
Nair, R. H., Kesavachandran, C. and Shashidhar, S. (1999). Spirometric impairments in undernourished children. Indian J. Physiol. Pharmacol., 43, 467–73.Google ScholarPubMed
Nicolaides, K. H., Economides, D. L. and Soothill, P. W. (1989). Blood gases, pH, and lactate in appropriate- and small-for-gestational-age fetuses. Am. J. Obstet. Gynecol., 161, 996–1001.CrossRefGoogle ScholarPubMed
Nikolajev, K., Heinonen, K., Hakulinen, A. and Lansimies, E. (1998). Effects of intrauterine growth retardation and prematurity on spirometric flow values and lung volumes at school age in twin pairs. Pediatr. Pulmonol., 25, 367–70.3.0.CO;2-E>CrossRefGoogle ScholarPubMed
Nikolajev, K., Korppi, M., Remes, K., Lansimies, E., Jokela, V. and Heinonen, K. (2002). Determinants of bronchial responsiveness to methacholine at school age in twin pairs. Pediatr. Pulmonol., 33, 167–73.CrossRefGoogle ScholarPubMed
Northway, W. H., Rosan, R. C. and Porter, D. Y. (1967). Pulmonary disease following respirator therapy of hyaline-membrane disease: bronchopulmonary dysplasia. N. Engl. J. Med., 276, 357–68.CrossRefGoogle ScholarPubMed
Northway, W. H., Moss, R. B., Carlisle, K. B.et al. (1990). Late pulmonary sequelae of bronchopulmonary dysplasia. N. Engl. J. Med., 323, 1793–9.CrossRefGoogle ScholarPubMed
Ong, T. J., Mehta, A., Ogston, S. and Mukhopadhyay, S. (1998). Prediction of lung function in the inadequately nourished. Arch. Dis. Child., 79, 18–21.CrossRefGoogle ScholarPubMed
Pierce, R. A. and Nguyen, N. M. (2002). Prenatal nicotine exposure and abnormal lung function. Am. J. Respir. Cell Mol. Biol., 26, 10–13.CrossRefGoogle ScholarPubMed
Primhak, R. and Coates, F. S. (1988). Malnutrition and peak expiratory flow rate. Eur. Respir. J., 1, 801–3.Google ScholarPubMed
Pullan, C. R. and Hey, E. N. (1982). Wheezing, asthma, and pulmonary dysfunction 10 years after infection with respiratory syncitial virus in infancy. Br. Med. J., 284, 1665–9.CrossRefGoogle Scholar
Rees, S., Ng, J., Dickson, K., Nicholas, T. and Harding, R. (1991). Growth retardation and the development of the respiratory system in fetal sheep. Early Hum. Dev., 26, 13–27.CrossRefGoogle ScholarPubMed
Resnik, R. (2002). High-risk pregnancy series: an expert's view. Obstet. Gynecol., 99, 490–6.Google Scholar
Rhoades, R. A. and Ryder, D. A. (1981). Fetal lung metabolism response to maternal fasting. Biochim. Biophys. Acta, 663, 621–9.CrossRefGoogle ScholarPubMed
Robinson, P. J., Hegele, R. G. and Schellenberg, R. R. (1996). Increased airway reactivity in human RSV bronchiolitis in the guinea pig is not due to increased wall thickness. Pediatr. Pulmonol., 22, 248–54.3.0.CO;2-I>CrossRefGoogle Scholar
Rona, R. J., Gulliford, M. C. and Chinn, S. (1993). Effects of prematurity and intrauterine growth on respiratory health and lung function in childhood. BMJ, 306, 817–20.CrossRefGoogle ScholarPubMed
Rucker, R. B. and Dubick, M. A. (1984). Elastin metabolism and chemistry: potential roles in lung development and structure. Environ. Health Perspect., 55, 179–91.CrossRefGoogle ScholarPubMed
Ryan, S. (1998). Nutrition in neonatal chronic lung disease. Eur. J. Pediatr., 157 (suppl. 1), S19–22.CrossRefGoogle ScholarPubMed
Saetta, M., Ghezzo, H., Kim, W. D.et al. (1985). Loss of alveolar attachments in smokers. Am. Rev. Resp. Dis., 132, 894–900.Google ScholarPubMed
Schols, A. M. (2000). Nutrition in chronic obstructive pulmonary disease. Curr. Opin. Pulmonol. Med., 6, 110–15.CrossRefGoogle ScholarPubMed
Sekhon, H. S., Keller, J. A., Proskocil, B. J., Martin, E. L. and Spindel, E. R. (2002). Maternal nicotine exposure upregulates collagen gene expression in fetal monkey lung: association with alpha7 nicotinic acetylcholine receptors. Am. J. Resp. Cell. Mol. Biol., 26, 31–41.CrossRefGoogle ScholarPubMed
Shaheen, S. O. and Barker, D. J. P. (1994). Early lung growth and chronic airflow obstruction. Thorax, 49, 533–6.CrossRefGoogle ScholarPubMed
Shaheen, S. O., Sterne, J. A., Tucker, J. S. and Florey, C. D. (1998). Birth weight, childhood lower respiratory tract infection, and adult lung function. Thorax, 53, 549–53.CrossRefGoogle ScholarPubMed
Smyth, J. A., Tabachnik, E., Duncan, W. J., Reilly, B. J. and Levison, H. (1981). Pulmonary function and bronchial hyperreactivity in long-term survivors of bronchopulmonary dysplasia. Pediatrics, 68, 336–40.Google ScholarPubMed
Sozo, F., Wallace, M. J., Hanna, M. R.et al. (in press). Alveolar epithelial cell differentiation and surfactant protein expression after mild preterm birth in sheep. Pediatr. Res.Google Scholar
Speer, C. P. and Silverman, M. (1998). Issues relating to children born prematurely. Eur. Resp. J., 27, 13–16s.Google ScholarPubMed
Stein, C. E., Kumaran, K., Fall, C. H., Shaheen, S. O., Osmond, C. and Barker, D. J. P. (1997). Relation of fetal growth to adult lung function in south India. Thorax, 52, 895–9.CrossRefGoogle ScholarPubMed
Szuts, T., Olsson, S., Lindquist, N. G., Ullberg, S., Pilotti, A. and Enzell, C. (1978). Long-term fate of [14C]nicotine in the mouse: retention in the bronchi, melanin-containing tissues and urinary bladder wall. Toxicology, 10, 207–20.CrossRefGoogle Scholar
Tager, I. B., Hanrahan, J. P., Tosteson, T. D.et al. (1993). Lung function, pre- and post-natal smoke exposure, and wheezing in the first year of life. Am. Rev. Resp. Dis., 147, 811–17.CrossRefGoogle ScholarPubMed
Tyson, J. E., Kennedy, K., Broyles, S. and Rosenfeld, C. R. (1995). The small for gestational age infant: accelerated or delayed pulmonary maturation? Increased or decreased survival?Pediatrics, 95, 534–8.Google ScholarPubMed
Vunakis, H., Langone, J. J. and Milunsky, A. (1974). Nicotine and cotinine in the amniotic fluid of smokers in the second trimester of pregnancy. Am. J. Obstet. Gynecol., 120, 64–6.Google ScholarPubMed
Vidic, B. (1991). Transplacental effect of environmental pollutants on interstitial composition and diffusion capacity for exchange of gases of pulmonary parenchyma in neonatal rat. Bull. Assoc. Anat., 75, 153–5.Google ScholarPubMed
Wang, N.-S., Schraufnagel, D. E. and Chen, M. F. (1983). The effect of maternal oral intake of nicotine on the growth and maturation of fetal and baby mouse lungs. Lung, 161, 27–38.CrossRefGoogle Scholar
Wignarajah, D., Cock, M. L., Pinkerton, K. E. and Harding, R. (2002). Influence of intra-uterine growth restriction on airway development in fetal and postnatal sheep. Pediatr. Res., 51, 681–8.CrossRefGoogle Scholar
Young, S., Souef, P. N., Geelhoed, G. C., Stick, S. M., Turner, K. J. and Landau, L. I. (1991). The influence of a family history of asthma and parental smoking on airway responsiveness in early infancy. N. Engl. J. Med., 324, 1168–73.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×