Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T07:46:26.659Z Has data issue: false hasContentIssue false

8 - Maternal nutrition and fetal growth and development

Published online by Cambridge University Press:  08 August 2009

Susan M. B. Morton
Affiliation:
University of Auckland
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

There has been a great deal of literature devoted to better understanding the determinants of offspring size at birth. Over several decades the importance of maternal size has been acknowledged as a key factor in the fetal development of her offspring and from this association it has followed that maternal nutrition must also be of importance to the growth of her unborn infants. This chapter reviews the extent of the evidence for an association between maternal nutrition and reduced offspring size at birth, as characterised by low birthweight (birthweight of less than 2500 g irrespective of length of gestation). After acknowledging the complexity of the notion of low birthweight (LBW), maternal nutrition is defined in the context of its potential influence on fetal growth and the available evidence is summarised for associations between LBW and maternal anthropometry, nutritional status and diet in pregnancy. The evidence is drawn from both observational studies and from intervention studies (randomised controlled trials, RCTs), the latter of which may avoid the biases that often arise in uncontrolled trials. Where sufficient data are available the effects of nutritional interventions are quantified in terms of their demonstrated effects on fetal size and maturity at birth. The second part of the chapter discusses important limitations in our current understanding of the nature of the association and the potential implications this has for interventions to improve fetal growth.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atallah, A. N., Hofmeyr, G. and Duley, L. (2002). Calcium supplementation during pregnancy for preventing hypertensive disorders and related problems. Cochrane Database Syst. Rev., 2002 (1).Google Scholar
Badrawi, H., Hassanein, M. K., Badroui, M. H. H., Wafa, Y. A. and Badrawi, N. (1992). Pregnancy outcome in obese pregnant mothers. J. Perinat. Med., 20, 1–203.Google Scholar
Barker, D. J. P. (1995). Fetal origins of coronary heart disease. BMJ, 311, 171–4.CrossRefGoogle ScholarPubMed
Barker, D. J. P. (1997). Intrauterine programming of coronary heart disease and stroke. Acta Paediatr. Suppl., 423, 178–82.CrossRefGoogle ScholarPubMed
Barker, D. J. P. (1998). Mothers, Babies and Health in Later Life. Edinburgh: Churchill Livingstone.Google Scholar
Belizán, J. M., Villar, J., Bergel, , E. et al. (1997). Long term effect of calcium supplementation during pregnancy on the blood pressure of the offspring: follow up of a randomised controlled trial. BMJ, 315, 281–5.CrossRefGoogle ScholarPubMed
Blackwell, R. Q., Chow, B. F., Chinn, K. S. K., Blackwell, B. N. and Hsu, S. C. (1973). Prospective maternal nutrition study in Taiwan: rationale, study design, feasibility and preliminary findings. Nutr. Rep. Int., 7, 517–32.Google Scholar
Bloomfield, F. H., Oliver, M. H., Hawkins, P. et al. (2003). A periconceptional nutritional origin for non-infectious preterm birth. Science, 300, 606.CrossRefGoogle Scholar
Brown, K. H., Peerson, J. M. and Allen, L. H. (2002). Effect of zinc supplementation on the growth and serum zinc concentrations of pre-pubertal children: a meta-analysis of randomized controlled trials. Am. J. Clin. Nutr., 75, 1062–71.CrossRefGoogle Scholar
Butler, N. R. and Bonham, D. G. (1963). Perinatal Mortality. London: Livingstone.Google Scholar
Campbell, D. M. and MacGillivray, I. (1975). The effect of a low calorie intake or a thiazide diuretic on the incidence of pre-eclampsia and on birthweight. Br. J. Obstet. Gynaecol., 82, 572–7.CrossRefGoogle Scholar
Castillo-Durán, C. and Weisstaub, G. (2003). Zinc supplementation and growth of the fetus and low birth weight infant. J. Nutr., 133, 1494–7S.CrossRefGoogle ScholarPubMed
Ceesay, S. M., Prentice, A. M., Cole, T. J.et al. (1997). Effects on birthweight and perinatal mortality of maternal dietary supplements in rural Gambia: 5 year randomised controlled trial. BMJ, 315, 786–90.CrossRefGoogle ScholarPubMed
Cole, T. J., Foord, F. A., Watkinson, M., Lamb, W. H. and Whitehead, R. G. (1995). The Keneba pregnancy supplementation study. Bull. World Health Organ., 73, 72–6.Google ScholarPubMed
Cooper, C., Kuh, D., Egger, P., Wadsworth, M. and Barker, D. J. P. (1996). Childhood growth and age at menarche. Br. J. Obstet. Gynaecol., 103, 814–17.CrossRefGoogle ScholarPubMed
Cuervo, L. G. and Mahomed, K. (2001). Treatments for iron deficiency anaemia in pregnancy. Cochrane Database Syst. Rev., 2001 (2).CrossRefGoogle Scholar
Onis, M., Villar, J. and Gülmezoglu, A. M. (1998). Nutritional interventions to prevent intrauterine growth retardation: evidence from randomized controlled trials. Eur. J. Clin. Nutr., 52, S83–93.Google ScholarPubMed
Dougherty, C. R. and Jones, A. D. (1982). The determinants of birthweight. Am. J. Obstet. Gynecol., 144, 190–200.CrossRefGoogle Scholar
Doyle, W., Crawford, M. A., Wynn, A. H. and Wynn, S. W. (1989). Maternal magnesium intake and pregnancy outcome. Magnes. Res., 2, 205–10.Google ScholarPubMed
Doyle, W., Crawford, M. A., Wynn, A. H. and Wynn, S. W. (1990). The association between maternal diet and birth dimensions. J. Nutr. Med., 1, 9–17.Google Scholar
Doyle, W., Crawford, M. A., Wynn, A. H. and Wynn, S. W. (1992). Nutritional counselling and supplementation in the second and third trimester of pregnancy. J. Nutr. Med., 3, 249–56.Google Scholar
Duley, L. (1995). Prophylactic fish oil in pregnancy. In Pregnancy and Childbirth Module of the Cochrane Database of Systematic Reviews (ed. Enkin, M., Keirse, M., Renfrew, M. and Nelson, J.). London: British Medical Journal Publishing Group.Google Scholar
Duley, L. and Henderson-Smart, D. (1999). Reduced salt intake compared to normal dietary salt, or high intake, in pregnancy. Cochrane Database Syst. Rev., 1999 (3).Google Scholar
Emanuel, I. (1997). Invited commentary: an assessment of maternal intergenerational factors in pregnancy outcome. Am. J. Epidemiol., 146, 820–5.CrossRefGoogle ScholarPubMed
Eriksson, J. G., Forsén, T. J., Tuomilehto, J., Winter, P. D., Osmond, C. and Barker, D. J. P. (1999). Catch-up growth in childhood and death from coronary heart disease: longitudinal study. BMJ, 318, 427–31.CrossRefGoogle ScholarPubMed
Evans, S. and Alberman, E. (1989). International Collaborative Effort (ICE) on Birthweight, Plurality, and Perinatal and Infant Mortality. II. Comparisons between birthweight distributions in member countries from 1970 to 1984. Acta Obstet. Gynecol. Scand, 68, 11–17.CrossRefGoogle ScholarPubMed
Fall, C. H. D., Yajnik, C. S., Rao, S., Davies, A. A., Brown, N. and Farrant, H. J. W. (2003). Micronutrients and fetal growth. J. Nutr., 133, 1747–56S.CrossRefGoogle ScholarPubMed
Fawzi, W. W., Msamanga, G. I., Spiegelman, D.et al. (1998). Randomised trials of effects of vitamin supplements on pregnancy outcomes and T cell counts in HIV-1-infected women in Tanzania. Lancet, 351, 1477–82.CrossRefGoogle Scholar
Fish Oil Trials In Pregnancy (FOTIP) Team. (2000). Randomised controlled trials of fish oil supplementation in high risk pregnancies. Br. J. Obstet. Gynaecol., 107, 382–95.CrossRef
Fleming, A. F., Ghatoura, G. B. S., Harrison, K. A., Briggs, N. D. and Dunn, D. T. (1986). The prevention of anaemia in pregnancy in primigravidae in the Guinea savannah of Nigeria. Ann. Trop. Med. Parasitol., 80, 211–33.CrossRefGoogle Scholar
Forsum, E., Sadurskis, A. and Wager, J. (2003). Resting metabolic rate and body composition of healthy Swedish women during pregnancy. Am. J. Clin. Nutr., 47, 942–7.CrossRefGoogle Scholar
Gluckman, P. D. and Hanson, M. A. (2005). The Fetal Matrix. Cambridge: Cambridge University Press.Google Scholar
Godfrey, K., Robinson, S. and Barker, D. J. P. (1997). Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ, 312, 410–14.CrossRefGoogle Scholar
Goldberg, G. R., Prentice, A. M. and Coward, W. A. (1993). Longitudinal assessment of energy expenditure in pregnancy by the doubly labelled water method. Am. J. Clin. Nutr., 57, 494–505.CrossRefGoogle Scholar
Goldenberg, R. L. (2003). The plausibility of micronutrient deficiency in relationship to perinatal infection. J. Nutr., 133, 1645–8S.CrossRefGoogle ScholarPubMed
Goldstein, H. and Peckham, C. (1976). Birthweight, gestation, neonatal mortality and child development. In The Biology of Human Fetal Growth (ed. Roberts, D. F. and Thomson, A. M.). London: Taylor & Francis, pp. 81–102.Google Scholar
Gunnell, D. J., Davey Smith, G., Frankel, S. J., Kemp, M. and Peters, T. J. (1998). Socio-economic and dietary influences on leg and trunk length in childhood: a reanalysis of the Carnegie (Boyd Orr) survey of diet and health in prewar Britain (1937–39). Paediatr. Perinat. Epidemiol., 12, 96–113.CrossRefGoogle Scholar
Harding, J. E. (1997). Periconceptual nutrition determines the fetal growth response to acute maternal undernutrition in fetal sheep of late gestation. Prenat. Neonat. Med., 2, 310–19.Google Scholar
Harding, J. E. (2001). The nutritional basis of the fetal origins of adult disease. Int. J. Epidemiol., 30, 15–23.CrossRefGoogle ScholarPubMed
Hemminki, E. and Rimpela, U. (1991). Iron supplementation, maternal packed cell volume, and fetal growth. Arch. Dis. Child., 66, 422–5.CrossRefGoogle ScholarPubMed
Hennessy, E. and Alberman, E. (1998). Intergenerational influences affecting birth outcome. I. Birthweight for gestational age in the children of the 1958 British birth cohort. Paediatr. Perinat Epidemiol., 12 (Suppl. 1), 45–60.CrossRefGoogle ScholarPubMed
Institute of Medicine (1990). Nutrition During Pregnancy. Part I. Weight Gain. Part II. Nutrient Supplements. Washington, DC: National Academy Press.
Iyenger, L. (1967). Effects of dietary supplements late in pregnancy on the expectant mother and her newborn. Indian J. Med. Res., 55, 85–9.Google ScholarPubMed
Jackson, A. A. and Robinson, S. M. (2001). Dietary guidelines for pregnancy: a review of current evidence. Public Health Nutr., 4, 625–30.CrossRefGoogle ScholarPubMed
Jackson, A. A., Bhutta, Z. A. and Lumbiganon, P. (2003). Nutrition as a preventive strategy against adverse pregnancy outcomes. J. Nutr., 133, 1589–91S.CrossRefGoogle Scholar
Kafatos, A. G., Vlachonikolis, I. G. and Codrington, C. A. (1989). Nutrition during pregnancy: the effects of an educational intervention program in Greece. Am. J. Clin. Nutr., 50, 970–9.CrossRefGoogle Scholar
Kardjati, S., Kusin, J. A. and With, C. (1988). Energy supplementation in the last trimester of pregnancy in East Java. I. Effect on birthweight. Br. J. Obstet. Gynaecol, 95, 783–94.CrossRefGoogle ScholarPubMed
Keen, C. L., Clegg, M. S., Hanna, L. A.et al. (2003). The plausibility of micronutrient deficiencies being a significant contributing factor to the occurrence of pregnancy complications. J. Nutr., 133, 1597–605S.CrossRefGoogle ScholarPubMed
King, J., Butte, N., Bronstein, M., Kopp, L. and Lindquist, S. (1994). Energy metabolism during pregnancy: influence of maternal energy status. Am. J. Clin. Nutr., 59, 439–45S.CrossRefGoogle ScholarPubMed
King, J. C. (2001). Effect of reproduction on the bioavailability of calcium, zinc and selenium. J. Nutr., 131, 1355–8S.CrossRefGoogle ScholarPubMed
King, J. C. (2003). The risk of maternal nutritional depletion and poor outcomes increases in early or closely spaced pregnancies. J. Nutr., 133, 1732–6S.CrossRefGoogle ScholarPubMed
Kramer, M. S. (1987). Determinants of low birthweight: methodological assessment and meta-analysis. Bull. World Health Organ., 65, 663–737.Google ScholarPubMed
Kramer, M. S. (1996a). Nutritional advice in pregnancy. Cochrane Database Syst. Rev., 1996 (2).Google Scholar
Kramer, M. S. (1996b). Isocaloric balanced protein supplementation in pregnancy. Cochrane Database Syst. Rev., 1996 (2).Google Scholar
Kramer, M. S. (1996c). High protein supplementation in pregnancy. Cochrane Database Syst. Rev., 1996 (2).Google Scholar
Kramer, M. S. (1996d). Energy/protein restriction for high weight-for-height or weight gain during pregnancy. Cochrane Database Syst. Rev., 1996 (2).Google Scholar
Kramer, M. S. (2000). Balanced protein/energy supplementation in pregnancy. Cochrane Database Syst. Rev., 2000 (2).Google Scholar
Kramer, M. S. (2003). The Epidemiology of adverse pregnancy outcomes: an overview. J. Nutr., 133, 1592–6S.CrossRefGoogle ScholarPubMed
Kramer, M. S., McLean, F. H., Olivier, M., Willis, D. M. and Usher, R. H. (1989). Body proportionality and head and length ‘sparing’ in growth-retarded neonates: a critical reappraisal. Pediatrics, 84, 717–23.Google ScholarPubMed
Kramer, M. S., Seguin, L., Lydon, J. and Goulet, L. (2000). Socio-economic disparities in pregnancy outcome: why do the poor fare so poorly?Paed. Perinat. Epidemiol., 14, 194–210.CrossRefGoogle ScholarPubMed
Kusin, J. A., Kardjati, S., Houtkooper, J. M. and Renqvist, U. H. (1992). Energy supplementation during pregnancy and postnatal growth. Lancet, 340, 623–6.CrossRefGoogle ScholarPubMed
Kusin, J. A., Kardjati, S. and Renqvist, U. H. (1994). Maternal body mass index: the functional significance during reproduction. Eur. J. Clin. Nutr., 48, S56–67.Google ScholarPubMed
Lederman, S. A., Paxton, A., Heymsfield, S. B., Wang, J., Thornton, J. and Pierson, R. N. J. (1999). Maternal body fat and water during pregnancy: do they raise infant birth weight?Am. J. Obstet. Gynecol., 180, 235–40.CrossRefGoogle ScholarPubMed
Levine, R. J., Hauth, J. C., Sibai, B. M.et al. (1997). Trial of calcium to prevent pre-eclampsia. N. Engl. J. Med., 337, 69–76.CrossRefGoogle Scholar
Lopez-Jamarillo, P., Delgado, F., Jacome, P., Teran, M., Ruano, C. and Rivera, J. (1997). Calcium supplementation and the risk of pre-eclampsia in Ecuadorian pregnant teenagers. Obstet. Gynecol., 90, 162–7.Google Scholar
Lumey, L. H. and Stein, A. D. (1997a). Offspring birthweights after maternal intrauterine undernutrition: a comparison within sibships. Am. J. Epidemiol., 146, 810–19.CrossRefGoogle Scholar
Lumey, L. H. and Stein, A. D. (1997b). In utero exposure to famine and subsequent fertility: the Dutch Famine Birth Cohort Study. Am. J. Public Health, 87, 1962–6.CrossRefGoogle Scholar
Lumley, J., Watson, L., Watson, M. and Bower, C. (2001). Periconceptual supplementation with folate and/or multivitamins for preventing neural tube defects. Cochrane Database Syst. Rev., 2001(3).CrossRefGoogle Scholar
Maconochie, N. (1995). Abnormal fetal growth: a longitudinal analysis of women and their pregnancies. Unpublished Ph. D. thesis, University of London.
Mahomed, K. (1997a). Folate supplementation in pregnancy. Cochrane Database Syst. Rev., 1997 (3).Google Scholar
Mahomed, K. (1997b). Iron and folate supplementation in pregnancy. Cochrane Database Syst. Rev., 1997 (4).Google Scholar
Mahomed, K. (1997c). Zinc supplementaion in pregnancy. Cochrane Database Syst. Rev., 1997 (3).Google Scholar
Mahomed, K. (1999). Iron supplementation in pregnancy. Cochrane Database Syst. Rev., 1999 (4).CrossRefGoogle Scholar
Mahomed, K. and Gülmezoglu, A. M. (1999). Vitamin D supplementation in pregancy. Cochrane Database Syst. Rev., 1999 (1).CrossRefGoogle Scholar
Makrides, M. and Crowther, C. (2001). Magnesium supplementation in pregnancy. Cochrane Database Syst. Rev., 2001 (4).CrossRefGoogle Scholar
Mardones-Santander, F., Salazar, G., Rosso, P. and Villaroel, L. (1998). Maternal body composition near term and birthweight. Obstet. Gynecol., 91, 873–7.Google Scholar
Matthews, F., Yudkin, P. and Neil, A. (1999). Influence of maternal nutrition on outcome of pregnancy: prospective cohort study. BMJ, 319, 339–43.CrossRefGoogle Scholar
Mavalankar, D. V., Gray, R. H., Triedi, C. R. and Parkh, V. C. (1994). Risk factors for small for gestational age births in Ahmedadab, India. J. Trop. Pediatr., 40, 285–90.CrossRefGoogle ScholarPubMed
Merialdi, M., Carroli, G., Villar, J.et al. (2003). Nutritional interventions during pregnancy for the prevention or treatment of impaired fetal growth: an overview of randomized controlled trials. J. Nutr., 133, 1626–31S.CrossRefGoogle ScholarPubMed
Metcoff, J. (1994). Clinical assessment of nutritional status at birth: fetal malnutrition and SGA are not synonymous. Pediatr. Clin. North Am., 41, 875–91.CrossRefGoogle Scholar
Mora, J. O. and Nestel, P. E. (2000). Improving prenatal nutrition in developing countries: strategies, prospects and challenges. Am. J. Clin. Nutr., 71, 1353–63S.CrossRefGoogle ScholarPubMed
Morton, S. M. B. (2002). Lifecourse determinants of offspring size at birth: an intergenerational study of Aberdeen women. Unpublished Ph. D. thesis, University of London.
Neggers, Y. and Goldenberg, R. L. (2003). Some thoughts on body mass index, micronutrient intakes and pregnancy outcome. J. Nutr., 133, 1737–40S.CrossRefGoogle ScholarPubMed
Nestel, P. E. and Rutstein, S. O. (2002). Defining nutritional status of women in developing countries. Public Health Nutr., 5, 17–27.CrossRefGoogle ScholarPubMed
Niromanesh, S., Laghaii, S. and Mosavi-Jarrahi, A. (2001). Supplementary calcium in the prevention of pre-eclampsia. Int. J. Gynaecol. Obstet, 74, 17–21.CrossRefGoogle ScholarPubMed
Olsen, S. F., Sorensen, J. D., Secher, N. J. et al. (1992). Randomised controlled trial of effect of fish-oil supplementation on pregnancy duration. Lancet, 339, 1003–7.CrossRefGoogle ScholarPubMed
Onwude, J. L., Lilford, R. J., Hjartardottir, H., Staines, A. and Tufnell, D. (1995). A randomised double blind placebo trial of fish oil in high risk pregnancy. Br. J. Obstet. Gynaecol., 102, 95–100.CrossRefGoogle ScholarPubMed
Osendarp, S. J. M., West, C. E. and Black, R. E. (2003). The need for maternal zinc supplementation in developing countries: an unresolved issue. J. Nutr., 133, 817–27S.CrossRefGoogle Scholar
Poppitt, S. D., Prentice, A. M., Goldberg, G. R., Roger, S. and Whitehead, R. G. (1994). Energy-sparing strategies to protect human fetal growth. Am. J. Obstet. Gynecol., 171, 118–25.CrossRefGoogle ScholarPubMed
Prentice, A. M. (2003). Intrauterine factors, adiposity and hyperinsulinaemia. BMJ, 327, 880–1.CrossRefGoogle ScholarPubMed
Ramachandran, P. (2002). Maternal nutrition: effect on fetal growth and outcome of pregnancy. Nutr. Rev., 60, S26–34.CrossRefGoogle ScholarPubMed
Ramakrishnan, U., Manjrekar, R., Rivera, J., Gonzáles-Cossio, T. and Martorell, R. (1999). Micronutrients and pregnancy outcome: a review of the literature. Nutr. Res., 19, 103–59.CrossRefGoogle Scholar
Ramakrishnan, U., Gonzáles-Cossio, T., Neufield, L. M., Rivera, J. and Martorell, R. (2003). Multiple micronutrient supplementation during pregnancy does not lead to greater infant birth size than does iron-only supplementation: a randomized controlled trial in a semirural community in Mexico. Am. J. Clin. Nutr., 77, 720–5.CrossRefGoogle ScholarPubMed
Rao, S., Yajnik, C. S., Kanade, A.et al. (2001). Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune maternal nutritional study. J. Nutr., 131, 1217–24.CrossRefGoogle Scholar
Rasmussen, K. M. (2001). Is there a causal relationship between iron deficiency or iron-deficiency anaemia and weight at birth, length of gestation and perinatal mortality. J. Nutr., 131, 590–603S.CrossRefGoogle ScholarPubMed
Rayco-Solon, P., Fulford, A. J. and Prentice, A. M. (2005). Maternal preconceptional weight and gestational length. Am. J. Obstet. Gynecol., 192, 1133–6.CrossRefGoogle ScholarPubMed
Rey, H., Ortiz, E. I., Fajardo, L. and Pradilla, A. (1995). Maternal anthropometry: its predictive value for pregnancy outcome. Bull. World Health Organ., 73, 70–1.Google ScholarPubMed
Rich-Edwards, J. (2002). A life course approach to women's reproductive health. In A Life Course Approach to Women's Health (ed. Kuh, D. and Hardy, R.). Oxford: Oxford University Press, pp. 23–34.CrossRefGoogle Scholar
Robinson, J. S. (1989). Fetal growth. In Obstetrics (ed. Turnbull, A. and Chamberlain, G.) London: Churchill Livingstone, pp. 141–50.Google Scholar
Roseboom, T. J., Meulen, J. H. P., Ravelli, A. C., Osmond, C., Barker, D. J. and Bleker, O. P. (2001). Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Twin Res., 4, 293–8.CrossRefGoogle ScholarPubMed
Rouse, D. J. (2003). Potential cost-effectiveness of nutrition interventions to prevent adverse pregnancy outcomes in the developing world. J. Nutr., 133, 1640–4S.CrossRefGoogle ScholarPubMed
Rush, D., Stein, Z. and Susser, M. (1980). A randomized controlled trial of prenatal nutritional supplementation in New York City. Pediatrics, 65, 683–97.Google ScholarPubMed
Scholl, T. O. and Hediger, M. L. (1994). Anaemia and iron-deficiency anaemia: compilation of data on pregnancy outcome. Am. J. Clin. Nutr., 59, 492–501S.CrossRefGoogle ScholarPubMed
Scholl, T. O., Hediger, M. L., Bendich, A., Schall, J. I., Smith, W. K. and Krueger, P. M. (1997). Use of multivitamin/mineral prenatal supplements: influence on outcome of pregnancy. Am. J. Epidemiol., 146, 134–41.CrossRefGoogle ScholarPubMed
Sebire, N., Jolly, M., Harris, J., Regan, L. and Robinson, S. (2001). Is maternal underweight really a risk factor for adverse pregnancy outcome? A population-based study in London. Br. J. Obstet. Gynaecol., 108, 61–6.Google Scholar
Shankar, A. H. and Prasad, A. S. (1998). Zinc and immune function: the biological basis of altered immune function. Am. J. Clin. Nutr., 68, 447–63S.CrossRefGoogle Scholar
Shaw, G. M. (2003). Strenuous work and nutrition and adverse pregnancy outcomes. J. Nutr., 133, 1718–21S.CrossRefGoogle ScholarPubMed
Steer, P., Alam, M. A., Wadsworth, J. and Welch, A. (1995). Relation between maternal haemoglobin concentration and birthweight in different ethnic groups. BMJ, 310, 489–91.CrossRefGoogle ScholarPubMed
Stein, Z. A. and Susser, M. W. (1975). The Dutch famine 1944–45 and the reproductive process. I. Effects on six indices at birth. Pediatr. Res., 9, 70–6.Google Scholar
Stein, Z. A., Susser, M., Saenger, G. and Marolla, F. (1975). Famine and Human Development: the Dutch Hunger Winter of 1944–1945. New York, NY: Oxford University Press.Google Scholar
Susser, M. (1991). Maternal weight gain, infant birthweight, and diet: causal sequences. Am. J. Clin. Nutr., 53, 1384–96.CrossRefGoogle ScholarPubMed
Symonds, M. E., Budge, H., Stephenson, T. (2000). Limitations of models used to examine the influence of nutrition during pregnancy and adult disease. Arch. Dis. Child., 83, 215–19.CrossRefGoogle ScholarPubMed
Tang, A. M., Graham, N. M. H. and Saah, A. J. (1996). Effects of micronutrient intake on survival in human immunodeficiency virus type 1 infection. Am. J. Epidemiol., 143, 1244–56.CrossRefGoogle ScholarPubMed
Thame, M., Wilks, R. J., McFarlane-Anderson, N., Bennett, F. I. and Forrester, T. E. (1997). Relationship between maternal nutritional status and infant's weight and body proportions at birth. Eur. J. Clin. Nutr., 51, 134–8.CrossRefGoogle ScholarPubMed
Broek, N., Kulier, R., Gülmezoglu, A. M. and Villar, J. (2002). Vitamin A supplementation during pregnancy. Cochrane Database Syst. Rev., 2002 (4).CrossRefGoogle Scholar
Raaij, J. M. A., Schonk, C. M., Vermaat-Miedema, S. H., Peek, M. E. M. and Hautvast, J. G. A. J. (1989). Body fat mass and basal metabolic rate in Dutch women before, during, and after pregnancy: a reappraisal of the energy cost of pregnancy. Am. J. Clin. Nutr., 49, 765–72.CrossRefGoogle ScholarPubMed
Viegas, O. A., Scott, P. H., Cole, T. J.et al. (1982a). Dietary protein energy supplementation of pregnant Asian mothers at Sorrento, Birmingham. I. Unselective during second and third trimesters. BMG, 285, 589–92.CrossRefGoogle Scholar
Viegas, O. A., Scott, P. H., Cole, T. J., Eaton, P., Needham, P. G. and Wharton, B. A. (1982b). Dietary protein energy supplementation of pregnant Asian mothers at Sorrento, Birmingham. II. Selective during third trimester only. BMJ, 285, 592–5.CrossRefGoogle Scholar
Villar, J. and Rivera, J. (1988). Nutritional supplementation during two consecutive pregnancies and the interim lactation period: effect on birth weight. Pediatrics, 81, 51–7.Google ScholarPubMed
Villar, J., Cogswell, M. E., Kestler, E., Castillo, P., Menendez, R. and Repke, J. (1992). Effect of fat and fat-free mass deposition during pregnancy on birth weight. Am. J. Obstet. Gynecol., 167, 1344–52.CrossRefGoogle ScholarPubMed
Villar, J., Merialdi, M., Gülmezoglu, A. M.et al. (2003a). Nutritional interventions during pregnancy for the prevention or treatment of maternal morbidity and preterm delivery: an overview of randomized controlled trials. J. Nutr., 133, 1606–25S.CrossRefGoogle Scholar
Villar, J., Merialdi, M., Gülmezoglu, A. M.et al. (2003b). Characteristics of randomized controlled trials included in systematic reviews of nutritional interventions reporting maternal morbidity, mortality, preterm delivery, intrauterine growth restriction and small for gestational age and birthweight outcomes. J. Nutr., 133, 1632–9S.CrossRefGoogle Scholar
Wilcox, A. J. (2001). On the importance – and the unimportance – of birthweight. Int. J. Epidemiol., 30, 1233–41.CrossRefGoogle ScholarPubMed
Winkvist, A., Jalil, F., Habicht, J. P. and Rasmussen, K. M. (1994). Maternal energy depletion is buffered among malnourished women in Punjab, Pakistan. J. Nutr., 124, 2376–85.CrossRefGoogle ScholarPubMed
Winkvist, A., Habicht, J. P. and Rasmussen, K. M. (1998). Linking maternal and infant benefits of a nutritional supplement during pregnancy and lactation. Am. J. Clin. Nutr., 68, 656–61.CrossRefGoogle ScholarPubMed
World Health Organization (1995). Maternal Anthropometry and Pregnancy Outcomes: a WHO Collaborative Study. Bull. World Health Organ., 73, 1–98.
Yajnik, C. S., Fall, C. H., Coyaji, K. J.et al. (2002). Neonatal anthropometry: the thin-fat Indian baby. The Pune Maternal Nutrition Study. Int. J. Obes., 27, 173–80.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×