Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-15T14:10:19.123Z Has data issue: false hasContentIssue false

4 - The periconceptional and embryonic period

Published online by Cambridge University Press:  08 August 2009

Tom P. Fleming
Affiliation:
University of Southampton
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

The periconceptional period of mammalian development has long been recognised as an early ‘developmental window’ during which environmental conditions may influence the pattern of future growth and physiology. For example, in early studies, it was found that in-vitro culture of mouse preimplantation embryos prior to transfer to recipient females lead to reduced fetal growth compared to in-vivo-derived fetuses (Bowman and McLaren 1970). The culture of ruminant embryos prior to transfer has also been linked with abnormal future growth and the so-called ‘large offspring syndrome’ (LOS), where fetal organomegaly is associated with perinatal mortality (reviewed in Sinclair et al. 2000). The concern from animal studies that preimplantation environment may alter embryo developmental potential has led to retrospective analysis of possible effects resulting from human in vitro fertilisation and assisted reproduction treatment (ART). Indeed, a number of ‘outcome’ studies in different parts of the world have identified a small increase in preterm delivery, low birthweight and perinatal mortality in singleton pregnancies following ART compared with that following natural conception (Hansen et al. 2002, Schieve et al. 2002).

The concept that embryo environment in vitro may modulate future development has been further expanded by a growing literature demonstrating that similar phenomena may occur in vivo, in response to maternal diet and physiological status. Thus, in rats, maternal low-protein diet administered exclusively during the preimplantation period caused abnormal postnatal growth and organ size and onset of high blood pressure in a gender-specific manner (Kwong et al. 2000).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashworth, C. J. and Antipatis, C. (2001). Micronutrient programming of development throughout gestation. Reproduction, 122, 527–35.CrossRefGoogle ScholarPubMed
Bertolini, M. and Anderson, G. B. (2002). The placenta as a contributor to production of large calves. Theriogenology, 57, 181–7.CrossRefGoogle ScholarPubMed
Bertram, C. E. and Hanson, M. A. (2002). Prenatal programming of postnatal endocrine responses by glucocorticoids. Reproduction, 124, 459–67.CrossRefGoogle ScholarPubMed
Bertram, C., Trowern, A. R., Copin, N., Jackson, A. A. and Whorwood, C. B. (2001). The maternal diet during pregnancy programs altered expression of the glucocorticoid receptor and type 2 11beta-hydroxysteroid dehydrogenase: potential molecular mechanisms underlying the programming of hypertension in utero. Endocrinology, 142, 2841–53.CrossRefGoogle ScholarPubMed
Blondin, P., Farin, P. W., Crosier, A. E., Alexander, J. E. and Farin, C. E. (2000). In vitro production of embryos alters levels of insulin-like growth factor-II messenger ribonucleic acid in bovine fetuses 63 days after transfer. Biol. Reprod., 62, 384–9.CrossRefGoogle ScholarPubMed
Bos-Mikich, A., Whittingham, D. G. and Jones, K. T. (1997). Meiotic and mitotic Ca2+ oscillations affect cell composition in resulting blastocysts. Dev. Biol., 182, 172–9.CrossRefGoogle ScholarPubMed
Bowman, P. and McLaren, A. (1970). Viability and growth of mouse embryos after in vitro culture and fusion. J. Embryol. Exp. Morphol., 23, 693–704.Google ScholarPubMed
Brown, R. W., Diaz, R., Robson, A. C.et al. (1996). The ontogeny of 11 beta-hydroxysteroid dehydrogenase type 2 and mineralocorticoid receptor gene expression reveal intricate control of glucocorticoid action in development. Endocrinology, 137, 794–7.CrossRefGoogle ScholarPubMed
Carroll, J. (2001). The initiation and regulation of Ca2+ signalling at fertilization in mammals. Semin. Cell Dev. Biol., 12, 37–43.CrossRefGoogle ScholarPubMed
Chi, M. M., Pingsterhaus, J., Carayannopoulos, M. and Moley, K. H. (2000). Decreased glucose transporter expression triggers BAX-dependent apoptosis in the murine blastocyst. J. Biol. Chem., 275, 40252–7.CrossRefGoogle ScholarPubMed
Christians, E., Campion, E., Thompson, E. M. and Renard, J. P. (1995). Expression of the HSP 70.1 gene, a landmark of early zygotic activity in the mouse embryo, is restricted to the first burst of transcription. Development, 121, 113–22.Google Scholar
Constancia, M., Hemberger, M., Hughes, J.et al. (2002). Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature, 417, 945–8.CrossRefGoogle ScholarPubMed
Doherty, A. S., Mann, M. R., Tremblay, K. D., Bartolomei, M. S. and Schultz, R. M. (2000). Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol. Reprod., 62, 1526–35.CrossRefGoogle ScholarPubMed
Ducibella, T., Huneau, D., Angelichio, E.et al. (2002). Egg-to-embryo transition is driven by differential responses to Ca(2+) oscillation number. Dev. Biol., 250, 280–91.CrossRefGoogle Scholar
Ecker, D. J., Stein, P., Xu, Z.et al. (2004). Long-term effects of culture of preimplantation mouse embryos on behavior. Proc. Natl. Acad. Sci. USA, 101, 1595–1600.CrossRefGoogle ScholarPubMed
Edwards, L. J. and McMillen, I. C. (2002a). Impact of maternal undernutrition during the periconceptional period, fetal number, and fetal sex on the development of the hypothalamo-pituitary adrenal axis in sheep during late gestation. Biol. Reprod., 66, 1562–9.CrossRefGoogle Scholar
Edwards, L. J. and McMillen, I. C. (2002b). Periconceptional nutrition programs development of the cardiovascular system in the fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol., 283, R669–79.CrossRefGoogle Scholar
Fleming, T. P. (1987). A quantitative analysis of cell allocation to trophectoderm and inner cell mass in the mouse blastocyst. Dev. Biol., 119, 520–31.CrossRefGoogle ScholarPubMed
Fontanier-Razzaq, N., McEvoy, T. G., Robinson, J. J. and Rees, W. D. (2001). DNA damaging agents increase gadd153 (CHOP-10) messenger RNA levels in bovine preimplantation embryos cultured in vitro. Biol. Reprod., 64, 1386–91.CrossRefGoogle ScholarPubMed
Gardner, D. K. and Leese, H. J. (1987). Assessment of embryo viability prior to transfer by the noninvasive measurement of glucose uptake. J. Exp. Zool., 242, 103–5.CrossRefGoogle ScholarPubMed
Gardner, D. K., Lane, M., Calderon, I. and Leeton, J. (1996). Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil. Steril., 65, 349–53.CrossRefGoogle ScholarPubMed
Ghassemifar, M. R., Eckert, J. J., Houghton, F. D., Picton, H. M., Leese, H. J. and Fleming, T. P. (2003). Gene expression regulating epithelial intercellular junction biogenesis during human blastocyst development in vitro. Mol. Hum. Reprod., 9, 245–52.CrossRefGoogle ScholarPubMed
Gordo, A. C., Wu, H., He, C. L. and Fissore, R. A. (2000). Injection of sperm cytosolic factor into mouse metaphase II oocytes induces different developmental fates according to the frequency of [Ca(2+)](i) oscillations and oocyte age. Biol. Reprod., 62, 1370–9.CrossRefGoogle Scholar
Halet, G., Tunwell, R., Parkinson, S. J. and Carroll, J. (2004). Conventional PKCs regulate the temporal pattern of Ca2+ oscillations at fertilization in mouse eggs. J. Cell. Biol., 164, 1033–44.CrossRefGoogle ScholarPubMed
Hansen, M., Kurinczuk, J. J., Bower, C. and Webb, S. (2002). The risk of major birth defects after intracytoplasmic sperm injection and in vitro fertilization. N. Engl. J. Med., 346, 725–30.CrossRefGoogle ScholarPubMed
Hardy, K. (1997). Cell death in the mammalian blastocyst. Mol. Hum. Reprod., 3, 919–25.CrossRefGoogle ScholarPubMed
Hardy, K. and Spanos, S. (2002). Growth factor expression and function in the human and mouse preimplantation embryo. J. Endocrinol., 172, 221–36.CrossRefGoogle ScholarPubMed
Hardy, K., Hooper, M. A. K., Handyside, A. H., Rutherford, A. J., Winston, R. M. L. and Leese, H. J. (1989). Non-invasive measurement of glucose and pyruvate uptake by individual human oocytes and preimplantation embryos. Hum. Reprod., 4, 188–91.CrossRefGoogle ScholarPubMed
Hentges, K. E., Sirry, B., Gingeras, A. C.et al. (2001). FRAP/mTOR is required for proliferation and patterning during embryonic development in the mouse. Proc. Natl. Acad. Sci. USA, 98, 13796–801.CrossRefGoogle ScholarPubMed
Hinck, L., Thissen, J. P. and Hertogh, R. (2003). Identification of caspase-6 in rat blastocysts and its implication in the induction of apoptosis by high glucose. Biol. Reprod., 68, 1808–12.CrossRefGoogle ScholarPubMed
Hishinuma, M., Takahashi, Y. and Kanagawa, H. (1996). Post-implantation development of demi-embryos and induction of decidual cell reaction in mice. Theriogenology, 45, 1187–1200.CrossRefGoogle ScholarPubMed
Ho, Y., Wigglesworth, K., Eppig, J. J. and Schultz, R. M. (1995). Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol. Reprod. Dev., 41, 232–8.CrossRefGoogle ScholarPubMed
Hollingsworth, S. A., Deayton, J. M., Young, I. R. and Thorburn, G. D. (1995). Prostaglandin E2 administered to fetal sheep increases the plasma concentration of adrenocorticotropin (ACTH) and the proportion of ACTH in low molecular weight forms. Endocrinology, 136, 1233–40.CrossRefGoogle Scholar
Houghton, F. D., Hawkhead, J. A., Humpherson, P. G.et al. (2002). Non-invasive amino acid turnover predicts human embryo developmental capacity. Hum. Reprod., 17, 999–1005.CrossRefGoogle ScholarPubMed
Howell, C. Y., Bestor, T. H., Ding, F.et al. (2001). Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell, 104, 829–38.CrossRefGoogle ScholarPubMed
Jurisicova, A., Rogers, I., Fasciani, A., Casper, R. F. and Varmuza, S. (1998). Effect of maternal age and conditions of fertilization on programmed cell death during murine preimplantation embryo development. Mol. Hum. Reprod., 4, 139–45.CrossRefGoogle ScholarPubMed
Kawamura, K., Sato, N., Fukuda, J.et al. (2003). Ghrelin inhibits the development of mouse preimplantation embryos in vitro. Endocrinology, 144, 2623–33.CrossRefGoogle ScholarPubMed
Kaye, P. L. (1997). Preimplantation growth factor physiology. Rev. Reprod., 2, 121–7.CrossRefGoogle ScholarPubMed
Kaye, P. L. and Gardner, H. G. (1999). Preimplantation access to maternal insulin and albumin increases fetal growth rate in mice. Hum. Reprod., 14, 3052–9.CrossRefGoogle ScholarPubMed
Khosla, S., Dean, W., Brown, D., Reik, W. and Feil, R. (2001). Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol. Reprod., 64, 918–26.CrossRefGoogle ScholarPubMed
Kwong, W. Y., Wild, A. E., Roberts, P., Willis, A. C. and Fleming, T. P. (2000). Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development, 127, 4195–202.Google ScholarPubMed
Kwong, W. Y., Miller, D. J., Wild, A. E., Osmond, C. and Fleming, T. P. (2003). Effect of maternal low protein diet on imprinted gene expression in the rat preimplantation embryo. Pediatr. Res., 53, 46A.Google Scholar
Lane, M. and Gardner, D. K. (1994). Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J. Reprod. Fertil., 102, 305–12.CrossRefGoogle ScholarPubMed
Lane, M. and Gardner, D. K. (1997). Differential regulation of mouse embryo development and viability by amino acids. J. Reprod. Fertil., 109, 153–64.CrossRefGoogle ScholarPubMed
Lane, M. and Gardner, D. K. (2003). Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol. Reprod., 69, 1109–17.CrossRefGoogle ScholarPubMed
Langley-Evans, S. C., Phillips, G. J., Benediktsson, R.et al. (1996). Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta, 17, 169–72.CrossRefGoogle ScholarPubMed
Lea, R. G., McCracken, J. E., McIntyre, S. S., Smith, W. and Baird, J. (1996). Disturbed development of preimplantation embryo in the insulin-dependent diabetic BB/E rat. Diabetes, 45, 1463–70.CrossRefGoogle ScholarPubMed
Leese, H. J. (2002). Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays, 24, 845–9.CrossRefGoogle Scholar
Leese, H. J. (2003). What does an embryo need?Hum. Fertil. (Camb.), 6, 180–5.CrossRefGoogle ScholarPubMed
Leese, H. J. and Isherwood-Peel, G. (1999). Early embryo nutrition and disorders in later life. In Fetal Programming: Influences on Development and Disease in Later Life (ed. Brien, P. M. S. O', Wheeler, T. and Barker, D. J. P.). London: RCOG Press, pp. 104–16.Google Scholar
Lesage, J., Blondeau, B., Grino, M., Breant, B. and Dupouy, J. P. (2001). Maternal undernutrition during late gestation induces fetal overexposure to glucocorticoids and intrauterine growth retardation, and disturbs the hypothalamo-pituitary adrenal axis in the newborn rat. Endocrinology, 142, 1692–1702.CrossRefGoogle ScholarPubMed
Leunda-Casi, A., Hertogh, R. and Pampfer, S. (2001). Decreased expression of fibroblast growth factor-4 and associated dysregulation of trophoblast differentiation in mouse blastocysts exposed to high D-glucose in vitro. Diabetologia, 44, 1318–25.CrossRefGoogle ScholarPubMed
Lucifero, D., Chaillet, J. R. and Trasler, J. M. (2004). Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum. Reprod. Update, 10, 3–18.CrossRefGoogle ScholarPubMed
Martin, P. M. and Sutherland, A. E. (2001). Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev. Biol., 240, 182–93.CrossRefGoogle ScholarPubMed
Martin, P. M., Sutherland, A. E. and Winkle, L. J. (2003). Amino acid transport regulates blastocyst implantation. Biol. Reprod., 69, 1101–8.CrossRefGoogle ScholarPubMed
McEvoy, T. G., Robinson, J. J., Aitken, R. P., Findlay, P. A. and Robertson, I. S. (1997). Dietary excesses of urea influence the viability and metabolism of preimplantation sheep embryos and may affect fetal growth among survivors. Anim. Reprod. Sci., 47, 71–90.CrossRefGoogle ScholarPubMed
Meijer, A. J. and Dubbelhuis, P. F. (2004). Amino acid signalling and the integration of metabolism. Biochem. Biophys. Res. Commun., 313, 397–403.CrossRefGoogle Scholar
Miller, D. J., Eckert, J. J., Lazzari, G.et al. (2003). Tight junction mRNA expression levels in bovine embryos are dependent upon the ability to compact and in vitro culture methods. Biol. Reprod., 68, 1394–1402.CrossRefGoogle ScholarPubMed
Moley, K. H. (2001). Hyperglycemia and apoptosis: mechanisms for congenital malformations and pregnancy loss in diabetic women. Trends Endocrinol. Metab., 12, 78–82.CrossRefGoogle ScholarPubMed
Niemann, H. and Wrenzycki, C. (2000). Alterations of expression of developmentally important genes in preimplantation bovine embryos by in vitro culture conditions: implications for subsequent development. Theriogenology, 53, 21–34.CrossRefGoogle ScholarPubMed
Regan, O' D., Welberg, L. L., Holmes, M. C. and Seckl, J. R. (2001). Glucocorticoid programming of pituitary–adrenal function: mechanisms and physiological consequences. Semin. Neonatol., 6, 319–29.CrossRefGoogle Scholar
Ozil, J. P. and Huneau, D. (2001). Activation of rabbit oocytes: the impact of the Ca2+ signal regime on development. Development, 128, 917–28.Google ScholarPubMed
Papaioannou, V. E. and Ebert, K. M. (1995). Mouse half embryos: viability and allocation of cells in the blastocyst. Dev. Dyn., 203, 393–8.CrossRefGoogle ScholarPubMed
Peters, J. M., Wiley, L. M., Zidenberg-Cherr, S. and Keen, C. L. (1993). Influence of periconceptional zinc deficiency on embryonic plasma membrane function in mice. Teratog. Carcinog. Mutagen., 13, 15–21.CrossRefGoogle ScholarPubMed
Pickering, S. J., Maro, B., Johnson, M. H. and Skepper, J. N. (1988). The influence of cell contact on the division of mouse 8-cell blastomeres. Development, 103, 353–63.Google ScholarPubMed
Porter, R., Humpherson, P., Fussing, P., Cameron, I., Osmond, C. and Fleming, T. P. (2003). Metabolic programming of the blastocyst within the uterine environment. Pediatr. Res., 53, 46A.Google Scholar
Power, M. A. and Tam, P. P. L. (1993). Onset of gastrulation, morphogenesis and somitogenesis in mouse embryos displaying compensatory growth. Anat. Embryol., 187, 493–504.CrossRefGoogle ScholarPubMed
Rands, G. F. (1986). Size regulation in the mouse embryo. II. The development of half embryos. J. Embryol. Exp. Morphol., 98, 209–17.Google ScholarPubMed
Reik, W., Santos, F. and Dean, W. (2003). Mammalian epigenomics: reprogramming the genome for development and therapy. Theriogenology, 59, 21–32.CrossRefGoogle ScholarPubMed
Richter, K. S., Harris, D. C., Daneshmand, S. T. and Shapiro, B. S. (2001). Quantitative grading of a human blastocyst: optimal inner cell mass size and shape. Fertil. Steril., 76, 1157–67.CrossRefGoogle ScholarPubMed
Santos, F., Hendrich, B., Reik, W. and Dean, W. (2002). Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol., 241, 172–82.CrossRefGoogle ScholarPubMed
Sasaki, H., Ferguson-Smith, A. C., Shum, A. S., Barton, S. C. and Surani, M. A. (1995). Temporal and spatial regulation of H19 imprinting in normal and uniparental mouse embryos. Development, 121, 4195–202.Google ScholarPubMed
Schieve, L. A., Meikle, S. F., Ferre, C., Peterson, H. B., Jeng, G. and Wilcox, L. S. (2002). Low and very low birth weight in infants conceived with use of assisted reproductive technology. N. Engl. J. Med., 346, 731–7.CrossRefGoogle ScholarPubMed
Sinclair, K. D., Young, L. E., Wilmut, I. and McEvoy, T. G. (2000). In-utero overgrowth in ruminants following embryo culture: lessons from mice and a warning to men. Hum. Reprod. Suppl., 5, 68–86.CrossRefGoogle Scholar
Spanos, S., Rice, S., Karagiannis, P.et al. (2002). Caspase activity and expression of cell death genes during development of human preimplantation embryos. Reproduction, 124, 353–63.CrossRefGoogle ScholarPubMed
Stojanov, T. and Neill, O' C. (2001). In vitro fertilization causes epigenetic modifications to the onset of gene expression from the zygotic genome in mice. Biol. Reprod., 64, 696–705.CrossRefGoogle ScholarPubMed
Stojanov, T., Alechna, S. and Neill, O' C. (1999). In vitro fertilization and culture of mouse embryos in vitro significantly retards the onset of insulin-like growth factor-II expression from the zygotic genome. Mol. Hum. Reprod., 5, 116–124.CrossRefGoogle ScholarPubMed
Tam, P. P. (1988). Postimplantation development of mitomycin C-treated mouse blastocysts. Teratology, 37, 205–12.CrossRefGoogle ScholarPubMed
Thompson, J. G. and Peterson, A. J. (2000). Bovine embryo culture in vitro: new developments and post-transfer consequences. Hum. Reprod., 15, (Suppl. 5), 59–67.CrossRefGoogle ScholarPubMed
Thompson, J. G., Gardner, D. K., Pugh, P. A., McMillan, W. H. and Tervit, H. R. (1995). Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol. Reprod., 53, 1385–91.CrossRefGoogle ScholarPubMed
Tokunaga, C., Yoshino, K. and Yonezawa, K. (2004). mTOR integrates amino acid- and energy-sensing pathways. Biochem. Biophys. Res. Commun., 313, 443–6.CrossRefGoogle ScholarPubMed
Tsunoda, Y. and McLaren, A. (1983). Effect of various procedures on the viability of mouse embryos containing half the normal number of blastomeres. J. Reprod. Fertil., 69, 315–22.CrossRefGoogle ScholarPubMed
Soom, A., Boerjan, M. L., Bols, P. E.et al. (1997). Timing of compaction and inner cell allocation in bovine embryos produced in vivo after superovulation. Biol. Reprod., 57, 1041–9.CrossRefGoogle ScholarPubMed
Winkle, L. J. (2001). Amino acid transport regulation and early embryo development. Biol. Reprod., 64, 1–12.CrossRefGoogle ScholarPubMed
Wynn, M. and Wynn, A. (1988). Nutrition around conception and the prevention of low birthweight. Nutr. Health, 6, 37–52.CrossRefGoogle ScholarPubMed
Young, L. E., Fernandes, K., McEvoy, T. G.et al. (2001). Epigenetic change in IGF2R is associated with fetal overgrowth after sheep embryo culture. Nat. Genet., 27, 153–4.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×