Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-7tdvq Total loading time: 0 Render date: 2024-08-21T05:17:50.451Z Has data issue: false hasContentIssue false

12 - Prenatal hypoxia: relevance to developmental origins of health and disease

Published online by Cambridge University Press:  08 August 2009

Dino A. Giussani
Affiliation:
University of Cambridge
Peter Gluckman
Affiliation:
University of Auckland
Mark Hanson
Affiliation:
University of Southampton
Get access

Summary

Introduction

The compelling evidence linking small size at birth with later cardiovascular disease, obtained from epidemiological studies of human populations from more than a dozen countries (Barker 1998), has clearly renewed and amplified a clinical and scientific interest in the determinants of fetal growth, birthweight and the development of cardiovascular function before and after birth. As early as the 1950s Penrose highlighted that an important determinant of birthweight was the quality of the intrauterine environment, being twice as great a determinant of the rate of fetal growth as the maternal or fetal genotype. Studies of birthweights of relatives (Penrose 1954), together with strong evidence from animal crossbreeding experiments (Walton and Hammond 1938, Giussani et al. 2003), have clearly supported this contention. One of the important modifiers of the fetal environment is maternal nutritional status during pregnancy. The reciprocal association between low birthweight and increased risk of high blood pressure in adulthood, as described by Barker (1998), has exploded into a new field of research investigating the effects of maternofetal nutrition on fetal growth, birthweight and subsequent cardiovascular disease. However, the fetus nourishes itself also with oxygen, and in contrast to the international effort which is assessing the effects of maternofetal undernutrition on early development, the effects of maternofetal under-oxygenation on fetal growth, birthweight and subsequent increased risk of disease have been little addressed.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akalin-Sel, T. and Campbell, S. (1992). Understanding the pathophysiology of intra-uterine growth retardation: the role of the ‘lower limb reflex’ in redistribution of blood flow. Eur. J. Obstet. Gynaecol. Reprod. Biol., 46, 79–86.CrossRefGoogle ScholarPubMed
Bae, S., Xiao, Y., Li, G., Casiano, C. A. and Zhang, L. (2003). Effect of maternal chronic hypoxic exposure during gestation on apoptosis in fetal rat heart. Am. J. Physiol. Heart Circ. Physiol., 285, H983–90.CrossRefGoogle ScholarPubMed
Barker, D. J. P. (1998). Mothers, Babies, and Disease in Later Life. Edinburgh: ChurchillLivingstone.Google Scholar
Beard, R. W. and Rivers, R. P. (1979). Fetal asphyxia in labour. Lancet, 2, 1117–19.CrossRefGoogle ScholarPubMed
Benediktsson, R., Lindsay, R. S., Noble, J., Seckl, J. R. and Edwards, C. R. (1993). Glucocorticoid exposure in utero: new model for adult hypertension. Lancet, 341, 339–41.CrossRefGoogle ScholarPubMed
Bocking, A. D., White, S. E., Gagnon, R. and Hansford, H. (1989). Effect of prolonged hypoxaemia on fetal heart rate accelerations and decelerations in sheep. Am. J. Obstet. Gynecol., 159, 1418–24.CrossRefGoogle Scholar
Chang, J. H.T, Rutledge, J. C., Stoops, D. and Abbe, R. (1984). Hypobaric hypoxia-induced intrauterine growth retardation. Biol. Neonate, 46, 10–13.CrossRefGoogle ScholarPubMed
Chrousos, G. P. (1998). Stressors, stress, and neuroendocrine integration of the adaptive response: the 1997 Hans Selye Memorial Lecture. Ann. NY Acad. Sci., 30, 311–35.CrossRefGoogle Scholar
Cohn, H. E., Sacks, E. J., Heymann, M. A. and Rudolph, A. M. (1974). Cardiovascular responses to hypoxemia and acidemia in fetal lambs. Am. J. Obstet. Gynecol., 120, 817–24.CrossRefGoogle ScholarPubMed
Creasy, R. K., Barrett, C. T., Swiet, M., Kahanpaa, K. V. and Rudolph, A. M. (1972). Experimental intrauterine growth retardation in the sheep. Am. J. Obstet. Gynecol., 112, 566–73.CrossRefGoogle ScholarPubMed
Dean, F. and Matthews, S. G. (1999). Maternal dexamethasone treatment in late gestation alters glucocorticoid and mineralocorticoid receptor m RNA in the fetal guinea pig brain. Brain Res., 6, 253–9.CrossRefGoogle Scholar
Grauw, T. J., Myers, R. and Scott, W. J. (1986). Fetal growth in rats from different levels of hypoxia. Biol. Neonate, 49, 85–9.CrossRefGoogle ScholarPubMed
Derks, J. B., Giussani, D. A., Jenkins, S. L.et al. (1997). A comparative study of the cardiovascular, endocrine and behavioural effects of betamethasone and dexamethasone administration to fetal sheep. J. Physiol., 499, 217–26.CrossRefGoogle ScholarPubMed
Di Iorio, R., Marinoni, E. and Cosmi, E. V. (1998). New peptides, hormones and parturition. Gynecol. Endocrinol., 12, 429–34.CrossRefGoogle ScholarPubMed
Dodic, M., Peers, A., Coghlan, J. P. and Wintour, M. (1999). Can excess glucocorticoid, in utero, predispose to cardiovascular and metabolic disease in middle age?Trends Endocrinol. Metab., 10, 86–91.CrossRefGoogle ScholarPubMed
Ducsay, C. A. (1998). Fetal and maternal adaptations to chronic hypoxia: prevention of premature labor in response to chronic stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 119, 675–81.CrossRefGoogle ScholarPubMed
Edwards, L. J. and McMillen, I. C. (2002). Impact of maternal undernutrition during the periconceptional period, fetal number, and fetal sex on the development of the hypothalamo-pituitary adrenal axis in sheep during late gestation. Biol. Reprod., 66, 1562–69.CrossRefGoogle ScholarPubMed
Fletcher, A. J. W., Edwards, C. M. B., Gardner, D. S., Fowden, A. L. and Giussani, D. A. (2000). Neuropeptide Y in the sheep fetus: effects of acute hypoxemia and dexamethasone during late gestation. Endocrinology, 141, 3976–82.CrossRefGoogle ScholarPubMed
Fowden, A. L. (1995). Endocrine regulation of fetal growth. Reprod. Fertil. Dev., 7, 351–63.CrossRefGoogle ScholarPubMed
Gagnon, R., Johnston, I. and Murotsuki, J. (1996). Fetal–placental embolization in the late-gestation ovine fetus: alterations in umbilical blood flow and fetal heart rate patterns. Am. J. Obstet. Gynecol., 175, 63–72.CrossRefGoogle ScholarPubMed
Gardner, D. S., Powlson, A. S. and Giussani, D. A. (2001a). An in vivo nitric oxide clamp to investigate the influence of nitric oxide on continuous umbilical blood flow during acute hypoxaemia in the sheep fetus. J. Physiol., 537, 587–96.CrossRefGoogle Scholar
Gardner, D. S., Fletcher, A. J. W., Swann, M., Fowden, A. L. and Giussani, D. A. (2001b). A novel method for controlled, long term compression of the umbilical cord in fetal sheep. J. Physiol., 535, 217–29.CrossRefGoogle Scholar
Gardner, D. S., Fletcher, A. J., Fowden, A. L. and Giussani, D. A. (2001c). Plasma adrenocorticotropin and cortisol concentrations during acute hypoxemia after a reversible period of adverse intrauterine conditions in the ovine fetus during late gestation. Endocrinology, 142, 589–98.CrossRefGoogle Scholar
Gardner, D. S., Fletcher, A. J. W., Bloomfield, M. R., Fowden, A. L. and Giussani, D. A. (2002). Effects of prevailing hypoxaemia, acidaemia or hypoglycaemia upon the cardiovascular, endocrine and metabolic responses to acute hypoxaemia in the ovine fetus. J. Physiol., 540, 351–66.CrossRefGoogle ScholarPubMed
Giussani, D. A. (2003). High altitude and infant mortality: a study of 99 provinces in Bolivia. J. Soc. Gynecol. Investig., 10 (Suppl.), 308A.Google Scholar
Giussani, D. A., Spencer, J. A. D., Moore, P. J., Bennet, L. and Hanson, M. A. (1993). Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. J. Physiol., 461, 431–49.CrossRefGoogle ScholarPubMed
Giussani, D. A., Riquelme, R. A., Moraga, F. A.et al. (1996). Chemoreflex and endocrine components of the cardiovascular response to acute hypoxaemia in the llama fetus. Am. J. Physiol., 271, R73–83.Google ScholarPubMed
Giussani, D. A., Phillips, P. S., Anstee, S. and Barker, D. J. P. (2001). Effects of altitude vs. economic status on birth weight and body shape at birth. Pediatr. Res., 49, 490–4.CrossRefGoogle Scholar
Giussani, D. A., Forhead, A. J., Gardner, D. S., Fletcher, A. J. W., Allen, W. R. and Fowden, A. L. (2003). Postnatal cardiovascular function after manipulation of fetal growth by embryo transfer in the horse. J. Physiol., 547, 67–76.CrossRefGoogle Scholar
Giussani, D. A., Salinas, C. E., Villena, M. and Blanco, C. E. (2004). Reversible adrenocortical suppression in chick embryos during incubation at high and low altitude. J. Soc. Gynecol. Investig., 10 (Suppl.), 306A.Google Scholar
Goñez, C., Villena, A. and Gonzales, G. F. (1993). Serum levels of adrenal androgens up to adrenarche in Peruvian children living at sea level and at high altitude. J. Endocrinol., 136, 517–23.CrossRefGoogle ScholarPubMed
Gonzales, G. F. and Guerra-Gracia, R. (1993). Características hormonales y antropométricas del embarazo y del recien nacido en la altura. In Reproducción humana en la Altura, (ed. Gonzales, G. F.). Lima: Consejo Nacional de Ciencia y Tecnología, pp. 125–41.Google Scholar
Gonzales, G. F. and Villena, A. (1996). Body mass index and age at menarche in Peruvian children living at high altitude and at sea level. Hum. Biol., 68, 265–75.Google ScholarPubMed
Haas, J. D., Frongillo, E. F., Stepcik, C., Beard, J. and Hurtado, L. (1980). Altitude, ethnic and sex differences in birthweight and length in Bolivia. Hum. Biol., 52, 459–77.Google Scholar
Harvey, L. M., Gilbert, R. D., Longo, L. D. and Ducsay, C. A. (1993). Changes in ovine fetal adrenocortical responsiveness after long-term hypoxia. Am. J. Physiol., 264, E741–9.Google Scholar
Hoet, J. J. and Hanson, M. A. (1999). Intrauterine nutrition: its importance during critical periods for cardiovascular and endocrine development. J. Physiol., 514, 617–27.CrossRefGoogle ScholarPubMed
Imamura, T., Umezaki, H., Kaushal, K. M. and Ducsay, C. A. (2004). Long-term hypoxia alters endocrine and physiologic responses to umbilical cord occlusion in the ovine fetus. J. Soc. Gynecol. Investig., 11, 131–40.CrossRefGoogle ScholarPubMed
Jackson, B. T., Piasecki, G. J. and Novy, M. J. (1987). Fetal responses to altered maternal oxygenation in rhesus monkey. Am. J. Physiol., 252, R94–101.Google ScholarPubMed
Jha, S. K., Anand, A. C., Sharma, V., Kumar, N. and Adya, C. M. (2002). Stroke at high altitude: Indian experience. High Alt. Med. Biol., 3, 21–7.CrossRefGoogle ScholarPubMed
Kari, M. A., Hallman, M., Eronen, M.et al. (1994). Prenatal dexamethasone treatment in conjunction with rescue therapy of human surfactant: a randomized placebo-controlled multicenter study. Pediatrics, 93, 730–6.Google ScholarPubMed
Khalid, M. E., Ali, M. E., Ahmed, E. K. and Elkarib, A. O. (1994). Pattern of blood pressures among high and low altitude residents of southern Saudi Arabia. J. Hum. Hypertens., 8, 765–9.Google ScholarPubMed
Kitanaka, T., Alonso, J. G., Gilbert, R. D., Siu, B. L., Clemons, G. K. and Longo, L. D. (1989). Fetal responses to longterm hypoxemia. Am. J. Physiol., 256, R1348–54.Google Scholar
Li, G., Xiao, Y., Estrella, J. L., Ducsay, C. A., Gilbert, R. D. and Zhang, L. (2003). Effect of fetal hypoxia on heart susceptibility to ischemia and reperfusion injury in the adult rat. J. Soc. Gynecol. Investig., 10, 265–74.CrossRefGoogle ScholarPubMed
Liggins, G. C., Qvist, J., Hochachka, P. W.et al. (1980). Fetal cardiovascular and metabolic responses to simulated diving in the Weddell seal. J. Appl. Physiol., 49, 424–30.CrossRefGoogle ScholarPubMed
Llanos, A. J., Riquelme, R. A., Sanhueza, E. M., Cabello, G., Giussani, D. A. and Parer, J. T. (2002). Regional brain blood flow and cerebral hemispheric oxygen consumption during acute hypoxaemia in the llama fetus. J. Physiol., 538, 975–83.CrossRefGoogle ScholarPubMed
Llanos, A. J., Riquelme, R. A., Sanhueza, E. M.et al. (2003). The fetal llama versus the fetal sheep: different strategies to withstand hypoxia. High Alt. Med. Biol., 4, 193–202.CrossRefGoogle ScholarPubMed
Maggiorini, M. and León-Velarde, F. (2003). High-altitude pulmonary hypertension: a pathophysiological entity to different diseases. Eur. Respir. J., 22, 1019–25.CrossRefGoogle ScholarPubMed
Malaspina, L., Quilici, J. C. and Ergueta Collao, J. (1971). Modificaciones de las condiciones del cultivo celular en la altura. Annales del Instituto Boliviano de Biología de la Altura, 2, 3–5.Google Scholar
Mapa de Pobreza, (1995): Una guía para la acción social, 2nd edn. La Paz: Ministerio de Desarrollo Humano, República de Bolivia.Google Scholar
Monge, C. C., Arregui, A. and León-Velarde, F. (1992). Pathophysiology and epidemiology of chronic mountain sickness. Int. J. Sports Med., 13 (Suppl. 1), S79–81.CrossRefGoogle Scholar
Monheit, A. G., Stone, M. L. and Abitbol, M. M. (1988). Fetal heart rate and transcutaneous monitoring during experimentally induced hypoxia in the fetal dog. Pediatr. Res., 23, 548–52.CrossRefGoogle ScholarPubMed
Moore, L. G. (1990). Maternal O2 transport and fetal growth in Colorado, Peru and Tibet high-altitude residents. Am. J. Hum. Biol., 2, 627–37.CrossRefGoogle ScholarPubMed
Morrison, S., Fletcher, A. J. W., Gardner, D. S. and Giussani, D. A. (2003). Enhanced nitric oxide activity offsets peripheral vasoconstriction during acute hypoxaemia via chemoreflex and adrenomedullary actions. J. Physiol., 547, 283–91.CrossRefGoogle ScholarPubMed
Mulder, A. L., Golde, J. C., Prinzen, F. W. and Blanco, C. E. (1998). Cardiac output distribution in response to hypoxia in the chick embryo in the second half of the incubation time. J. Physiol., 508, 281–7.CrossRefGoogle ScholarPubMed
Newnham, J. P., Moss, T. J., Nitsos, I., Sloboda, D. M. and Challis, J. R. (2002). Nutrition and the early origins of adult disease. Asia Pac. J. Clin. Nutr., 11 (Suppl. 3), S537–42.CrossRefGoogle ScholarPubMed
Parer, J. T. (1988). Measurement of fetal heart rate: techniques and significance. In Research in Perinatal Medicine. VII. Fetal and Neonatal Development (ed. Jones, C. T.). Ithaca, NY: Perinatology Press, pp. 511–20.Google Scholar
Penrose, L. S. (1954). Some recent trends in human genetics. Cardiologia, 6 (Suppl.), 521–9.Google Scholar
Phillips, D. I., Walker, B. R., Reynolds, R. M.et al. (2001). Low birthweight predicts elevated plasma cortisol concentrations in adults in 3 populations. Hypertension, 35, 1301–6.CrossRefGoogle Scholar
Post, G. B., Lujan, C., San-Miguel, J. L. and Kemper, H. C. (1994). The nutritional intake of Bolivian boys: the relation between altitude and socioeconomic status. Int. J. Sports Med., 15 (Suppl. 2), S100–5.CrossRefGoogle ScholarPubMed
Reynolds, R. M., Walker, B. R., Syddall, H. E.et al. (2001). Altered control of cortisol secretion in adult men with low birthweight and cardiovascular risk factors. J. Clin. Endocrinol. Metab., 86, 245–50.Google ScholarPubMed
Riquelme, R. A., Herrera, E. A., Sanhueza, E. M.et al. (2004). Lambs born at high altitude have a blunted pituitary–adrenal axis response to acute hypoxia. J. Soc. Gynecol. Investig., 11 (Suppl.), 212A.Google Scholar
Robinson, J. S., Kingston, E. J., Jones, C. T. and Thorburn, G. D. (1979). Studies on experimental growth retardation in sheep: the effect of removal of endometrial caruncles on fetal size and metabolism. J. Dev. Physiol., 1, 379–98.Google ScholarPubMed
Rosen, K. G. and Kjellmer, I. (1975). Changes in the fetal heart rate and ECG during hypoxia. Acta Physiol. Scand., 93, 59–66.CrossRefGoogle ScholarPubMed
Ruijtenbeek, K., Noble, F. A., Janssen, G. M.et al. (2000). Chronic hypoxia stimulates periarterial sympathetic nerve development in chicken embryo. Circulation, 102, 2892–7.CrossRefGoogle ScholarPubMed
Ruijtenbeek, K., Kessels, C. G., Janssen, B. J.et al. (2003). Chronic moderate hypoxia during in ovo development alters arterial reactivity in chickens. Pflugers Arch., 447, 158–67.CrossRefGoogle ScholarPubMed
Ruiz, L. and Peñaloza, D. (1977). Altitude and hypertension. Mayo Clin. Proc., 52, 442–5.Google ScholarPubMed
Salinas, C. E., Villena, M., Blanco, C. E. and Giussani, D. A. (2003a). The role of oxygen in fetal growth. J. Soc. Gynecol. Investig., 10 (Suppl.), 305A.Google Scholar
Salinas, C. E., Villena, M., Blanco, C. E. and Giussani, D. A. (2003b). Protection against hypoxia-induced cardiomegaly in chick embryos from hens native to high altitude. J. Soc. Gynecol. Investig., 10 (Suppl.), 108A.Google Scholar
Thakor, A. S. and Giussani, D. A. (2005). Calcitonin gene-related peptide contributes to the umbilical haemodynamic defence response to acute hypoxaemia. J. Physiol., 563, 309–17.CrossRefGoogle ScholarPubMed
Walton, A. and Hammond, J. (1938). The maternal effects on growth and conformation in Shire horse–Shetland pony crosses. Proc. R. Soc. Lond. B Biol. Sci., 125, 311–35.CrossRefGoogle Scholar
Warburton, S. J., Hastings, D. and Wang, T. (1995). Responses to chronic hypoxia in embryonic alligators. J. Exp. Zool., 273, 44–50.CrossRefGoogle ScholarPubMed
Williams, S. J., Hemmings, D. G., McMillen, I. C. and Davidge, S. T. (2004). Maternal hypoxia during late gestation in rats impairs endothelium-dependent relaxation in mesenteric arteries from four month old male offspring. J. Soc. Gynecol. Investig., 10 (Suppl.), 184A.Google Scholar
Yang, S. and Zhang, L. (2004). Glucocorticoids and vascular reactivity. Curr. Vasc. Pharmacol., 2, 1–12.CrossRefGoogle ScholarPubMed
Zamudio, S., Droma, T., Norkyel, K. Y.et al. (1993). Protection from intrauterine growth retardation in Tibetans at high altitude. Am. J. Phys. Anthropol., 91, 215–24.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×