Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-q6k6v Total loading time: 0 Render date: 2024-07-13T19:04:27.212Z Has data issue: false hasContentIssue false

Chapter II - Conforming Finite Elements

Published online by Cambridge University Press:  01 March 2010

Dietrich Braess
Affiliation:
Ruhr-Universität, Bochum, Germany
Get access

Summary

The mathematical treatment of the finite element method is based on the variational formulation of elliptic differential equations. Solutions of the most important differential equations can be characterized by minimal properties, and the corresponding variational problems have solutions in certain function spaces called Sobolev spaces. The numerical treatment involves minimization in appropriate finite-dimensional linear subspaces. A suitable choice for these subspaces, both from a practical and from a theoretical point of view, are the so-called finite element spaces.

For linear differential equations, it suffices to work with Hilbert space methods. In this framework, we immediately get the existence of so-called weak solutions. Regularity results, to the extent they are needed for the finite element theory, will be presented without proof.

This chapter contains a theory of the simple methods which suffice for the treatment of scalar elliptic differential equations of second order. The aim of this chapter are the error estimates in §7 for the finite element solutions. They refer to the L2-norm and to the Sobolev norm ∥ · ∥1. Some of the more general results presented here will also be used later in our discussion in Chapter III of other elliptic problems whose treatment requires additional techniques.

The paper of Courant [1943] is generally considered to be the first mathematical contribution to a finite element theory, although a paper of Schellbach [1851] had appeared already a century earlier. If we don't take too narrow a view, finite elements also appear in some work of Euler. The method first became popular at the end of the sixties, when engineers independently developed and named the method.

Type
Chapter
Information
Finite Elements
Theory, Fast Solvers, and Applications in Solid Mechanics
, pp. 27 - 104
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×