Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T15:03:18.962Z Has data issue: false hasContentIssue false

3 - Equilibrium Computation for Two-Player Games in Strategic and Extensive Form

from I - Computing in Games

Published online by Cambridge University Press:  31 January 2011

Bernhard von Stengel
Affiliation:
Department of Mathematics London School of Economics
Noam Nisan
Affiliation:
Hebrew University of Jerusalem
Tim Roughgarden
Affiliation:
Stanford University, California
Eva Tardos
Affiliation:
Cornell University, New York
Vijay V. Vazirani
Affiliation:
Georgia Institute of Technology
Get access

Summary

Abstract

We explain algorithms for computing Nash equilibria of two-player games given in strategic form or extensive form. The strategic form is a table that lists the players' strategies and resulting payoffs. The “best response” condition states that in equilibrium, all pure strategies in the support of a mixed strategy must get maximal, and hence equal, payoff. The resulting equations and inequalities define polytopes, whose “completely labeled” vertex pairs are the Nash equilibria of the game. The Lemke–Howson algorithm follows a path of edges of the polytope pair that leads to one equilibrium. Extensive games are game trees, with information sets that model imperfect information of the players. Strategies in an extensive game are combinations of moves, so the strategic form has exponential size. In contrast, the linear-sized sequence form of the extensive game describes sequences of moves and how to randomize between them.

Introduction

A basic model in noncooperative game theory is the strategic form that defines a game by a set of strategies for each player and a payoff to each player for any strategy profile (which is a combination of strategies, one for each player). The central solution concept for such games is the Nash equilibrium, a strategy profile where each strategy is a best response to the fixed strategies of the other players. In general, equilibria exist only in mixed (randomized) strategies, with probabilities that fulfill certain equations and inequalities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×