Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-21T02:03:25.637Z Has data issue: false hasContentIssue false

21 - The Price of Anarchy and the Design of Scalable Resource Allocation Mechanisms

from III - Quantifying the Inefficiency of Equilibria

Published online by Cambridge University Press:  31 January 2011

Ramesh Johari
Affiliation:
Department of Management Science and Engineering Stanford University
Noam Nisan
Affiliation:
Hebrew University of Jerusalem
Tim Roughgarden
Affiliation:
Stanford University, California
Eva Tardos
Affiliation:
Cornell University, New York
Vijay V. Vazirani
Affiliation:
Georgia Institute of Technology
Get access

Summary

Abstract

In this chapter, we study the allocation of a single infinitely divisible resource among multiple competing users. While we aim for efficient allocation of the resource, the task is complicated by the fact that users' utility functions are typically unknown to the resource manager. We study the design of resource allocation mechanisms that are approximately efficient (i.e., have a low price of anarchy), with low communication requirements (i.e., the strategy spaces of users are low dimensional).

Our main results concern the proportional allocation mechanism, for which a tight bound on the price of anarchy can be provided. We also show that in a wide range of market mechanisms that use a single market-clearing price, the proportional allocation mechanism minimizes the price of anarchy. Finally, we relax the assumption of a single market-clearing price, and show that by extending the class of Vickrey–Clarke–Groves mechanisms all Nash equilibria can be guaranteed to be fully efficient.

Introduction

This chapter deals with a canonical resource allocation problem. Suppose that a finite number of users compete to acquire a share of an infinitely divisible resource of fixed capacity. How should the resource be shared among the users? We will frame this problem as an economic problem: we assume that each user has a utility function that is increasing in the amount of the resource received, and then design a mechanism to maximize aggregate utility.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×