Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-k7p5g Total loading time: 0 Render date: 2024-07-11T23:12:36.181Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2016

Ulrike Lohmann
Affiliation:
ETH Zürich, Switzerland
Felix Lüönd
Affiliation:
ETH Zürich, Switzerland
Fabian Mahrt
Affiliation:
ETH Zürich, Switzerland
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
An Introduction to Clouds
From the Microscale to Climate
, pp. 368 - 381
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbatt, J. P. D., Benz, S., Cziczo, D. J., Kanji, Z. A., Lohmann, U., and Mohler, O. 2006. Solid ammonium sulfate aerosols as ice nuclei: a pathway for cirrus cloud formation. Science, 313, 1770–1773.CrossRefGoogle ScholarPubMed
Ackerman, A. S., Kirkpatrick, M. P., Stevens, D. E., and Toon, O. B. 2004. The impact of humidity above stratiform clouds on indirect climate forcing. Nature, 432, 1014–1017.CrossRefGoogle Scholar
Ahrens, C. D. 2009. Meteorology Today: An Introduction to Weather, Climate, and the Environment. 9th edn. Brooks/Cole Cengage Learning.
Albrecht, B. 1989. Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.CrossRefGoogle ScholarPubMed
Andreae, M. O., and Rosenfeld, D. 2008. Aerosol–cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth Sci. Rev., 89, 13–41.CrossRefGoogle Scholar
Andronache, C., Grönholm, T., Laakso, L., Phillips, V., and Venäläinen, A. 2006. Scavenging of ultrafine particles by rainfall at a boreal site: observations and model estimations. Atmos. Chem. Phys., 6(12), 4739–4754.CrossRefGoogle Scholar
Ansmann, A., Tesche, M., Althausen, D., Müller, D., Seifert, P., Freudenthaler, V.et al. 2008. Influence of Saharan dust on cloud glaciation in southern Morocco during the Saharan Mineral Dust Experiment. J. Geophys. Res., 113, doi:10.1029/2004JD005000.CrossRefGoogle Scholar
Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S.et al. 2013. The importance of feldspar for ice nucleation by mineral dust in mixedphase clouds.Nature, 498, 355–358.CrossRefGoogle ScholarPubMed
Ayala, O., Rosa, B., Wang, L. P., and Grabowski, W. W. 2008. Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation.New J. Phys., 10, doi:10.1088/1367–2630/10/7/075015.CrossRefGoogle Scholar
Baker, M., and Charlson, R. J. 1990. Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature, 345, 142–145.CrossRefGoogle Scholar
Baron, P. A., and Willeke, K. 2001. Aerosol Measurement: Principles, Techniques, and Applications. 2nd edn. Wiley.Google Scholar
Baschek, B. 2005. Influence of updrafts and embedded convection on the microphysics of riming. Ph.D. thesis, ETH Zurich.
Beard, K. V. 1976. Terminal velocity and shape of cloud and precipitation drops aloft. J. Atmos. Sci., 33(5), 851–864.2.0.CO;2>CrossRefGoogle Scholar
Beard, K. V., and Pruppacher, H. R. 1971. A wind tunnel investigation of the rate of evaporation of small water drops falling at terminal velocity in air. J. Atmos. Sci., 28(8), 1455–1464.2.0.CO;2>CrossRefGoogle Scholar
Berry, E. X. 1967. Cloud droplet growth by collection. J. Atmos. Sci., 24(6).2.0.CO;2>CrossRefGoogle Scholar
Bjerknes, J., and Solberg, H. 1922. On the life cycle of cyclones and the polar front theory of atmospheric circulation. Mon. Wea. Rev., 50(9), 468–473.Google Scholar
Blanchard, D. O. 1998. Assessing the vertical distribution of convective available potential energy. Weather and Forecasting, 13(3), 870–877.2.0.CO;2>CrossRefGoogle Scholar
Borovikov, A. M., Gaivoronskii, I. I., Zak, E. G., Kostarev, V. V., Mazin, I. P., Minervin, V. E.et al. 1963. Cloud physics. In: Israel Program of Scientific Translations. Jerusalem.Google Scholar
Boucher, O., and Lohmann, U. 1995. The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models. Tellus B, 47, 281–300.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P.et al. 2013. Clouds and aerosols. Pp. 571–657 in Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J.et al. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Boy, M., and Kulmala, M. 2002. Nucleation events in the continental boundary layer: influence of physical and meteorological parameters. Atmos. Chem. Phys., 2, 1–16.CrossRefGoogle Scholar
Brazier-Smith, P. R., Jennings, S. G., and Latham, J. 1973. Raindrop interactions and rainfall rates within clouds. Q. J. R. Meteorol. Soc., 99(420), 260–272.CrossRefGoogle Scholar
Brenguier, J.-L., Pawlowska, H., Schüller, L., Preusker, R., Fischer, J., and Fouquart, Y. 2000. Radiative properties of boundary layer clouds: droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803–821.2.0.CO;2>CrossRefGoogle Scholar
Bretl, S., Reutter, P., Raible, C. C., Ferrachat, S., Poberaj, C. S., Revell, L. E.et al. 2015. The influence of absorbed solar radiation by Saharan dust on hurricane genesis. J. Geophys. Res., 120(5), 1902–1917.
Broekhuizen, K., Kumar, P. P., and Abbatt, J. P. D. 2004. Partially soluble organics as cloud condensation nuclei: role of trace soluble and surface active species.Geophys. Res. Lett., 31, doi: 10.1029/2003GL018203.CrossRefGoogle Scholar
Browning, K. A. 1964. Airflow and precipitation trajectories within severe local storms which travel to the right of the winds. J. Atmos. Sci., 21(6), 634–639.2.0.CO;2>CrossRefGoogle Scholar
Browning, K. A. 1985. Conceptual models of precipitation systems. Meteorol. Mag., 114(1359), 293–319.Google Scholar
Carlson, T. N. 1980. Air-flow through mid-latitude cyclones and the comma cloud pattern. Mon. Weat. Rev., 108(10), 1498–1509.2.0.CO;2>CrossRefGoogle Scholar
Chepfer, H., Bony, S.,Winker, D., Chiriaco, M., Dufresne, J. L., and Seze, G. 2008. Use of CALIPSO lidar observations to evaluate the cloudiness simulated by a climate model. Geophys. Res. Lett., 35, L15704.CrossRefGoogle Scholar
Chepfer, H., Bony, S., Winker, D., Cesana, G., Dufresne, J. L., Minnis, P.et al. 2010. The GCM-oriented CALIPSO cloud product (CALIPSO-GOCCP).J. Geophys. Res., 115, D00H16.CrossRefGoogle Scholar
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P.et al. 2013. Long-term climate change: projections, commitments and irreversibility. Pp. 1029–1136 in Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J.et al. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Corti, T., and Peter, T. 2009. A simple model for cloud radiative forcing. Atmos. Chem. Phys., 9(15), 5751–5758.CrossRefGoogle Scholar
Cotton, W. R., Bryan, G. H., and van den Heever, S. C. 2011. Storm and Cloud Dynamics. Academic Press.Google Scholar
Croft, B., Lohmann, U., Martin, R. V., Stier, P.,Wurzler, S., Feichter, J.et al. 2009. Aerosol size-dependent below-cloud scavenging by rain and snow in the ECHAM5-HAM. Atmos. Chem. Phys., 9, 4653–4675.CrossRefGoogle Scholar
Crosier, J., Bower, K. N., Choularton, T. W., Westbrook, C. D., Connolly, P. J., Cui, Z. Q.et al. 2011. Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus.Atmos. Chem. Phys., 11(1), 257–273.CrossRefGoogle Scholar
Crutzen, P. J. 2006. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?Climatic Change, 77(3–4), 211–219.CrossRefGoogle Scholar
Curry, J. A., and Webster, P. J. 1999. Thermodynamics of Atmospheres and Oceans. Academic Press.Google Scholar
Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M. H., Zondlo, M. A.et al. 2013. Clarifying the dominant sources and mechanisms of cirrus cloud formation.Science, 340(6138), 1320–1324.CrossRefGoogle ScholarPubMed
De Mott, P. J. 1995. Quantitative descriptions of ice formation mechanisms of silver iodidetype aerosols. Atmos. Res., 38, 63–99.Google Scholar
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S.et al. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system.Q. J. R. Meteorol. Soc., 137(656), 553–597.CrossRefGoogle Scholar
Deierling, W., and Petersen, W. A. 2008. Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res., 113(D16), D16210.CrossRefGoogle Scholar
Denman, K., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P., Dickinson, R.et al. 2007. Couplings between changes in the climate system and biogeochemistry. Pp. 499–588 in Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.et al. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Dentener, F., Kinne, S., Bond, T., Boucher, O., Cofala, J., Generoso, S.et al. 2006. Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos. Chem. Phys., 6, 4321–4344.CrossRefGoogle Scholar
Detwiler, A. G., and Vonnegut, B. 1981. Humidity required for ice nucleation from the vapor onto silver-iodide and lead iodide aerosols over the temperature range -6 to -67 degrees C. J. Appl. Meteorol., 20(9), 1006–1012.2.0.CO;2>CrossRefGoogle Scholar
Doswell, Charles A. III. 1985. The operational meteorology of convective weather: storm scale analysis. Report, National Oceanic and Atmospheric Administration (NOAA).
Doviak, R. J., and Zrnic, D. S. 1984. Doppler Radar and Weather Observations. Academic Press.Google Scholar
Drobinski, P., Steinacker, R., Richner, H., Baumann-Stanzer, K., Beffrey, G., Benech, B.et al. 2007. Föhn in the Rhine Valley during MAP: a review of its multiscale dynamics in complex valley geometry. Q. J. Royal Meteorol. Soc., 133, 897–916. 625.CrossRefGoogle Scholar
Dubovik, O., Holben, B. N., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D.et al. 2002. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59, 590–608.2.0.CO;2>CrossRefGoogle Scholar
Dufresne, J.-L., and Bony, S. 2008. An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21(19), 5135–5144.CrossRefGoogle Scholar
Durant, A. J., and Shaw, R. A. 2005. Evaporation freezing by contact nucleation inside-out. Geophys. Res. Lett., 32, doi:10.1029/2005GL024175.CrossRefGoogle Scholar
Durkee, P. A., Noone, K. J., Ferek, R. J., Johnson, D. W., Taylor, J. P., Garrett, T. J.et al. 2000. The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: a test of MAST hypothesis 1i and 1ii. J. Atmos. Sci., 57, 2554–2569.2.0.CO;2>CrossRefGoogle Scholar
Eastman, R., and Warren, S. G. 2013. A 39-yr survey of cloud changes from land stations worldwide 1971–2009: long-term trends, relation to aerosols, and expansion of the tropical belt. J. Climate, 26, 1286–1303.CrossRefGoogle Scholar
Eastman, R., Warren, S. G., and Hahn, C. J. 2011. Variations in cloud cover and cloud types over the ocean from surface observations, 1954–2008.J. Climate, 24(22), 5914–5934.CrossRefGoogle Scholar
Ehn, M., Thornton, J. A., Kleist, E., Sipila, M., Junninen, H., Pullinen, I.et al. 2014. A large source of low-volatility secondary organic aerosol. Nature, 506(7489), 476–479.CrossRefGoogle ScholarPubMed
Emanuel, K. A. 1986. An air sea interaction theory for tropical cyclones: 1. steady-state maintenance.J. Atmos. Sci., 43, 586–604.2.0.CO;2>CrossRefGoogle Scholar
Emanuel, K. A. 1994. Atmospheric Convection. Oxford University Press.Google Scholar
Emanuel, K. A. 2005. Divine Winds. Cambridge University Press.Google Scholar
Ervens, B., and Feingold, G. 2013. Sensitivities of immersion freezing: reconciling classical nucleation theory and deterministic expressions. Geophys. Res. Lett., 40(12), 3320–3324.CrossRefGoogle Scholar
Evans, L. F. 1965. Requirements of an ice nucleus.Nature, 206(4986), 822.CrossRefGoogle Scholar
Federer, B., Waldvogel, A., Schmid, W., Schiesser, H. H., Hampel, F., Schweingruber, M.et al. 1986. Main results of Grossversuch-IV.J. Clim. Appl. Meteorol., 25(7), 917–957.2.0.CO;2>CrossRefGoogle Scholar
Feingold, G., Cotton, W. R., Kreidenweis, S. M., and Davis, J. T. 1999. The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: implications for cloud radiative properties. J. Atmos. Sci., 56, 4100–4117.2.0.CO;2>CrossRefGoogle Scholar
Feingold, G., Koren, I., Yamaguchi, T., and Kazil, J. 2015. On the reversibility of transitions between closed and open cellular convection. Atmos. Chem. Phys., 15(13), 7351–7367.CrossRefGoogle Scholar
Field, P. R., and Heymsfield, A. J. 2015. Importance of snow to global precipitation. Geophys. Res. Lett., 42, 9512–9520.CrossRefGoogle Scholar
Fletcher, N. H. 1962. Physics of Rain Clouds. Cambridge University Press.Google Scholar
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D. W.et al. 2007. Radiative forcing of climate change. Pp. 129–234 in Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B.et al. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Garcia-Garcia, F., and List, R. 1992. Laboratory measurements and parameterizations of supercooled water skin temperatures and bulk properties of gyrating hailstones. J. Atmos. Sci., 49(22), 2058–2073.2.0.CO;2>CrossRefGoogle Scholar
Greenfield, S. M. 1957. Rain scavenging of radioactive particulate matter from the atmosphere. J. Meteor., 14(2), 115–125.2.0.CO;2>CrossRefGoogle Scholar
Gunn, K. L. S., and Marshall, J. S. 1958. The distribution with size of aggregate snowflakes. J. Meteorol., 15(5), 452–461.2.0.CO;2>CrossRefGoogle Scholar
Guo, S., Bluth, G. J. S., Rose, W. I., Watson, I. M., and Prata, A. J. 2004. Re-evaluation of SO2 release of the 15 June 1991 Pinatubo eruption using ultraviolet and infrared satellite sensors.Geochem., Geophys., Geosyst., 5(4).CrossRefGoogle Scholar
Hahn, C. J., and Warren, S. G. 2009. Extended edited cloud reports from ships and land stations over the globe, 1952–1996 (2009 update). Techical reptort, Carbon Dioxide Information Analysis Center Numerical Data Package NDP-026C.
Hale, B. N., and Plummer, P. L. M. 1974. Molecular model for ice nucleation in a supersaturated vapor. J. Chem. Phys., 61(10), 4012–4019.CrossRefGoogle Scholar
Hall, W. D., and Pruppacher, H. R. 1976. The survival of ice particles falling from cirrus clouds in subsaturated air. J. Atmos. Sci., 33(10), 1995–2006.2.0.CO;2>CrossRefGoogle Scholar
Hallett, J., and Mossop, S. C. 1974. Production of secondary ice particles during riming process. Nature, 249, 26–28.CrossRefGoogle Scholar
Hartmann, D. L., Klein Tank, A. M. G., Rusticucci, M., Alexander, L. V., Brönnimann, B., Charabi, Y.et al. 2013. Observations: atmosphere and surface. Pp. 159–254 in Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Heckendorn, P., Weisenstein, D., Fueglistaler, S., Luo, B. P., Rozanov, E., Schraner, M.et al. 2009. The impact of geoengineering aerosols on stratospheric temperature and ozone. Env. Res. Lett., 4(4).CrossRefGoogle Scholar
Heintzenberg, J., Covert, D. C., and Van Dingenen, R. 2000. Size distribution and chemical composition of marine aerosols: a compilation and review. Tellus, B, 52, 1104–1122.Google Scholar
Henneberger, J., Fugal, J. P., Stetzer, O., and Lohmann, U. 2013. HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds. Atmos. Meas. Tech., 6.CrossRefGoogle Scholar
Hess, S. L. 1959. Introduction to Theoretical Meteorology. New York: Henry Holt.Google Scholar
Hinrichs, G. 1888. Tornadoes and derechoes. Amer. Meteorolog. J., 5, 306.Google Scholar
Herich, H., Tritscher, T.,Wiacek, A., Gysel, M.,Weingartner, E., Lohmann, U.et al. 2009. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions. Phys. Chem. Chem. Phys., 11, 7804–7809.CrossRefGoogle ScholarPubMed
Hinds, William C. 1999. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. 2nd edn. Wiley.Google Scholar
Holton, J. R. 2004. An Introduction to Dynamic Meteorology. Elsevier Academic Press.Google Scholar
Hoose, C., and Möhler, O. 2012. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys., 12, 9817–9854.CrossRefGoogle Scholar
Hoose, C., Lohmann, U., Erdin|R., and Tegen, I. 2008. Global influence of dust mineralogical composition on heterogeneous ice nucleation in mixed-phase clouds. Environ. Res. Lett., 3, doi:10.1088/1748–9326/3/2/025003.CrossRefGoogle Scholar
Hoose, C., Kristjansson, J. E., Chen, J. P., and Hazra, A. 2010. A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model. J. Atmos. Sci., 67(8), 2483–2503.CrossRefGoogle Scholar
Houze, R. A. 1981. Structures of atmospheric precipitation systems – a global survey.Radio Science, 16(5), 671–689.CrossRefGoogle Scholar
Houze, Robert A. 1993. Cloud Dynamics. Academic Press.Google Scholar
Houze, Robert A. 2014. Cloud Dynamics. 2nd edn. Academic Press.Google Scholar
Howard, Luke. 1803. LXIV. On the modifications of clouds, and on the principles of their production, suspension, and destruction; being the substance of an essay read before the Askesian Society in the session 1802–3. Philosophical Magazine Series 1, 16(64), 344–357.Google Scholar
Hoyle, C. R., Pinti, V., Welti, A., Zobrist, B., Marcolli, C., Luo, B.et al. 2011. Ice nucleation properties of volcanic ash from Eyjafjallajökull. Atmos. Chem. Phys., 11(18), 9911–9926.CrossRefGoogle Scholar
Ickes, L., Welti, A., Hoose, C., and Lohmann, U. 2015. Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters. Phys. Chem. Chem. Phys., 17(8), 5514–5537.CrossRefGoogle ScholarPubMed
Intrieri, J. M., and Shupe, M. D. 2004. Characteristics and radiative effects of diamond dust over the western Arctic Ocean region.J. Clim., 17(15), 2953–2960.2.0.CO;2>CrossRefGoogle Scholar
Intrieri, J. M., Shupe, M. D., Uttal, T., and McCarty, B. J. 2002. An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA.J. Geophys. Res., 107, doi: 10.1029/2000JC000423.Google Scholar
Iribane, J. V., and Godson, W. L. 1981. Atmospheric Thermodynamics. Kluwer.CrossRefGoogle Scholar
Jaenicke, R. 1988. Aerosol physics and chemistry. Pp. 391–457 in Landolt-Bornstein, New Ser., vol. V/4b. Springer-Verlag.Google Scholar
Jeske, H. 1988. Special Optical Phenomena Produced by Water Droplets and Ice Crystals in the Atmosphere. Vol. V, Geophysics 4b. Springer Verlag.Google Scholar
Jiang, H. L., Xue, H. W., Teller, A., Feingold, G., and Levin, Z. 2006. Aerosol effects on the lifetime of shallow cumulus. Geophys. Res. Lett., 33, doi: 10.1029/2006GL026024. L14806.CrossRefGoogle Scholar
Johns, R. H., and Hirt, W. D. 1987. Derechos: widespread convectively induced windstorms. Weather and Forecasting, 2, 32–49.2.0.CO;2>CrossRefGoogle Scholar
Johnson, R. H., Rickenbach, T. M., Rutledge, S. A., Ciesielski, P. E., and Schubert, W. H. 1999. Trimodal characteristics of tropical convection.J. Clim., 12(8), 2397–2418. Part 1.2.0.CO;2>CrossRefGoogle Scholar
Jones, A., Haywood, J. M., Alterskjaer, K., Boucher|O., Cole, J. N. S., Curry, C. L.et al. 2013. The impact of abrupt suspension of solar radiation management (termination effect) in experiment G2 of the Geoengineering Model Intercomparison Project (GeoMIP).J. Geophys. Res., 118(17), 9743–9752.Google Scholar
Jorgensen, D. P., and Lemone, M. A. 1989. Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46(5), 621–640.2.0.CO;2>CrossRefGoogle Scholar
Joss, J., and Waldvogel, A. 1967. A spectrograph for raindrops with automatic interpretation. Pure Appl. Geophys., 68(3), 240–246.Google Scholar
Kadoya, K., Matsunaga, N., and Nagashima, A. 1985. Viscosity and thermal-conductivity of dry air in the gaseous-phase. J. Phys. Chem. Ref. Data, 14(4), 947–970.CrossRefGoogle Scholar
Kajava, A. V., and Lindow, S. E. 1993. A model of the 3-dimensional structure of ice nucleation proteins. J. Mol. Biol., 232(3), 709–717.CrossRefGoogle Scholar
Kanji, Z. A., and Abbatt, J. P. D. 2006. Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples. J. Geophys. Res., 111(D16).CrossRefGoogle Scholar
Kanji, Z. A., Welti, A., Chou, C., Stetzer, O., and Lohmann, U. 2013. Laboratory studies of immersion and deposition mode ice nucleation of ozone aged mineral dust particles. Atmos. Chem. Phys. Discuss., 13(4), 8701–8767.CrossRefGoogle Scholar
Kay, J. E., and Gettelman, A. 2009. Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204.CrossRefGoogle Scholar
Khvorostyanov, V. I., and Curry, J. A. 2014. Thermodynamics, Kinetics and Microphysics of Clouds. Cambridge University Press.CrossRefGoogle Scholar
Kiehl, J. T. 1992. Atmospheric general circulation modeling. Pp. 319–370 in Trenberth, K. (ed.), Climate System Modeling. Cambridge University Press.Google Scholar
Kiehl, J. T., and Trenberth, Kevin E. 1997. Earth's annual global mean energy budget. Bull. Amer. Meteorol. Soc., 78, 197–208.2.0.CO;2>CrossRefGoogle Scholar
Kinne, S., Schulz, M., Textor, C., Guibert, S., Balkanski, Y., Bauer, S.et al. 2006. An AeroCom initial assessment – optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 1815–1834.CrossRefGoogle Scholar
Kinzer, Gilbert D., and Gunn, Ross. 1951. The evaporation, temperature and thermal relaxation-time of freely falling waterdrops.J. Meteorology, 8(2), 71–83.2.0.CO;2>CrossRefGoogle Scholar
Kirkby, J.et al. 2011. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation.Nature, 476.CrossRefGoogle ScholarPubMed
Klemp, J. B. 1987. Dynamics of tornadic thunderstorms. Ann. Rev. Fluid Mech., 19, 369–402.CrossRefGoogle Scholar
Köhler, H. 1922. Zur Kondensation des Wasserdampfes in der Atmosphäre.Geofysiske Publ., 2(6).Google Scholar
Koop, T., Luo, B., Tsias, A., and Peter, T. 2000. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature, 406, 611–614.CrossRefGoogle ScholarPubMed
Korolev, A. V., Isaac, G. A., Cober, S. G., Strapp, W., and Hallett, J. 2003. Microphysical characterization of mixed-phase clouds. Q. J. R. Meteorol. Soc., 129, 39–65.Google Scholar
Kossin, J. P., Knapp, K. R., Vimont, D. J., Murnane, R. J., and Harper, B. A. 2007. A globally consistent reanalysis of hurricane variability and trends. Geophys. Res. Lett., 34(4).CrossRefGoogle Scholar
Krämer, M., Schiller, C., Afchine, A., Bauer, R., Gensch, I., Mangold, A.et al. 2009. Ice supersaturations and cirrus cloud crystal numbers.Atmos. Chem. Phys., 9(11), 3505–3522.CrossRefGoogle Scholar
Kravitz, B., Robock, A., Boucher, O., Schmidt, H., Taylor, K. E., Stenchikov, G.et al. 2011. The Geoengineering Model Intercomparison Project (GeoMIP).Atmos. Sci. Lett., 12(2), 162–167.CrossRefGoogle Scholar
Kravitz, B., Robock, A., Tilmes, S., Boucher, O., English, J. M., Irvine, P. J.et al. 2015. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results.Geosci. Model Dev. Discuss., 8(6), 4697–4736.CrossRefGoogle Scholar
Kubar, T. L., Hartmann, D. L., and Wood, R. 2009. Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part I: satellite observations. J. Atmos. Sci., 66(10), 2953–2972.CrossRefGoogle Scholar
Lacis, A., Hansen, J., and Sato|M. 1992. Climate forcing by stratospheric aerosols. Geophys. Res. Lett., 19(15), 1607–1610.
Ladino, L., Stetzer, O., Luond, F., Welti, A., and Lohmann, U. 2011. Contact freezing experiments of kaolinite particles with cloud droplets. J. Geophys. Res., 116, doi:10.1029/2011JD015727.CrossRefGoogle Scholar
Ladino Moreno, L. A., Stetzer, O., and Lohmann, U. 2013. Contact freezing: a review of experimental studies.Atmos. Chem. Phys., 13, 9745–9769.CrossRefGoogle Scholar
Lamarck, J. B. 1802. Sur la forme des nuages. Annuaire Météorologique pour l'an XIV de l'ère de la République Française, No. 3 (Un systême général de météorologie), 149–164.Google Scholar
Lamb, D., and Verlinde, J. 2011. Physics and Chemistry of Clouds. Cambridge University Press.CrossRefGoogle Scholar
Latham, J. 1990. Control of global warming. Nature, 347(6291), 339–340.CrossRefGoogle Scholar
Lau, K. M., and Wu, H. T. 2003. Warm rain processes over tropical oceans and climate implications. Geophys. Res. Lett., 30, doi: 10.1029/2003GL018567.CrossRefGoogle Scholar
Lauer, A., Eyring, V., Hendricks, J., Jockel, P., and Lohmann, U. 2007. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget. Atmos. Chem. Phys., 7, 5061–5079.CrossRefGoogle Scholar
Lehmiller, G. S., Bluestein, H. B., Neiman, P. J., Ralph, F. M., and Feltz, W. F. 2001. Wind structure in a supercell thunderstorm as measured by a UHF wind profiler.Mon. Wea. Rev., 129(8), 1968–1986.2.0.CO;2>CrossRefGoogle Scholar
Lemmon, E. W. 2015. Thermophysical Properties of Water and Steam. Handbook of Chemistry and Physics, 96th edn. CRC Press. Book Section 6: Fluid properties.Google Scholar
Li, Y., and Somorjai, G. A. 2007. Surface premelting of ice. J. Phys. Chem. C, 111(27), 9631–9637.Google Scholar
Libbrech, K. G. 2005. The physics of snow crystals. Rep. Progr. Phys., 68(4), 855–895.Google Scholar
Liu, Y., Geerts, B., Miller, M., Daum, P., and McGraw, R. 2008. Threshold radar reflectivity for drizzling clouds. Geophys. Res. Lett., 35(3).CrossRefGoogle Scholar
Löffler-Mang, M., and Blahak, U. 2001. Estimation of the equivalent radar reflectivity factor from measured snow size spectra. J. Appl. Meteorol., 40(4), 843–849.2.0.CO;2>CrossRefGoogle Scholar
Lohmann, U. 2002. A glaciation indirect aerosol effect caused by soot aerosols. Geophys. Res. Lett., 29, doi: 10.1029/2001GL014357.CrossRefGoogle Scholar
Lohmann, U., and Diehl, K. 2006. Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on stratiform mixed-phase clouds.J. Atmos. Sci, 63, 968–982.CrossRefGoogle Scholar
Lohmann, U., and Feichter, J. 2005. Global indirect aerosol effects: a review.Atmos. Chem. Phys., 5, 715–737.CrossRefGoogle Scholar
Lohmann, U., Spichtinger, P., Jess, S., Peter, T., and Smit, H. 2008. Cirrus cloud formation and ice supersaturated regions in a global climate model. Env. Res. Lett., 3(045022), doi:10.1088/1748–9326/3/4/045022.CrossRefGoogle Scholar
Low, T. B., and List, R. 1982. Collision, coalescence and breakup of raindrops. 1. Experimentally established coalescence efficiencies and fragment size distributions in breakup. J. Atmos. Sci., 39(7), 1591–1606.Google Scholar
Lüönd, F., Stetzer, O., Welti, A., and Lohmann, U. 2010. Experimental study on the ice nucleation ability of size-selected kaolinite particles in the immersion mode. J. Geophys. Res., 115, doi: 10.1029/2009jd012959.CrossRefGoogle Scholar
Mace, G. G., Zhang, Q. Q., Vaughan, M., Marchand, R., Stephens, G., Trepte, C.et al. 2009. A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data.J. Geophys. Res., 114, D00A26.CrossRefGoogle Scholar
Madonna, E. 2009. Cloud condensation nuclei measurements of urban aerosols. M.Phil. thesis, ETH Zurich.
Madonna, E., Wernli, H., Joos, H., and Martius, O. 2014. Warm conveyor belts in the ERA-interim dataset (1979–2010). Part I: Climatology and potential vorticity evolution.J. Climate, 27, 3–26.CrossRefGoogle Scholar
Magee, N., Moyle, A. M., and Lamb, D. 2006. Experimental determination of the deposition coefficient of small cirrus-like ice crystals near 50 degrees C.Geophys. Res. Lett., 33, L17813.CrossRefGoogle Scholar
Marcolli, C. 2014. Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities.Atmos. Chem. Phys., 14, 2071–2104.CrossRefGoogle Scholar
Marcolli, C., Gedamke, S., Peter, T., and Zobrist, B. 2007. Efficiency of immersion mode ice nucleation on surrogates of mineral dust. Atmos. Chem. Phys., 7, 5081–5091.CrossRefGoogle Scholar
Markowski, P. M. 2002. Hook echoes and rear-flank downdrafts: a review. Mon.Weat. Rev., 130(4), 852–876.2.0.CO;2>CrossRefGoogle Scholar
Markowski, P., and Richardson, Y. 2010. Mesoscale Meteorology in Midlatitudes. John Wiley & Sons.CrossRefGoogle Scholar
Marshall, J. S., and Palmer, W. M. 1948. The distribution of raindrops with size.J. Meteorol., 5(4), 165–166.2.0.CO;2>CrossRefGoogle Scholar
Martin, M., Chang, R. Y.-W., Sierau, B., Sjogren, S., Swietlicki, E., Abbatt, J. P. D.et al. 2011. Cloud condensation nuclei closure study on summer arctic aerosol.Atmos. Chem. Phys., 11, 11335–11350.
Mason, B. J. 1971. The Physics of Clouds. Clarendon Press.Google Scholar
Menon, S., Hansen, J., Nazarenko, L., and Luo, Y. 2002. Climate effects of black carbon aerosols in China and India. Science, 297, 2250–2253.CrossRefGoogle ScholarPubMed
Miles, N. L., Verlinde, J., and Clothiaux, E. E. 2000. Cloud droplet size distributions in low-level stratiform clouds.J. Atmos. Sci., 57(2), 295–311.2.0.CO;2>CrossRefGoogle Scholar
Mitchell, D. L. 1996. Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities.J. Atmos. Sci., 53(12), 1710–1723.2.0.CO;2>CrossRefGoogle Scholar
Mitchell, D. L., and Heymsfield, Andrew J. 2005. Refinements in the treatment of ice particle terminal velocities, highlighting aggregates.J. Atmos. Sci., 62, 1637–1664.CrossRefGoogle Scholar
Mitchell, D. L., and Finnegan, W. 2009. Modification of cirrus clouds to reduce global warming. Env. Res. Lett., 4(4).CrossRefGoogle Scholar
Möhler, O., Field, P. R., Connolly, P., Benz, S., Saathoff, H., Schnaiter, M.et al. 2006. Efficiency of the deposition mode ice nucleation on mineral dust particles. Atmos. Chem. Phys., 6, 3007–3021.CrossRefGoogle Scholar
Moller, U., and Schumann, G. 1970. Mechanisms of transport from atmosphere to Earth's surface.J. Geophys. Res., 75(15), 3013.CrossRefGoogle Scholar
Mossop, S. C. 1985. The origin and concentration of ice crystals in clouds. Bull. Amer. Meteorol. Soc., 66(3), 264–273.2.0.CO;2>CrossRefGoogle Scholar
Mülmenstädt, J., Sourdeval, O., Delanoe, J., and Quaas, J. 2015. Frequency of occurrence of rain from liquid-, mixed- and ice-phase clouds derived from A-Train satellite retrievals.Geophys. Res. Lett., 42.CrossRefGoogle Scholar
Murphy, D. M., and Koop, T. 2005. Review of the vapour pressures of ice and supercooled water for atmospheric applications.Q. J. R. Meteorol. Soc., 131(608), 1539–1565.CrossRefGoogle Scholar
Murphy, D. M., Solomon, S., Portmann, R. W., Rosenlof, K. H., Forster, P. M. de F., and Wong, T. 2009. An observationally based energy balance for the Earth since 1950. J. Geophys. Res., 114, doi:10.1029/2009JD012105. D17107.CrossRefGoogle Scholar
Murray, B. J., Broadley, S. L., Wilson, T. W., Atkinson, J. D., and Wills, R. H. 2011. Heterogeneous freezing of water droplets containing kaolinite particles. Atmos. Chem. Phys., 11, 4191–4207.CrossRefGoogle Scholar
Murray, B. J., O'Sullivan, D., Atkinson, J. D., and Webb, M. E. 2012. Ice nucleation by particles immersed in supercooled cloud droplets. Chem. Soc. Rev., 41, 6519–6554.CrossRefGoogle ScholarPubMed
Myhre, G., Highwood, E. J., Shine, K. P., and Stordal, F. 1998. New estimates of radiative forcing due to well mixed greenhouse gases.Geophys. Res. Lett., 25, 2715–2718.CrossRefGoogle Scholar
Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K.et al. 2013. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations.Atmos. Chem. Phys., 13(4), 1853–1877.CrossRefGoogle Scholar
Nagare, B., Marcolli, C., Stetzer, O., and Lohmann, U. 2015. Estimating collision efficiencies from contact freezing experiments.Atmos. Chem. Phys. Discuss., 15(8), 12167–12212.CrossRefGoogle Scholar
Neubauer, D. 2009. Modellierung des indirekten Strahlungseffekts des Hintergrundaerosols in Österreich. Ph.D. thesis, University of Vienna.
Neubauer, D., Lohmann, U., Hoose, C., and Frontoso, M. G. 2014. Impact of the representation of marine stratocumulus clouds on the anthropogenic aerosol effect.Atmos. Chem. Phys., 14, 11997–12022.CrossRefGoogle Scholar
Niedermeier, D., Shaw, R. A., Hartmann, S., Wex, H., Clauss, T., Voigtländer, J.et al. 2011. Heterogeneous ice nucleation: exploring the transition from stochastic to singular freezing behavior.Atmos. Chem. Phys., 11(16), 8767–8775.CrossRefGoogle Scholar
Niemeier, U., Schmidt, H., and Timmreck, C. 2011. The dependency of geoengineered sulfate aerosol on the emission strategy. Atmos. Sci. Lett., 12, 189–194.CrossRefGoogle Scholar
North, G. R., and Erukhimova, T. L. 2009. Atmospheric Thermodynamics. Cambridge University Press.CrossRefGoogle Scholar
Orlanski, I. 1975. Rational subdivision of scales for atmospheric processes.Bull. Amer. Meteorol. Soc., 56(5), 527–530.Google Scholar
Ostwald, W. 1897. Studien über die Bildung und Umwandlung fester Körper. 1. Abhandlung: Übersättigung und Überkaltung.Z. Phys. C., 22, 289–330.Google Scholar
Paramonov, M., Kerminen, V.-M., Gysel, M., Aalto, P. P., Andreae, M. O., Asmi, E.et al. 2015. A synthesis of cloud condensation nuclei counter (CCNC) measurements within the EUCAARI network.Atmos. Chem. Phys., 15, 12211–12229.CrossRefGoogle Scholar
Park, S. H., Jung, C. H., Jung, K. R., Lee, B. K., and Lee, K. W. 2005. Wet scrubbing of polydisperse aerosols by freely falling droplets.J. Aerosol Sci., 36(12), 1444–1458.CrossRefGoogle Scholar
Peng, Y., Lohmann, U., Leaitch, R., Banic, C., and Couture, M. 2002. The cloud albedo– cloud droplet effective radius relationship for clean and polluted clouds from RACE and FIRE.ACE.J. Geophys. Res., 107, doi: 10.029/2000JD000281.CrossRefGoogle Scholar
Penner, J. E., Lister, D. H., Griggs, D. J., Dokken, D. J., and McFarland, M. (ed.), 1999. Aviation and the global atmosphere. A special report of working group III of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Peters, G., and Görsdorf, U. 2010. Wolkenradar – Prinzipien und Messungen.Promet., 36, 144–153.Google Scholar
Peters, K., Stier, P., Quaas, J., and Grassl, H. 2012. Aerosol indirect effects from shipping emissions: sensitivity studies with the global aerosol-climate model ECHAM-HAM.Atmos. Chem. Phys., 12(13), 5985–6007.CrossRefGoogle Scholar
Petters, M. D., and Kreidenweis, S. M. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity.Atmos. Chem. Phys., 7, 1961–1971.CrossRefGoogle Scholar
Petzold, A., Ogren, J. A., Fiebig, M., Laj, P., Li, S.-M., Baltensperger, U.et al. 2013. Recommendations for reporting “black carbon” measurements.Atmos. Chem. Phys., 13(16), 8365–8379.CrossRefGoogle Scholar
Pinti, V., Marcolli, C., Zobrist, B., Hoyle, C. R., and Peter, T. 2012. Ice nucleation efficiency of clay minerals in the immersion mode.Atmos. Chem. Phys., 12, 5859–5878.CrossRefGoogle Scholar
Pokharel, B., Geerts, B., Jing, X., Friedrich, K., Aikins, J., Breed, D.et al. 2014. The impact of ground-based glaciogenic seeding on clouds and precipitation over mountains: a multi-sensor case study of shallow precipitating orographic cumuli.Atmos. Res., 147–148, 162–182.Google Scholar
Pringle, K. J., Carslaw, K. S., Fan, T., Mann, G. W., Hill, A., Stier, P.et al. 2012. A multimodel assessment of the impact of sea spray geoengineering on cloud droplet number.Atmos. Chem. Phys., 12(23), 11647–11663.CrossRefGoogle Scholar
Pruppacher, H. R., and Beard, K. V. 1970. A wind tunnel investigation of the internal circulation and shape of water drops falling at terminal velocity in air.Q. J. R. Meteorol. Soc., 96(408), 247–256.CrossRefGoogle Scholar
Pruppacher, H. R., and Jaenicke, R. 1995. The processing of water-vapor and aerosols by atmospheric clouds, a global estimate.Atmos. Res., 38, 283–295.CrossRefGoogle Scholar
Pruppacher, H. R., and Klett, J. D. 1978. Microphysics of Clouds and Precipitation. D. Reidel, Hingham, Massachusetts.CrossRefGoogle Scholar
Pruppacher, H. R., and Klett, J. D. 1997. Microphysics of Clouds and Precipitation. Kluwer Academic.Google Scholar
Pruppacher, H. R., and Rasmussen, R. 1979. A wind tunnel investigation of the rate of evaporation of large water drops falling at terminal velocity in air.J. Atmos. Sci., 36(7), 1255–1260.2.0.CO;2>CrossRefGoogle Scholar
Quante, M. 2004. The role of clouds in the climate system. J. Phys. Iv, 121, 61–86.Google Scholar
Ramanathan, V., Cess, R. D., Harrison, E. F., Minnis, P., Barkstrom, B. R., E., Ahmad, et al. 1989. Cloud–radiative forcing and climate: results from the Earth radiation budget experiment.Science, 243, 57–63.CrossRefGoogle ScholarPubMed
Rangno, A. L. 2002. Clouds classification. Pp. 467–475 in Holton, J. R., Curry, J. A., and Pyle, J. A. (eds.), Encyclopedia of Atmospheric Sciences. Academic Press.Google Scholar
Rangno, A. L. 2015. Classification of clouds. Pp. 141–160 in North, G. R., Pyle, J. A., and Zhang, F. (eds.), Encyclopedia of Atmospheric Sciences. 2nd edn. Elsevier.Google Scholar
Raschke, E., Ohmura, A., Rossow, W. B., Carlson, B. E., Zhang, Y.-C., Stubenrauch, C.et al. 2005. Cloud effects on the radiation budget based on ISCCP data (1991 to 1995).Int. J. Climatol., 25, 1103–1125.CrossRefGoogle Scholar
Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J., Artaxo, P.et al. 2006. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia.Atmos. Chem. Phys., 6, 471–491.CrossRefGoogle Scholar
Roberts, G. C., and Nenes, A. 2005. A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements.Aerosol Sci. Technol., 39(3), 206–221.CrossRefGoogle Scholar
Roberts, P., and Hallett, J. 1968. A laboratory study of ice nucleating properties of some mineral particulates.Q. J. R. Meteorol. Soc., 94(399), 25–34.CrossRefGoogle Scholar
Robock, A., Oman, L., and Stenchikov, G. L. 2008. Regional climate responses to geoengineering with tropical and Arctic SO2 injections.J. Geophys. Res., 113, D16101.CrossRefGoogle Scholar
Robock, A., Marquardt, A., Kravitz, B., and Stenchikov, G. 2009. Benefits, risks, and costs of stratospheric geoengineering.Geophys. Res. Lett., 36, L19703.CrossRefGoogle Scholar
Roe, G. H. 2005. Orographic precipitation.Ann. Rev. Earth Planet. Sci., 33, 645–671.CrossRefGoogle Scholar
Rogers, R. R., and Yau, M. K. 1989. A Short Course in Cloud Physics. Pergamon.Google Scholar
Rosenberg, R. 2005. Why is ice slippery?Physics Today, 58(12), 50–55.CrossRefGoogle Scholar
Rosenfeld, D., Rudich, Y., and Lahav, R. 2001. Desert dust suppressing precipitation: a possible desertification feedback loop.Proc. Natl. Acad. Sci., 98, 5975–5980.CrossRefGoogle ScholarPubMed
Rosenfeld, D., Kaufman, Y. J., and Koren, I. 2006. Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols.Atmos. Chem. Phys., 6, 2503–2511.CrossRefGoogle Scholar
Rossow, W. B., and Schiffer, R. A. 1999. Advances in understanding clouds from ISCCP.Bull. Amer. Meteorol. Soc., 80, 2261–2287.2.0.CO;2>CrossRefGoogle Scholar
Salam, A., Lohmann, U., Crenna, B., Lesins, G., Klages, P., Rogers, D.et al. 2006. Ice nucleation studies of mineral dust particles with a new continuous flow diffusion chamber.Aerosol Sci. Technol., 40, 134–143.CrossRefGoogle Scholar
Sant, V., Lohmann, U., and Seifert, A. 2013. Performance of a triclass parameterization of the collision–coalescence process in shallow clouds.J. Atmos. Sci., 70, 1744–1767.CrossRefGoogle Scholar
Sassen, K., DeMott, P. J., Prospero, J. M., and Poellot, M. R. 2003. Saharan dust storms and indirect aerosol effects on clouds: Crystal-face results.Geophys. Res. Lett., 30, doi: 10.1029/2003GL017371.CrossRefGoogle Scholar
Saunders, C. 2008. Charge separation mechanisms in clouds.Space Sci. Rev., 137(1–4), 335–353.CrossRefGoogle Scholar
Schaller, R. C., and Fukuta, N. 1979. Ice nucleation by aerosol-particles – experimental studies using a wedge-shaped ice thermal-diffusion chamber.J. Atmos. Sci., 36, 1788–1802.2.0.CO;2>CrossRefGoogle Scholar
Schemm, S., and Wernli, H. 2014. The linkage between the warm and the cold conveyor belts in an idealized extratropical cyclone.J. Atmos. Sci., 71, doi: 10.1175/JAS–D–13– 0177.1.CrossRefGoogle Scholar
Schlamp, R. J., Grover, S. N., Pruppacher, H. R., and Hamielec, A. E. 1976. Numerical investigation of the effect of electric charges and vertical external electric fields on the collision efficiency of cloud drops.J. Atmos. Sci., 33(9), 1747–1755.2.0.CO;2>CrossRefGoogle Scholar
Schreier, M., Mannstein, H., Eyring, V., and Bovensmann, H. 2007. Global ship track distribution and radiative forcing from 1 year of AATSR data.Geophys. Res. Lett., 34(17). L17814.
Schween, J. H., Kuettner, J., Reinert, D., Reuder, J., and Wirth, V. 2007. Definition of “banner clouds” based on time lapse movies.Atmos. Chem. Phys., 7(8), 2047–2055.CrossRefGoogle Scholar
Seaborn, J. B. 2002. Mathematics for the Physical Sciences. Springer.CrossRefGoogle Scholar
Sehmel, G. A., and Sutter, S. L. 1974. Particle deposition rates on a water surface as a function of particle diameter and air velocity.J. Rech. Atmos., 8(3–4), 911–920.Google Scholar
Seifert, P., Ansmann, A., Mattis, I., Wandinger, U., Tesche, M., Engelmann, R.et al. 2010. Saharan dust and heterogeneous ice formation: Eleven years of cloud observations at a central European EARLINET site.J. Geophys. Res., 115, D20201. doi:10.1029/2009JD013222.CrossRefGoogle Scholar
Seinfeld, J. H., and Pandis, S. N. 2006. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. Wiley.Google Scholar
Shapiro, M. A., and Keyser, D. 1990. Fronts, Jet Streams and the Tropopause. American Meteorolog. Society, pp. 167–191.
Singh, R., Joshi, P. C., and Kishtawal, C. M. 2005. A new technique for estimation of surface latent heat fluxes using satellite-based observations.Month. Wea. Rev., 133.CrossRefGoogle Scholar
Sipilä, M., Berndt, T., Petäjä, T., Brus, D., Vanhanen, J., Stratmann, F.et al. 2010. The role of sulfuric acid in atmospheric nucleation.Science, 327(5970), 1243–1246.CrossRefGoogle ScholarPubMed
Skeie, R. B., Fuglestvedt, J., Berntsen, T., Lund, M. T., Myhre, G., and Rypdal, K. 2009. Global temperature change from the transport sectors: historical development and future scenarios.Atmos. Env., 43(39), 6260–6270.CrossRefGoogle Scholar
Skrotzki, J., Connolly, P., Schnaiter, M., Saathoff, H., Möhler, O., Wagner, R.et al. 2013. molThe accommodation coefficient of waterecules on ice – cirrus cloud studies at the AIDA simulation chamber.Atmos. Chem. Phys., 13(8), 4451–4466.CrossRefGoogle Scholar
Slinn, W. G. N., Hasse, L., Hick, B. B., Hogan, A. W., Lal, D., Liss, P. S.et al. 1978. Some aspects of transfer of atmospheric trace constituents past air-sea interface.Atmos. Env., 12(11), 2055–2087.CrossRefGoogle Scholar
Soden, B. J., and Held, I. M. 2006. An assessment of climate feedbacks in coupled ocean– atmosphere models.J. Climate, 19(23), 6263.CrossRefGoogle Scholar
Soden, B. J., Wetherald, R. T., Stenchikov, G. L., and Robock, A. 2002. Global cooling after the eruption ofMount Pinatubo: a test of climate feedback by water vapor.Science, 296, 727–730.CrossRefGoogle ScholarPubMed
Solomon, S., Qin, D., Manning, M., Alley, R. B., Berntsen, T., Bindoff, N. L.et al. 2007. Technical summary. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B. (eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Spichtinger, P., and Krämer, M. 2012. Tropical tropopause ice clouds: a dynamic approach to the mystery of low crystal numbers.Atmos. Chem. Phys. Discuss., 12(10), 28109–28153.CrossRefGoogle Scholar
Squires, P. 1958. The microstructure and colloidal stability of warm clouds.Tellus, 10(2), 256–261.Google Scholar
Stevens, B., and Feingold, G. 2009. Untangling aerosol effects on clouds and precipitation in a buffered system.Nature, 461(7264), 607–613.CrossRefGoogle Scholar
Stevens, B., Vali, G., Comstock, K.,Wood, R., van Zanten, M. C., Austin, P. H.et al. 2005. Pockets of open cells and drizzle in marine stratocumulus.Bull. Amer. Meteorol. Soc., 86, 51–57.CrossRefGoogle Scholar
Stevenson, D. S., Dentener, F. J., Schultz, M. G., Ellingsen, K., van Noije, T. P. C., Wild, O.et al. 2006. Multimodel ensemble simulations of present-day and near-future tropospheric ozone.J. Geophys. Res., 111, doi:10.1029/2005JD006338.CrossRefGoogle Scholar
Stocker, T. F., Qin, D., Plattner, G.-K., Alexander, L. V., Allen, S. K., Bindoff, N. L.et al. 2013. Technical summary. Pp. 33–115 in Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J.et al. (eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.Google Scholar
Stolzenburg, M., and Marshall, T. C. 2009. Electric field and charge structure in lightningproducing clouds. Pp. 57–82 in Betz, H. D., Schumann, U., and Laroche, P. (eds.), Lightning: Principles, Instruments and Applications. Springer.Google Scholar
Storelvmo, T., and Herger, N. 2014. Cirrus cloud susceptibility to the injection of ice nuclei in the upper troposphere.J. Geophys. Res., 119(5), 2375–2389.Google Scholar
Storelvmo, T., Kristjánsson, J.-E., and Lohmann, U. 2008. Aerosol influence on mixedphase clouds in CAM-Oslo.J. Atmos. Sci., 65, 3214–3230.CrossRefGoogle Scholar
Storelvmo, T., Kristjansson, J. E., Muri, H., Pfeffer, M., Barahona, D., and Nenes, A. 2013. Cirrus cloud seeding has potential to cool climate.Geophys. Res. Lett., 40, 178–182.CrossRefGoogle Scholar
Stubenrauch, C. J., Kinne, S., and GEWEX Cloud Assessment Team. 2009. Assessment of global cloud climatologies. In: GEWEX Newsletter, vol. 19. GEWEX.Google Scholar
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S.et al. 2006. Analysis and quantification of the diversities of aerosol life cycles within AeroCom.Atmos. Chem. Phys., 6(7), 1777–1813.CrossRefGoogle Scholar
Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S.et al. 2007. The effect of harmonized emissions on aerosol properties in global models – an AeroCom experiment.Atmos. Chem. Phys., 7(17), 4489–4501.CrossRefGoogle Scholar
Tilmes, S., Mills, M. J., Niemeier, U., Schmidt, H., Robock, A., Kravitz, B.et al. 2015. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models.Geosci. Model Dev., 8(1), 43–49.CrossRefGoogle Scholar
Timmreck, C., Graf, H.-F., and Kirchner, I. 1999. A one and a half year interactive simulation of Mt. Pinatubo aerosol.J. Geophys. Res., 104, 9337–9360.CrossRefGoogle Scholar
Tory, K. J., and Dare, R. A. 2015. Sea surface temperature thresholds for tropical cyclone formation.Journal of Climate, 28(20), 8171–8183.CrossRefGoogle Scholar
Tremblay, A. 2005. The stratiform and convective components of surface precipitation.J. Atmos. Sci., 62(5), 1513–1528.CrossRefGoogle Scholar
Trenberth, K. E., Fasullo, J. T., and Mackaro, J. 2011. Atmospheric moisture transports from ocean to land and global energy flows in reanalyses.J. Climate, 24(18), 4907–4924.CrossRefGoogle Scholar
Twomey, S. A. 1974. Pollution and the planetary albedo.Atmos. Env., 8(12), 1251–1256.CrossRefGoogle Scholar
Uman, M. A. 1987. The Lightning Discharge. International Geophysics Series, vol. 39. Academic Press.Google Scholar
Vali, G. 1985. Atmospheric ice nucleation – a review.J. Rech. Atmos., 19, 105–115.Google Scholar
Vargaftik, N. B., Volkov, B. N., and Voljak, L. D. 1983. International tables of the surfacetension of water. J. Phys. Chem. Ref. Data, 12(3), 817–820.CrossRefGoogle Scholar
Vial, J., Dufresne, J.-L., and Bony, S. 2013. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates.Clim. Dyn., 41(11/12), 3339–3362.CrossRefGoogle Scholar
Voigt, M., and Wirth, V. 2014. Mechanisms of banner cloud formation.J. Atmos. Sci., 70,Google Scholar
Wagner, W., and Pruss, A. 2002. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use.J. Phys. Chem. Ref. Data, 31(2), 387–535.CrossRefGoogle Scholar
Wallace, J. M., and Hobbs, P. V. 2006. Atmospheric Science: An introductory Survey. Academic Press.Google Scholar
Wegener, A. 1911. Thermodynamik der Atmosphäre. Barth, Leipzig, Germany.Google Scholar
Weisman, M. L., and Klemp, J. B. 1982. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy.Mon. Wea. Rev., 110(6), 504–520.2.0.CO;2>CrossRefGoogle Scholar
Welti, A., Lüönd, F., Stetzer, O., and Lohmann, U. 2009. Influence of particle size on the ice nucleating ability of mineral dusts.Atmos. Chem. Phys., 9(18), 6705–6715.CrossRefGoogle Scholar
Welti, A., Lüönd, F., Kanji, Z. A., Stetzer, O., and Lohmann, U. 2012. Time dependence of immersion freezing: an experimental study on size selected kaolinite particles.Atmos. Chem. Phys., 12(20), 9893–9907.CrossRefGoogle Scholar
Welti, A., Kanji, Z. A., Lüönd, F., Stetzer, O., and Lohmann, U. 2014. Exploring the mechanisms of ice nucleation on kaolinite: from deposition nucleation to condensation freezing.J. Atmos. Sci., 71(1), 16–36.CrossRefGoogle Scholar
Whitby, K. T., and Sverdrup, G. M. 1980. California aerosols – their physical and chemical characteristics. Adv. Env. Sci. Technol. (United States), 477.
Wiacek, A., Peter, T., and Lohmann, U. 2010. The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds.Atmos. Chem. Phys., 10, 8649–8667.CrossRefGoogle Scholar
Wielicki, B. A., Barkstrom, B. R., Harrison, E. F., Lee, R. B., Smith, G. L., and Cooper, J. E. 1996. Clouds and the Earth's radiant energy system (CERES): an earth observing system experiment.Bull. Amer. Meteorol. Soc., 77, 853–868.2.0.CO;2>CrossRefGoogle Scholar
Wild, Martin. 2012. Enlightening global dimming and brightening.Bull. Amer. Meteorol. Soc., 93(1), 27–37.CrossRefGoogle Scholar
Wise, M. E., Baustian, K. J., Koop, T., Freedman, M. A., Jensen, E. J., and Tolbert, M. A. 2012. Depositional ice nucleation onto crystalline hydrated NaCl particles: a new mechanism for ice formation in the troposphere.Atmos. Chem. Phys., 12(2), 1121–1134. WMO, 1975. International cloud atlas. Volume I: Manual on the observation of clouds and other meteors. WMO vol. 407.CrossRefGoogle Scholar
Wood, R. 2012. Stratocumulus clouds.Mon. Wea. Rev., 140(8), 2373–2423.CrossRefGoogle Scholar
Wood, R., Kubar, T. L., and Hartmann, D. L. 2009. Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation.J. Atmos. Sci., 66(10), 2973–2990.CrossRefGoogle Scholar
Wüest, M. 2001. De-aliasing wind information from doppler radar for operational use. Ph.D. thesis, ETH Zurich.
>Wurm, G., and Krauss, O. 2008. Experiments on negative photophoresis and application to the atmosphere.Atmos. Env., 42(11), 2682–2690.Google Scholar
Wylie, D., Jackson, D. L., Menzel, W. P., and Bates, J. J. 2005. Trends in global cloud cover in two decades of HIRS observations.J. Climate, 18(15), 3021–3031.CrossRefGoogle Scholar
Zhou, C., Dessler, A. E., Zelinka, M. D., Yang, P., and Wang, T. 2014. Cirrus feedback on inter-annual climate fluctuations.Geophys. Res. Lett.CrossRefGoogle Scholar
Zipser, E. J. 2003. Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. Pp. 49–58 in Tao, W.-K., and Adler, R. (eds.), Cloud Systems, Hurricanes and the Tropical Rainfall Measuring Mission TRMM. American Meteorological Society.Google Scholar
Zobrist, B., Marcolli, C., Koop, T., Luo, B. P., Murphy, D. M., Lohmann, U.et al. 2006. Oxalic acid as a heterogeneous ice nucleus in the upper troposphere and its indirect aerosol effect.Atmos. Chem. Phys., 6, 3115–3129.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×